The subject of this project was the preparation of substance reports for the following compounds: dipropylene glycol mono n(t)-butyl ether (CAS No. 29911-28-2, 35884-42-5, 132739-31-2), 2-(2-hexyloxyethoxy)-ethanol (CAS No. 112-59-4), 1-propenylbenzene (CAS No. 637-50-3, 873-66-5), dipropylene glycol mono methyl ether acetate (CAS No. 88917-22-0) and hydroxyacetone (CAS No. 116-09-6). For these substances, the toxicological data basis were researched, compiled and evaluated, and EU-LCI values were proposed. The EU-LCI values form the basis for assessing health effects of emissions from construction products and allow the harmonisation of the health assessment of construction product emissions throughout Europe. The final EU-LCI values are set by the EU-LCI Working Group, a group of experts from ten European countries, and may differ from the proposals contained in this report. The EU-LCI Working Group is currently developing a harmonised European list of substances and their associated emission limits (EU-LCI values). The substance reports developed within this project support and accelerate this process. Veröffentlicht in Texte | 16/2020.
Herstellung von Silizium-PV-Modulen aus multikristallinen Siliziumzellen, Daten nach #1, Tabelle VI. Solarzellen-, EVA- und Rückenfolienabfall vernachlässigt zusätzlicher Reststoff Glas (0,01 kg/kg), der in Recycling geht Die folgenden Daten beziehen sich auf die Hersellung eines Modul mit einer Leistung von 165Wp. Fläche 1,25 m² Gewicht 17,4 kg Solar cells 0,760424 kg Aluminium profile 3,8 kg Polyphenylenoxid 0,2 kg Glass sheet, low iron, tempered 11,4 kg Ethyl Vinyl Acetate 1,3 kg Auslastung: 5000h/a Brenn-/Einsatzstoff: Rohstoffe gesicherte Leistung: 100% Jahr: 2005 Lebensdauer: 20a Leistung: 1t/h Nutzungsgrad: 2290% Produkt: Rohstoffe
Herstellung von Silizium-PV-Modulen aus monokristallinen Siliziumzellen, Daten nach #1, Tabelle VI. Solarzellen-, EVA- und Rückenfolienabfall vernachlässigt Folgende Daten beziehen sich auf die Herstellung eines Moduls mit 175Wp. Fläche 1,25 m², Gewicht 17,4 kg davon Solar cells 0,760424 kg Aluminium profile 3,8 kg Polyphenylenoxid 0,2 kg Glass sheet, low iron, tempered 11,4 kg Ethyl Vinyl Acetate 1,3 kg zusätzlicher Reststoff Glas (0,01 kg/kg), der in Recycling geht Auslastung: 5000h/a Brenn-/Einsatzstoff: Rohstoffe gesicherte Leistung: 100% Jahr: 2005 Lebensdauer: 20a Leistung: 1t/h Nutzungsgrad: 2290% Produkt: Rohstoffe
technologyComment of acetaldehyde oxidation (RER, RoW): Oxidation of acetaldehyde technologyComment of acetic acid production, product in 98% solution state (RER, RoW): The process represents the Celanese process (which is an optimized version of the Monsanto process) in which methanol reacts with carbon monoxide under the influence of a rhodium catalyst. It is assumed that 50% of the off-gas is burned as fuel, thus VOC emissions are reduced and CO2 is higher. References: Le Berre, C., Serp, P., Kalck, P. and Torrence, G. P. 2014. Acetic Acid. Ullmann's Encyclopedia of Industrial Chemistry. technologyComment of oxidation of butane (RoW): Oxidation of butane technologyComment of oxidation of butane (RER): The liquid-phase oxidation of hydrocarbons is an important process to produce acetic acid, formic acid or methyl acetate. About 43 kg of formic acid is produced per ton of acetic acid. Unreacted hydrocarbons, volatile neutral constituents, and water are separated first from the oxidation product. Formic acid is separated in the next column; azeotropic distillation is generally used for this purpose. The formic acid contains about 2 wt % acetic acid, 5 wt % water, and 3 wt % benzene. Formic acid with a content of about 98 wt % can be produced by further distillation. Reference: Gräfje, H., Körnig, W., Weitz, H.-M., Reiß, W.: Butanediols, Butenediol, and Butynediol, Chapter 1. In: Ullmann's Encyclopedia of Industrial Chemistry, Sev-enth Edition, 2004 Electronic Release (ed. Fiedler E., Grossmann G., Kersebohm D., Weiss G. and Witte C.). 7 th Electronic Release Edition. WileyInterScience, New York, Online-Version under: http://www.mrw.interscience.wiley.com/ueic/articles/a04_455/frame.html
Production mix technologyComment of decarboxylative cyclization of adipic acid (RER): decarboxylative cyclization of adipic acid technologyComment of formic acid production, methyl formate route (RER): The worldwide installed capacity for producing formic acid was about 330 000 t/a in 1988. Synthesis of formic acid by hydrolysis of methyl formate is based on a two-stage process: in the first stage, methanol is carbonylated with carbon monoxide; in the second stage, methyl formate is hydrolyzed to formic acid and methanol. The methanol is returned to the first stage. Although the carbonylation of methanol is relatively problem-free and has been carried out industrially for a long time, only recently has the hydrolysis of methyl formate been developed