"Informationen zum Ausbau der Windenergie in Nordrhein-Westfalen (NRW) Die Rahmenbedingungen für den Ausbau der Windenergie in Deutschland werden durch Bundesrecht festgelegt. Das Windenergieflächenbedarfsgesetz (WindBG) gibt bundeseinheitliche Flächenziele für alle Bundesländer vor. Bundesweit sollen 2 % der Landesfläche für Windenergieanlagen zur Verfügung gestellt werden. Nordrhein-Westfalen (NRW) muss einen Anteil von 1,8 % seiner Landesfläche, also rund 61.400 Hektar bereitstellen. Die nordrhein-westfälische Landesregierung hat im Landesentwicklungsplan (LEP) festgelegt, dass das Erreichen der Windenergie-Flächenziele des WindBG über die Regionalplanung sichergestellt wird. Zu diesem Zweck wurden regionale Flächenziele definiert. Die im Rahmen der Regionalplanung ausgewiesenen Bereiche werden in NRW als Windenergiebereiche (WEB) bezeichnet. Darüber hinaus können Kommunen zusätzliche Flächen für die Windenergienutzung ausweisen. Hierbei kann es sich um bereits länger bestehende Planungen (ehemalige Konzentrationszonen) oder neue, im Rahmen der sogenannten Positivplanung nach Baugesetzbuch (BauGB) ausgewiesene Flächen handeln, die die bestehenden WEB der Regionalplanung ergänzen. Bitte beachten Sie bei diesem Datensatz: Die Windenergiebereiche der Regionalplanung sind bislang in den Planungsregionen Arnsberg, Detmold, Düsseldorf, Köln und Münster rechtskräftig. Weitere WEB werden veröffentlicht, sobald die jeweiligen Regionalplanungsverfahren abgeschlossen sind. Die kommunalen Windenergieflächen werden ohne Gewähr auf Vollständigkeit im Energieatlas NRW dargestellt. aber nicht als Geodaten veröffentlicht. Hinweise zur Nutzung der Geodaten: Die zeichnerischen Festlegungen der Regionalpläne basieren auf Kartengrundlagen im Maßstab 1:50.000 und sind nicht parzellenscharf, sondern generalisiert dargestellt. Aussagekraft entfalten die Daten erst durch die korrekte Kombination mit den jeweils gültigen Planzeichen und der passenden topografischen Hintergrundkarte. Eine Nutzung außerhalb des vorgesehenen Maßstabsbereichs oder ohne passenden topografischen Bezug kann zu Fehlinterpretationen führen. Die zur Verfügung gestellten Geodaten dienen ausschließlich zur unverbindlichen, informellen Information. Rechtsverbindlich ist nur die vom jeweiligen Regionalrat beschlossene zeichnerische Festlegung (s. Niederlegungsexemplar) im Maßstab 1:50.000. Die bereitgestellten Daten wurden mit größter Sorgfalt erstellt. Gleichwohl wird keine Gewähr für Richtigkeit, Vollständigkeit oder Aktualität der Informationen übernommen. Bei Rückfragen zur planerischen Aussage oder zur Interpretation der regionalplanerischen Festlegungen wenden Sie sich bitte an die zuständige Regionalplanungsbehörde."
Bestimmung von Expositionen gegenüber elektromagnetischen Feldern der Elektromobilität Projektleitung: Dr.-Ing. Gernot Schmid, Seibersdorf Labor GmbH Beginn: 18.03.2021 Ende: 11.11.2025 Finanzierung: 449.025 Euro Hintergrund Elektromobilität gilt als Schlüssel für eine klimafreundliche Mobilität. Elektroantriebe arbeiten weitgehend schadstoffemissionsfrei. Betriebsbedingt entstehen allerdings Magnetfelder, die von dem elektrifizierten Antriebsstrang eines Elektrofahrzeugs ausgehen und auf Fahrer*in und Passagier*innen einwirken. Expositionen ( d.h. Situationen, in denen Personen solchen Feldern ausgesetzt sind) in relevanten Größenordnungen können dabei nicht von Vornherein ausgeschlossen werden. Gründe sind der geringe Abstand der Sitze zu den Komponenten, die Magnetfelder erzeugen, und die hohen Stromstärken in leistungsstarken Fahrzeugen. Darüber hinaus können bei rein batterieelektrischen Fahrzeugen (BEV) und bei Plug-In-Hybriden (PHEV) Expositionen bei Fahrzeugstillstand während des Ladevorgangs auftreten. Magnetfeldquellen sind dann zum Beispiel die Ladeeinrichtung selbst, das Ladekabel im Fall konduktiven Ladens, als Gleichrichter arbeitende Leistungselektronik sowie die Leitungen im Fahrzeug und die Fahrzeugbatterie. Magnetfeldquellen nur in Elektroautos und Hybriden Zielsetzung In dem Vorhaben wurde die Exposition von Personen gegenüber elektromagnetischen Feldern der Elektromobilität bestimmt. Einbezogen wurden Expositionsbeiträge durch den Fahrzeugfahrbetrieb und durch Batterieladevorgänge bei Fahrzeugstillstand. Die Studie ist aussagekräftig für Elektroautos und Elektro-Zweiräder ( d.h. ein- und zweispurige Personenkraftfahrzeuge). Als Fahrräder eingestufte Elektrofahrzeuge ( sog. E-Bikes) waren ausgenommen. Die Ergebnisse können mit Werten einer im Jahr 2009 abgeschlossenen Studie des BfS und mit in der Literatur veröffentlichten Werten verglichen werden. Zudem geben die Ergebnisse Hinweise für die Standardisierung. Durchführung Untersucht wurden gemessen an den Zulassungszahlen besonders beliebte E-Auto-Modelle und zusätzlich auch leistungsstarke E-Auto-Modelle von verschiedenen Herstellern. Dazu wurden Magnetfeldmessungen an mehreren Stellen im Fahrgastraum der Elektroautos und an den Sitzpositionen der Elektro-Zweiräder ( d.h. Elektroroller bzw. -motorräder) durchgeführt, während sich die Fahrzeuge auf einem Rollenprüfstand und in vorab festgelegten Betriebszuständen befanden. Die Betriebszustände umfassten das Beschleunigen, das Bremsen sowie das Fahren mit konstanten Geschwindigkeiten gegen verschiedene Lastmomente, um Luftwiderstände, Streckensteigungen und -gefälle zu simulieren. Anschließend wurden Magnetfeldmessdaten während eines Worldwide Harmonized Light Vehicle Test Cycle (WLTC) aufgezeichnet. Dabei handelt es sich um einen ca. 30-minütigen genormten Fahrzyklus, der ursprünglich für vergleichbare Abgas- und Verbrauchsmessungen festgelegt wurde. Daten für Zweiräder wurden während eines World Motorcycle Test Cycle (WMTC) aufgezeichnet. Die auf dem Prüfstand ermittelten Daten wurden mit Messungen bei Fahrten auf einer abgesperrten, ebenen Teststrecke und bei einer etwa 90-minütigen Fahrt im öffentlichen Straßenverkehr validiert. Anschließend wurden die im Zeitbereich aufgezeichneten Messdaten entsprechend der spektralen Zusammensetzung analysiert und bewertet. Situationen, die basierend auf den Messungen die höchsten Expositionen erwarten ließen, wurden zusätzlich dosimetrisch analysiert. Die betreffenden Expositionssituationen wurden dazu in einer Simulationssoftware nachgebildet. Ziel war die