into an economically feasible process. The main problems are associated with work-up of the hydrolysis mixture. Because of the unfavorable position of the equilibrium, reesterification of methanol and formic acid to methyl formate occurs rapidly during the separation of unreacted methyl formate. Problems also arise in the selection of sufficiently corrosion-resistant materials Carbonylation of Methanol In the two processes mentioned, the first stage involves carbonylation of methanol in the liquid phase with carbon monoxide, in the presence of a basic catalyst: imageUrlTagReplacea0ec6e15-92c8-4d44-82bb-84e90e58b171 As a rule, the catalyst is sodium methoxide. Potassium methoxide has also been proposed as a catalyst; it is more soluble in methyl formate and gives a higher reaction rate. Although fairly high pressures were initially preferred, carbonylation is carried out in new plants at lower pressure. Under these conditions, reaction temperature and catalyst concentration must be increased to achieve acceptable conversion. According to published data, ca. 4.5 MPa, 80 °C, and 2.5 wt % sodium methoxide are employed. About 95 % carbon monoxide, but only about 30 % methanol, is converted under these circumstances. Nearly quantitative conversion of methanol to methyl formate can, nevertheless, be achieved by recycling the unreacted methanol. The carbonylation of methanol is an equilibrium reaction. The reaction rate can be raised by increasing the temperature, the carbon monoxide partial pressure, the catalyst concentration, and the interface between gas and liquid. To synthesize methyl formate, gas mixtures with a low proportion of carbon monoxide must first be concentrated. In a side reaction, sodium methoxide reacts with methyl formate to form sodium formate and dimethyl ether, and becomes inactivated. The substances used must be anhydrous; otherwise, sodium formate is precipitated to an increasing extent. Sodium formate is considerably less soluble in methyl formate than in methanol. The risk of encrustation and blockage due to precipitation of sodium formate can be reduced by adding poly(ethylene glycol). The carbon monoxide used must contain only a small amount of carbon dioxide; otherwise, the catalytically inactive carbonate is precipitated. Basic catalysts may reverse the reaction, and methyl formate decomposes into methanol and carbon monoxide. Therefore, undecomposed sodium methoxide in the methyl formate must be neutralized. Hydrolysis of Methyl Formate In the second stage, the methyl formate obtained is hydrolyzed: imageUrlTagReplace2ddc19c0-905f-42c3-b14c-e68332befec9 The equilibrium constant for methyl formate hydrolysis depends on the water: ester ratio. With a molar ratio of 1, the constant is 0.14, but with a water: methyl formate molar ratio of 15, it is 0.24. Because of the unfavorable position of this equilibrium, a large excess of either water or methyl formate must be used to obtain an economically worthwhile methyl formate conversion. If methyl formate and water are used in a molar ratio of 1 : 1, the conversion is only 30 %, but if the molar ratio of water to methyl formate is increased to 5 – 6, the conversion of methyl formate rises to 60 %. However, a dilute aqueous solution of formic acid is obtained this way, and excess water must be removed from the formic acid with the expenditure of as little energy as possible. Another way to overcome the unfavorable position of the equilibrium is to hydrolyze methyl formate in the presence of a tertiary amine, e.g., 1-(n-pentyl)imidazole. The base forms a salt-like compound with formic acid; therefore, the concentration of free formic acid decreases and the hydrolysis equilibrium is shifted in the direction of products. In a subsequent step formic acid can be distilled from the base without decomposition. A two-stage hydrolysis has been suggested, in which a water-soluble formamide is used in the second stage; this forms a salt-like compound with formic acid. It also shifts the equilibrium in the direction of formic acid. To keep undesirable reesterification as low as possible, the time of direct contact between methanol and formic acid must be as short as possible, and separation must be carried out at the lowest possible temperature. Introduction of methyl formate into the lower part of the column in which lower boiling methyl formate and methanol are separated from water and formic acid, has also been suggested. This largely prevents reesterification because of the excess methyl formate present in the critical region of the column. Dehydration of the Hydrolysis Mixture Formic acid is marketed in concentrations exceeding 85 wt %; therefore, dehydration of the hydrolysis mixture is an important step in the production of formic acid from methyl formate. For dehydration, the azeotropic point must be overcome. The concentration of formic acid in the azeotropic mixture increases if distillation is carried out under pressure, but the higher boiling point at high pressure also increases the decomposition rate of formic acid. At the same time, the selection of sufficiently corrosion-resistant materials presents considerable problems. A number of entrainers have been proposed for azeotropic distillation. Reference: Gräfje, H., Körnig, W., Weitz, H.-M., Reiß, W.: Butanediols, Butenediol, and Butynediol, Chapter 1. In: Ullmann's Encyclopedia of Industrial Chemistry, Sev-enth Edition, 2004 Electronic Release (ed. Fiedler E., Grossmann G., Kersebohm D., Weiss G. and Witte C.). 7 th Electronic Release Edition. WileyInterScience, New York, Online-Version under: http://www.mrw.interscience.wiley.com/ueic/articles/a04_455/frame.html technologyComment of oxidation of butane (RER): The liquid-phase oxidation of hydrocarbons is an important process to produce acetic acid, formic acid or methyl acetate. About 43 kg of formic acid is produced per ton of acetic acid. Unreacted hydrocarbons, volatile neutral constituents, and water are separated first from the oxidation product. Formic acid is separated in the next column; azeotropic distillation is generally used for this purpose. The formic acid contains about 2 wt % acetic acid, 5 wt % water, and 3 wt % benzene. Formic acid with a content of about 98 wt % can be produced by further distillation. Reference: Gräfje, H., Körnig, W., Weitz, H.-M., Reiß, W.: Butanediols, Butenediol, and Butynediol, Chapter 1. In: Ullmann's Encyclopedia of Industrial Chemistry, Sev-enth Edition, 2004 Electronic Release (ed. Fiedler E., Grossmann G., Kersebohm D., Weiss G. and Witte C.). 7 th Electronic Release Edition. WileyInterScience, New York, Online-Version under: http://www.mrw.interscience.wiley.com/ueic/articles/a04_455/frame.html
Die Extraktion anorganischer Komponenten aus Böden ergibt aus ihrer Untersuchung eine spezielle Form bodenanalytischen Daten. Es handelt sich um bodenchemische Daten. Sie werden im Labor des LUNG M-V erhoben (Meß-Rohdaten, kombinierte Daten, Meßreihen, statistische Aussagen über Daten). Sie sind verteilt abgelegt in Laborbüchern, Rohdatenfiles der Meßgeräte, Spreadsheet-Daten. Es existieren Daten zu den Extraktionsmitteln Doppellactat, Dithionit, Reinstwasser, Oxalat, Calciumchlorid, Strontiumchlorid und Azetaten.
Die Firma OQ Chemicals Produktion GmbH & Co. KG, Paul-Baumann-Straße 1 in 45772 Marl hat die Genehmigung zur wesentlichen Änderung und zum Betrieb der Acetate- und Harzfabrik zur Herstellung von Acetaten und Harz auf dem Grundstück Paul-Baumann-Straße 1 in 45772 Marl (Gemarkung Marl, Flure 53, 63, Flurstücke 15, 30, 129) beantragt. Gegenstand des Antrages ist die Umsetzung von Maßnahmen aus dem überarbeiteten Sicherheitskonzept und die Erhöhung der Kapazität von 4.000 t/a auf 6.000 t/a Harze.
Das Projekt "Teilprojekt Siemens" wird vom Umweltbundesamt gefördert und von Siemens AG durchgeführt. Current energy and chemical needs are met by the extraction and processing of the fossil fuels. Such resources are finite and their use causes environmental pollution and greenhouse gas (GHG) emissions. The challenge facing humankind is, therefore, to identify new, sustainable and cleaner processes for chemical and energy generation. Biological routes represent a promising option, but strategies to date rely on the use of microbes to convert through fermentation the easily accessible carbohydrates (sugar and starch) of plants (such as sugar cane or corn) into chemicals and fuels. This has led to concerns over competition with the use of these carbohydrates as food, and a re-focussing of efforts on non-food, plant cell wall material (lignocellulose). However, lignocellulose is extremely resistant to being broken down into the sugar needed for fermentation. Overcoming this recalcitrance in a cost effective manner is proving extremely challenging. There is, however, an exciting low-cost alternative, and that is to directly capture carbon, by harnessing the ability of certain bacteria to 'eat' single carbon GHG gases such as CO2. The gas is injected into the liquid medium of fermentation vessels where it is consumed by the bacteria and converted into the chemicals we need. Fortunately, such gases are an abundant resource, and may be derived from non-food sources such as waste gases from industry as well as 'synthesis gas' produced from the gasification (heating) of non-food biomass and domestic/ agricultural wastes. In this project, we will use this technology to make the platform chemical hydroxypropanoic acid. It has a multitude of uses, including the manufacture of plastics, coatings, adhesives, floor polishes and paints. By using non-food, waste gas as a feedstock, competition with food and land resources is avoided while at the same time providing benefits to the environment and society through a reduction in GHG emissions.