rechentechnische Bestimmung, der im Körper einer exponierten Person hervorgerufenen elektrischen Feldstärken. Hierfür musste vorab die lokale Verteilung der Magnetfeldstärken in der Fahrgastzelle bzw. im Bereich der Sitze der Elektro-Zweiräder bekannt sein. Stellvertretend für die exponierten Personen wurden hochaufgelöste, digitale Menschmodelle eingesetzt, die anatomisch möglichst korrekt waren und Gewebetypen mit verschiedenen elektrischen Eigenschaften unterschieden. Die Untersuchungen zum Aufladen bei Fahrzeugstillstand berücksichtigten Positionen in und außerhalb der Fahrzeuge. Ebenso wurden die Untersuchungen an Normal- und Schnellladepunkten durchgeführt. Hartschaum-Dummy mit zehn Messsonden im Fond eines Elektroautos Ergebnisse Die Studie stellt nach Kenntnis des BfS die bislang detaillierteste Untersuchung zu Magnetfeldexpositionen in Elektrofahrzeugen dar. Die Messungen wurden in aktuellen, für den deutschen Straßenverkehr zugelassenen Fahrzeugen unter realen Bedingungen im öffentlichen Straßenverkehr sowie auf Teststrecken und Prüfständen durchgeführt. Erstmals wurden auch Zweiräder einbezogen. Die Fahrzeughersteller waren nicht an den Untersuchungen beteiligt. Die Magnetfeldexposition innerhalb der Fahrzeuge war räumlich sehr ungleichmäßig. Hohe Werte traten im Fahrberieb vorrangig im Bereich der Beine auf, während der Oberkörper und der Kopf deutlich weniger exponiert waren. Die Exposition variierte je nach Fahrmanöver: Beim Beschleunigen und Bremsen waren die Werte höher als bei konstantem Fahren. Die maximale Motorleistung der Fahrzeuge hing nicht systematisch mit der Magnetfeldexposition zusammen. Langzeit-Effektivwerte aus Messungen während Fahrten im realen Straßenverkehr zeigten höhere Werte als die Daten, die während genormter Fahrzyklen auf einem Fahrzeugprüfstand ermittelt wurden. Alle Magnetfeldexpositionen wurde mit den Referenzwerten der EU -Ratsempfehlung und den ICNIRP -2010-Leitlinien verglichen. Bei sanfter Fahrweise lagen die Ausschöpfungen der EU -Referenzwerte meist im niedrigen zweistelligen Prozentbereich. Eine sportliche Fahrweise führte in mehreren Elektrofahrzeugen sowie in einem zu Vergleichszwecken untersuchten Fahrzeug mit Verbrennungsmotor zu Überschreitungen der EU -Referenzwerte. Bei Anwendung der moderneren ICNIRP -2010-Leitlinien ergab sich nur in einem Fall eine Überschreitung. Trotz der kurzfristigen Überschreitungen der Referenzwerte wurden keine Überschreitungen der empfohlenen Höchstwerte für im Körper induzierte elektrische Felder festgestellt. Die während des Ladens innerhalb der Fahrzeuge gemessenen magnetischen Flussdichten waren überwiegend niedriger als die während des Fahrens gemessenen Werte. Gleichstrom-Laden ( DC -Laden) führte, trotz höherer Ladeleistungen, zu geringeren Expositionen als Wechselstrom-Laden ( AC -Laden). Magnetische Flussdichten oberhalb der ICNIRP -Referenzwerte traten nur in unmittelbarer Nähe des Ladekabelsteckers bzw. der Fahrzeugbuchse ( bzw. beim induktiven Laden nahe dem Straßenniveau) unmittelbar neben dem Fahrzeug auf. Neben dem Antriebssystem erzeugen weitere Fahrzeugkomponenten Magnetfelder, z.B. die Sitzheizungen, Fensterheber oder Fahrzeugeinschaltung. In einigen Fällen waren diese Expositionen höher als die durch das Antriebssystem verursachten Felder. In vielen Fahrzeugen traten die höchsten Werte beim Einschalten oder Starten auf. Die mittleren Langzeitwerte in Elektroautos (0,5 bis 2,5 Mikrotesla/ µT ) entsprachen weitgehend denen in etablierten elektrisch angetriebenen Verkehrsmitteln wie Straßenbahnen oder U-Bahnen (2 bis 3 µT ). In doppelstöckigen Zügen wurden auf der oberen Fahrgastebene Werte bis zu 13 µT gemessen, also potenziell höhere Expositionen als in Elektroautos. Stand: 24.11.2025