Das Projekt "Teilprojekt A" wird vom Umweltbundesamt gefördert und von Hochschule Biberach, Institut für Angewandte Biotechnologie (IAB) durchgeführt. Biokatalytische Prozesse, die Enzyme nutzen um chemische Reaktionen effizient und ressourcenschonend zu betreiben, stellen einen wichtigen Teil der Biotechnologie dar, und werden bereits vielseitig z.B. für die Herstellung chemischer Produkte oder in der Lebensmittelindustrie eingesetzt. An vielen enzymkatalysierten Reaktionen sind außer den Enzymen und den umzusetzenden Substraten, jedoch zusätzliche Cofaktoren (Coenzyme) beteiligt, meist um die Reaktion mit Energie in Form von ATP und/oder Reduktionskraft z.B. durch NAD(P)H zu versorgen. Diese Coenzyme, die oft teuer und chemisch kompliziert sind, werden in den Reaktionen verbraucht und müssen daher ständig neu zugesetzt werden, was den Betrieb erschwert und die ökonomische Bilanz verschlechtert. Zielsetzung des Projekts CORENZ ist es, diese Cofaktoren innerhalb eines zellfreien enzymatischen Systems zu regenerieren und dadurch Enzymsysteme nachhaltig und kostengünstiger in geschlossenen Kreisläufen betreiben zu können. Als Modelsystem wird die enzymatische Umsetzung von Acetat und CO2 zu Malat unter Verbrauch von ATP, Ferredoxin und NADPH untersucht. In letzter Zeit werden zellfreie enzymatische Verfahren vermehrt untersucht um das klimaschädliche Treibhausgas CO2 als Rohstoff für die Herstellung von chemischen Produkten zu nutzen. Durch das gewählte Reaktionsystem kann CO2 in einer organischen Dicarbonsäure fixiert werden, welche eine wichtige Plattformchemikalie für die chemische Industrie darstellt.
Das Projekt "Teilprojekt A" wird vom Umweltbundesamt gefördert und von Karlsruher Institut für Technologie (KIT), Institut für Angewandte Biowissenschaften, Abteilung Angewandte Biologie durchgeführt. Ziel des Vorhabens ist die Realisierung von zwei biotechnologischen Prozessstraßen zur Konversion biogener Rest- und Abfallstoffströme in Plattformchemikalien. Die Abfälle werden über eine saure Hydrolyse in Acetat, Butyrat und Propionat umgesetzt. Dabei wird der Prozess so ausgelegt werden, dass eine Produktion von Propionat bevorzugt erfolgen wird. In einer mikrobiellen Elektrolysezelle erfolgt an der Anode die Oxidation von Acetat und Butyrat zu Kohlendioxid, während an der Kathode molekularer Wasserstoff produziert wird. Das verbleibende Propionat wird mit einer Membranfiltration aufkonzentriert. In einer Erweiterung dieser Prozessstraße werden Wasserstoff, CO2 und Propionat als Substrate für die mikrobielle Produktion von Butandiol genutzt.
Origin | Count |
---|---|
Bund | 63 |
Land | 4 |
Type | Count |
---|---|
Förderprogramm | 56 |
Text | 6 |
Umweltprüfung | 3 |
unbekannt | 2 |
License | Count |
---|---|
closed | 5 |
open | 56 |
unknown | 6 |
Language | Count |
---|---|
Deutsch | 65 |
Englisch | 15 |
Resource type | Count |
---|---|
Archiv | 4 |
Datei | 4 |
Dokument | 8 |
Keine | 38 |
Webseite | 21 |
Topic | Count |
---|---|
Boden | 56 |
Lebewesen & Lebensräume | 54 |
Luft | 46 |
Mensch & Umwelt | 67 |
Wasser | 48 |
Weitere | 64 |