Öffentliche Bekanntmachung des Genehmigungsbescheides gemäß § 21a der Neunten Verordnung zur Durchführung des Bundes-Immissionsschutzgesetzes (9. BImSchV) Die Windenergie LIED GbR, Alfredshöher Str. 12, 34434 Willebadessen, beantragte mit Schreiben vom 19.06.2024, hier eingegangen am 21.06.2024, die immissionsschutzrechtliche Genehmigung gemäß § 4 BImSchG für die Errichtung und den Betrieb von einer Windener-gieanlage des Typs Vestas V172-7.2 MW mit 199,00 m Nabenhöhe, 285,00 m Gesamthöhe und einer Leistung von 7,2 MW auf dem folgenden Grundstück in 34439 Willebadessen: WEA 5: Gemarkung Löwen, Flur 4, Flurstück 86 (Az.: 43.0084/24/1.6.2) Mit Genehmigungsbescheid vom 19.08.2025 wurde der Windenergie LIED GbR die Ge-nehmigung für das o. g. Vorhaben erteilt. Der Bescheid und die Rechtsbehelfsbelehrung wer-den hiermit gemäß § 21a der 9. BImSchV auf Antrag des Vorhabenträgers öffentlich bekannt gemacht. Das Genehmigungsverfahren wurde im vereinfachten Verfahren ohne Öffentlich-keitsbeteiligung gemäß § 19 BImSchG durchgeführt. Die Genehmigung enthält u. a. Bedingungen und Auflagen zur Sicherstellung und Einhaltung des Immissionsschutzes, des Baurechts, des Brandschutzes, des Landschafts- und Natur-schutzes, des Gewässerschutzes, des Abfallrechts, des Arbeitsschutzes und des zivilen und militärischen Luftverkehrsrechts. Die Genehmigung erlischt drei Jahre nach Ihrer Bestands-kraft, wenn die Windenergieanlage bis dahin nicht in Betrieb genommen worden ist. Der Genehmigungsbescheid mitsamt Begründung liegt innerhalb der Auslegungsfrist im Zeit-raum vom 07.11.2025 bis einschließlich zum 21.11.2025 beim Kreis Höxter, Moltkestraße 12, 37671 Höxter, Abteilung Immissions- und Klimaschutz, Zimmer B 709 und bei der Stadt Willebadessen, Abdinghofweg 1, 34439 Willebadessen-Peckelsheim, Zimmer D 721 und kann dort an jedem behördlichen Arbeitstag während der Dienststunden eingesehen werden. Zur Vermeidung von Wartezeiten wird um eine telefonische, schriftliche oder elektronische Voranmeldung gebeten. Eine Voranmeldung ist jedoch nicht zwingend erforderlich. Dienststunden der Kreisverwaltung Höxter: Montag bis Donnerstag: 07:30 Uhr bis 12:30 Uhr und von 13:30 Uhr bis 16:00 Uhr Freitag: 07:30 Uhr bis 12:30 Uhr Dienststunden der Stadtverwaltung Willebadessen: Montag - Mittwoch, Freitag: 08:00 Uhr bis 12:30 Uhr Donnerstag: 08:30 Uhr bis 12:30 Uhr und von 14.00 Uhr bis 16:00 Uhr Termine für die Einsichtnahme können unter folgenden Kontaktdaten vereinbart werden: Frau Madita Wiedemeier, m.wiedemeier@kreis-hoexter.de, 05271/965-4472 (Kreisverwaltung Höx-ter), Frau Lara Kleinert, l.kleinert@willebadessen.de; 05644/8862 (Stadtverwaltung Willeba-dessen). Dieser Bekanntmachungstext, der Bescheid und seine Begründung und Umweltverträglich-keitsprüfung können während des Zeitraums vom 07.11.2025 bis einschließlich zum 21.11.2025 auch auf der Internetseite des Kreises Höxter unter der Adresse www.bekanntmachungen.kreis-hoexter.de abgerufen und eingesehen werden. Auf Verlangen eines Beteiligten kann auch eine leicht zu erreichende Zugangsmöglichkeit zur Verfügung gestellt werden. Die Entscheidung wird zudem während dieses Zeitraums über das länder-übergreifende UVP-Portal unter https://uvp-verbund.de/nw bekannt gegeben. Mit dem Ende der Auslegungsfrist (21.11.2025, 24:00 Uhr) gilt der Bescheid auch gegenüber Dritten, die keine Einwendungen erhoben haben, als zugestellt. Rechtsbehelfsbelehrung: „Gegen diesen Bescheid kann vor dem Oberverwaltungsgericht für das Land Nordrhein-Westfalen, Aegidiikirchplatz 5, 48143 Münster, innerhalb eines Monats nach dessen Zustel-lung Klage erhoben werden.“ Bei Fragen wenden Sie sich bitte an Frau Madita Wiedemeier. KREIS HÖXTER 37671 Höxter, 06.11.2025 Der Landrat Im Auftrag als untere Immissionsschutzbehörde Az.: 43.0084/24/1.6.2 Dr. Kathrin Weiß Fachbereichsleitung
Der Datensatz stellt die Gefährdung der Schieneninfrastruktur durch Murgänge räumlich differenziert dar. Dieses Produkt der Murganggefährdung ist das Ergebnis des Forschungsprojektes „Analysen zu schnellen wasserhaltigen Massenbewegungen: Bundesweite Untersuchungen zur Exposition des deutschen Schienennetzes und Modellierungen der räumlichen Ausbreitung“ des Eisenbahn-Bundesamtes im Rahmen der Arbeiten des BMDV-Expertennetzwerks im Themenfeld Klimawandelfolgen und Anpassung (bmdv-expertennetzwerk.de). Die Sachinformationen und Gefährdungsklassen werden ausschließlich für den Bereich der Schieneninfrastruktur bereitgestellt. Datengrundlage hierfür ist der Datensatz ‚geo-strecke‘ (Stand 10/2019), welcher von der Deutschen Bahn (DB) unter der Lizenz Creative Commons Attribution 4.0 International (CC BY 4.0) bereitgestellt wird (http://data.deutschebahn.com/dataset/geo-strecke). Dargestellt sind die potenziellen Gefährdungsbereiche der Schieneninfrastruktur kleiner, mittlerer und großer potenzieller simulierter Ereignisse (s. Abschlussbericht des Projektes auf der Website des dzsf (www.dzsf.bund.de)). Das Attribut „Gefährdung“ unterscheidet diese drei Gefahrenklasse (1 = kleines Ereignis, 2 = mittleres Ereignis, 3 = großes Ereignis) sowie 0 = keine Gefährdung und 99 = Tunnel. Dabei gilt für die Größenordnung der simulierten Kubaturen: <100 m3: kleines Ereignis 100–1000 m3: mittleres Ereignis ≥ 1000 m3: großes Ereignis Der Datensatz bildet keine Eintrittswahrscheinlichkeit der Ereignisse ab. Bestehende Schutzmaßnahmen und dadurch gesicherte Bereiche wurden in den Modellierungen nicht berücksichtigt.
Der Datensatz stellt die potentiellen Fließwege und Reichweiten simulierter Murgänge (mg) und Hangmuren (hm) entlang des deutschen Schienennetzes dar. Dieses Produkt der potentiellen Murgänge und Hangmuren ist das Ergebnis des Forschungsprojektes „Analysen zu schnellen wasserhaltigen Massenbewegungen: Bundesweite Untersuchungen zur Exposition des deutschen Schienennetzes und Modellierungen der räumlichen Ausbreitung“ des Eisenbahn-Bundesamtes im Rahmen der Arbeiten des BMDV-Expertennetzwerks im Themenfeld Klimawandelfolgen und Anpassung (bmdv-expertennetzwerk.de). Die Sachinformationen und Gefährdungsklassen werden ausschließlich für den anliegenden Bereich der Schieneninfrastruktur bereitgestellt. Dargestellt sind die potenziellen simulierten Murgänge und hangmuren in Abstufung der Größe nach kleinen, mittleren und großen Ereignissen (s. Abschlussbericht des Projektes auf der Website des dzsf (www.dzsf.bund.de)). Wert 1 = kleines Ereignis, 2 = mittleres Ereignis, 3 = großes Ereignis. In diesem Datensatz sind die potenziellen simulierten Ereignisse der Murgänge und Hangmuren kombiniert abgebildet. Eine Prozessunterscheidung ist über die Ansicht der Datensätze Murganggefährdung und Hangmurengefährdung möglich. Dabei gilt für die Größenordnung der simulierten Kubaturen: <100 m3: kleines Ereignis 100–1'000 m3: mittleres Ereignis ≥ 1'000 m3: großes Ereignis Der Datensatz bildet keine Eintrittswahrscheinlichkeit der Ereignisse ab. Bestehende Schutzmaßnahmen und dadurch gesicherte Bereiche wurden in den Modellierungen nicht berücksichtigt.
Zielsetzung und Anlass des Vorhabens: Das Bauwesen und die damit verbundenen Berufe stehen vor bedeutenden Herausforderungen, die durch die Verknappung fossiler Energieträger, Umweltkatastrophen und die begrenzte Verfügbarkeit mineralischer Baustoffe verursacht werden. Die zunehmende Komplexität im Bauwesen sowie Nachhaltigkeitskriterien auf dem Immobilienmarkt verschärfen diese Probleme. Prognosen zufolge wird der Anteil an Neubauten am gesamten Gebäudebestand bis 2035 weniger als 10 % betragen. Der bestehende Gebäudebestand, einschließlich erhaltenswerter Gebäude, spielt daher eine wesentliche Rolle, insbesondere im Hinblick auf die in den Materialien enthaltene graue Energie und das Konzept des ‚Urban Mining‘. Derzeit berücksichtigen gesetzliche Vorschriften und Förderungen weder die Ressourceneffizienz noch die Ressourcenschonung im Bestand oder bei Denkmälern. Es ist notwendig, die Gebäudebewertung anzupassen, da der aktuelle Energieausweis lediglich die Betriebseffizienz für Heizwärme und Warmwasser erfasst und für Denkmäler nicht verpflichtend ist. Um die Dekarbonisierung des Bauwesens voranzutreiben, muss eine Grundlage geschaffen werden, die es ermöglicht, diese Potenziale einzubeziehen. Die Metastudie untersucht, wie ökologische Aspekte in denkmalgeschützten Beständen berücksichtigt werden können und welche Potenziale durch Bewertungen einfließen sollten, einschließlich einer Analyse möglicher Bewertungsverfahren unter Berücksichtigung der Ökobilanzierung. Das Ziel der Studie besteht darin, einen umfassenden Überblick über die Einbindung der ökologischen Aspekte von Baustoffen in denkmalgeschützten Beständen zu geben. Referenzprojekte mit Ökobilanzierung werden identifiziert und analysiert, um darauf basierende Handlungsempfehlungen abzuleiten. Es soll eine Überarbeitung der Systematik für Baudenkmale mit einer Lebensdauer von mehr als 50 Jahren vorgeschlagen werden, wobei die Priorisierung von Bauteilen und die Bewertung der Betriebseffizienz im Vergleich zu Suffizienzstrategien berücksichtigt werden sollen. Es wird angestrebt, Hinweise für zukünftige Maßnahmen zur Bewältigung des Klimawandels, einschließlich des Einsatzes erneuerbarer Energien, zu geben. Die Studie bietet Empfehlungen zur Verbesserung der Beurteilungskriterien in Denkmälern und zeigt Potenziale zur Implementierung in Bewertungssystemen auf, einschließlich der Berücksichtigung von Ausnahmeregelungen für Kulturdenkmäler. Es soll erfasst und analysiert werden, wie Ökobilanzen in verschiedenen Bewertungsmethoden für historische Gebäude verwendet wurden. Eine Übersicht über Denkmalprojekte, die erneuerbare Energien nutzen, sowie deren Effizienz- und Ökobilanzbewertung wird erstellt. Die Unterschiede und Auswirkungen von Lebenszyklusanalysen werden untersucht, um Handlungsempfehlungen für zukünftige Systemmodifikationen und Nachhaltigkeitsbewertungen bereitzustellen.
Die PNE AG, Peter-Henlein-Straße 2 - 4 in 27472 Cuxhaven, hat am 23.10.2019 einen Antrag gestellt auf Erteilung einer immissionsschutzrechtlichen Genehmigung zur Errichtung und zum Betrieb eines Vorhabens zur Nutzung von Windenergie mit drei Windenergieanlagen (WEA) in 36277 Schenklengsfeld, in der Gemarkung Unterweisenborn, Flur 2, Flurstück 5 (WEA 1) und in der Gemarkung Schenklengsfeld, Flur 15, Flurstück 66/3 (WEA 2) bzw. Flurstück 113/26 (WEA 3). Dabei handelt es sich um den Anlagentyp Siemens SG 6.0 -155 mit einer Nennleistung von 6,6 MW, einer Nabenhöhe von 165 m, einem Rotordurchmesser von 155 m und einer Gesamthöhe von 242,5 m. Das Vorhaben zur Nutzung von Windenergie soll nach erteilter Genehmigung im 3. Quartal des Jahres 2022 in der genehmigten Form in Betrieb genommen werden. Dieses Vorhaben bedarf nach § 4 des Bundes-Immissionsschutzgesetzes (BImSchG) in Verbindung mit Nr. 1.6.2 des Anhangs 1 der 4. Verordnung über genehmigungsbedürftige Anlagen (4. BImSchV) der Genehmigung durch das Regierungspräsidium Kassel. Für das Vorhaben besteht die Pflicht, eine Umweltverträglichkeitsprüfung (UVP) durchzuführen.
Die Bemühungen um die Eindämmung des Klimawandels erfordern es mehr denn je, die atmosphärische Physik – einschließlich der Wind- und Temperaturverteilungen in der Atmosphäre – zu verstehen und zu überwachen. Nur so können Klimamodelle und Wettervorhersagen verbessert werden. Kommerzielle kompakte Windradare und LIDARe erreichen eine maximale Höhe von 5 km. Bei kontinuierlichen Messungen in darüber liegenden Höhen besteht daher eine Datenlücke. Das EU-finanzierte Projekt EULIAA wird ein LIDAR-Array entwickeln, das die Wind- und Temperaturverteilungen in der Atmosphäre großflächig und über einen langen Zeitraum hinweg ununterbrochen selbstständig messen kann. So wird es damit möglich sein, mehr als ein Jahr lang ohne Instandhaltung kontinuierliche Messungen in 5 km bis 50 km Höhe durchzuführen und dabei einen Beobachtungsbereich von bis zu 10 000 km2 abzudecken. Die angestrebten neuen LIDAR-Einheiten werden erschwinglich, kompakt, effizient und transportfreundlich sein und über Windturbinen oder Solarmodulen betrieben werden.
Für einen stabilen Netzbetrieb muss das Angebot an elektrischer Leistung stets dem Verbrauch entsprechen. Dazu halten die Übertragungsnetzbetreiber Regelleistung zur Primär- und Sekundärregelung sowie Minutenreserve vor. Mit der Zunahme der Leistungseinheiten mit volatiler Netzeinspeisung aus erneuerbaren Energien, wie Windkraft und Photovoltaik, erhöht sich permanent der Bedarf an Regelleistung. Gleichzeitig wird die eingespeiste Leistung aus konventionellen Großkraftwerken und damit die zur Verfügung stehende Regelleistung abnehmen. Aktuelle Studien zeigen zudem, dass in der Primärregelung künftig signifikant kürzere Reaktionszeiten und höhere Leistungsänderungsgeschwindigkeiten erforderlich sind. Die so entstehende Bedarfslücke kann künftig durch regionale zellulare Verbünde von Versorgungseinheiten abgedeckt werden. Sie sind gekennzeichnet durch eigene dezentrale Versorger-, Verbraucher- und Speicherkapazitäten , insbesondere Industriebetriebe mit eigenen Heizkraftwerken auf Basis von Gas, Biomasse oder Kohle mit Priorität der Wärmeversorgung, Windenergie- und Photovoltaik-Anlagen sowie elektrische Batteriesysteme und thermische Speicher. Sie stellen nach außen einen Verbund mit positiver und negativer Regelreserve dar. Der Netzbetreiber kann die einzelnen Verbünde gestuft einsetzen und abrufen. Hierdurch entstehen zusätzliche Redundanzen, welche die Gesamtsystemstabilität erhöhen. Ziel des Vorhabens ist es zunächst, Lösungsansätze zu entwickeln, so dass regionale zellulare Verbünde von Versorgungseinheiten auch hochdynamische Netzregelaufgaben erfüllen können. Das komplexe Zusammenwirken von Energiebereitstellungs-, Nutzungs- und Speichereinheiten unterschiedlicher Energieformen stellt dabei eine besondere Herausforderung dar. Die Übernahme von Netzregelaufgaben muss ohne Abstriche bei Prozess- und Versorgungsstabilität, Betriebszuverlässigkeit und Anlagenlebensdauer erfolgen. Nur durch die Integration geeigneter Speicher, einer intelligenten Nutzung systeminhärenter Speicherkapazitäten sowie einer übergeordneten Steuerung und Überwachung des komplexen dezentralen Systems können die Anforderungen erfüllt werden. Als Entwicklungsplattform und Demonstrator soll das Technikum des Zentrum für Energietechnik (ZET) der TUD dienen. Es repräsentiert einen derartigen Verbund dezentraler Erzeuger- und Verbrauchereinheiten von Elektroenergie und Wärme mit Kopplung zum Strom- und Wärmenetz des lokalen Energieversorgers im Universitätscampus.
Die wpd Windpark 471 GmbH & Co. KG, Stephanitorsbollwerk 3, 28217 Bremen, hat beim Landkreis Oldenburg, Bauordnungsamt, Delmenhorster Str. 6, 27793 Wildeshausen, als zuständige Genehmigungsbehörde nach §§ 4, 10 BImSchG die immissionsschutzrechtliche Genehmigung für die Errichtung und den Betrieb von drei Windenergieanlagen im Windpark Gruppenbühren beantragt. Das Vorhaben umfasst die Errichtung und den Betrieb von drei Windenergieanlagen des Typs Vestas V-172-7.2 EnVetus mit einer Nabenhöhe von 164 m, einer Gesamthöhe von 250 m sowie einem Rotordurchmesser von 172 m. Die Leistung je Anlage beträgt 7,2 MW. Sechs vorhandene Bestandsanlagen sollen zurückgebaut werden. Das Vorhaben unterliegt gemäß § 4 BImSchG in Verbindung mit § 1, § 2 und Nr. 1.6 des Anhangs 1 der 4. Verordnung zur Durchführung des Bundes-Immissionsschutzgesetzes (4. BImSchV) der Genehmigungspflicht. Die Antragstellerin hat die Durchführung einer Umweltverträglichkeitsprüfung (UVP) beantragt. Diesem Antrag wurde stattgegeben. Für das Vorhaben besteht damit nach § 7 Abs. 3 UVPG eine UVP-Pflicht. Für das UVP-pflichtige Vorhaben wurde der erforderliche UVP-Bericht vorgelegt.
| Origin | Count |
|---|---|
| Bund | 4189 |
| Kommune | 70 |
| Land | 4925 |
| Schutzgebiete | 1 |
| Wissenschaft | 655 |
| Zivilgesellschaft | 37 |
| Type | Count |
|---|---|
| Chemische Verbindung | 174 |
| Daten und Messstellen | 230 |
| Ereignis | 34 |
| Förderprogramm | 2724 |
| Gesetzestext | 127 |
| Hochwertiger Datensatz | 60 |
| Kartendienst | 1 |
| Lehrmaterial | 1 |
| Taxon | 3 |
| Text | 429 |
| Umweltprüfung | 3240 |
| unbekannt | 1341 |
| License | Count |
|---|---|
| geschlossen | 4079 |
| offen | 3996 |
| unbekannt | 163 |
| Language | Count |
|---|---|
| Deutsch | 8015 |
| Englisch | 590 |
| Resource type | Count |
|---|---|
| Archiv | 307 |
| Bild | 34 |
| Datei | 879 |
| Dokument | 2898 |
| Keine | 2839 |
| Multimedia | 2 |
| Unbekannt | 18 |
| Webdienst | 245 |
| Webseite | 2094 |
| Topic | Count |
|---|---|
| Boden | 2224 |
| Lebewesen und Lebensräume | 5026 |
| Luft | 3329 |
| Mensch und Umwelt | 8235 |
| Wasser | 2318 |
| Weitere | 5284 |