Wasserinjektion oder Baggerung zur Sedimententnahme in Häfen
Beschreibung: Räumliche Verbreitung ausgewählter makrozoobenthischer Arten in der deutschen Bucht. Datenquelle: Daten aus Umweltverträglichkeitsstudien (UVS) im Rahmen von Genehmigungsverfahren des Bundesamtes für Seeschifffahrt und Hydrographie in der AWZ der Nordsee und Forschungsdaten des Alfred-Wegener-Instituts (AWI), Helmholtz-Zentrum für Polar- und Meeresforschung; Erfassungszeitraum: 1997 bis 2011, hauptsächlich Frühjahrs- und Herbstdaten (UVS-Daten), aber auch Sommer- und Winterdaten (AWI-Daten) Beprobungsstandards: Die Daten aus UVSn folgen dem Standarduntersuchungskonzept StUK 1-3 (BSH 2007); AWI-Daten dem ICES Standard (Rumohr 1999) Beprobungsgerät: hauptsächlich van-Veen-Greifer (0,1 qm, 30-95 kg je nach Sediment), wenige Stationen Kastengreifer (0,1 qm, 160 kg), für Nephrops norvegicus und Goneplax rhomboides Baumkurre und Dredge (1-3 m Breite) Probennahme: 1-3 Parallelproben pro Station, Siebung über 1 mm, Fixierung in Seewasser-gepuffertem Formalin, Daten aus Kurre/Dredge an Bord erfasst oder Unterproben eingefroren, Abundanz und Biomasse (g Nassgewicht) pro Art Datenauswertung: Fachinformationssystem für benthische Invertebraten; Prüfung der Qualität, Datenharmonisierung, Produkterstellung durch das AWI Produktbeschreibung: Grid: 5x5 qkm für Greiferdaten, 10x10 km² für Daten zu N. norvegicus und G. rhomboides aus Baumkurrendaten; Vorhandene auswählbare Parameter: Anzahl der Stationen, Minimum, Maximum, Mittelwert, Median und Standardabweichung der Dichte (m-2) je Art; Klassifizierungsmethode: Natürliche Unterbrechungen (Jenks-Caspall-Algorithmus); Die Produkte enthalten eine unterschiedliche Klassifizierung der Dichten je Art! Hinweis: Bitte beachten Sie die unterschiedlichen Wertebereiche! Rumohr, H. (1999). "Soft bottom macrofauna: Collection, treatment, and quality assurance of samples." ICES Techniques in Environmental Sciences, No. 27: 1-19. BSH (2007): Standard "Untersuchung der Auswirkungen von Offshore-Windenergieanlagen auf die Meeresumwelt (StUK 3)", Hamburg. Weitere Informationen finden Sie unter: https://gdi.bsh.de/de/data/Benthos-Density_Information_Benthos_Dichte_DE.pdf
Dieser Dienst stellt Layer zu folgenden Themen bereit: - Kabel- und Leitungsbau (beeinflusste Flächen) - Offshore Windenergie (Lage, Ausdehnung, Anzahl, Größe, Fundament-Typ) - Küstenschutzmaßnahmen (Lage, Ausdehnung, beeinflusste Flächen) - Sonstige Flächeninanspruchnahmen (Lage, Ausdehnung, Art und Zeitpunkt der Herstellung), z. B. Plattformen - Baggerungen, Sandentnahmen (Volumen m³/a, betroffene Flächen) - Verklappungen (Volumen m³/a, betroffene Flächen) - Wellen- bzw. strömungsinduzierte Sedimentumlagerung (shear stress) - Schifffahrt - Fischereidruck - Marikulturen (Lage, Ausdehnung, Menge pro Fläche und Art) - Muschelfang und Muschelkulturflächen (Zeit/Fläche pro Jahr, Menge pro Fläche und Art)
Wasserinjektion oder Baggerung zur Sedimententnahme in Häfen
Main target of the project GIGICS (Cooperative German-Indonesian Geoscientific Investigations in the Celebes Sea) is the investigation of the internal crustal structure and the plate tectonic evolution of the Celebes Sea and its active continental margins off Mindanao and Northern Sulawesi. These investigations were carried out during the cruise SO98 of RV SONNE by the Federal Institute for Geosciences and Natural Resources (BGR), Hannover; the German Research Centre for Geosciences (GFZ), Potsdam; the GEOMAR, Kiel; the Institute of Oceanography (IfM), Hamburg; the Mines and Geoscience Bureau, Manila; the Agency for the Assessment and Application of Technology, Jakarta, and the Institute of Oceanography, Wormley. The cruise SO98 consisted of three legs of two weeks duration and one leg of four weeks duration. The total amount of data acquired during the cruise were: - 3,300 km of multichannel reflection seismics, - over 6,800 km of gravimetric and magnetic data and approximately 10.000 km of swath bathymetric and sediment echosounder data, - 3 wideangle-/refractionseismic profiles, each of 120 - 150 km length, - geological, geochemical sampling and oceanographical measurements at a total of 37 stations. During the cruise SO98 a widespaced but regular grid of magnetic and gravimetric profiles were acquired in the eastern part of the Celebes Sea from which up to then reliable data were very sparse. WEISSEL (1980) recognized in the western Celebes Sea WSW-ENE striking magnetic lineations, which he interpreted as chrons 18 - 20 (39 - 43 Ma according to the timescale of HARLAND et al. (1990)). The data from cruise SO98 show that there is no continuation of these anomalies to the east. In the eastern part the magnetic field of the Celebes Sea is less clear and much more disturbed. Nevertheless, E-W-striking anomalies are recognizable. Because amplitudes of local magnetic anomalies are higher than the lineations, the correlation of these lineations with the magnetic reversal scale is still somewhat ambiguous. The gravity map compiled from the measured gravimetric data shows elongated positive anomalies in the eastern part of the Celebes Sea. Exceptions occur at the deep sea trenches off North Sulawesi (North Sulawesi Trench) and Mindanao (Cotabatu Trench) and at the Sulu Archipelago where strong negative gravity anomalies were found. A remarkable NW-striking gravity high of up to 60 mgal was found in the central eastern part of the Celebes Sea. Gravimetric modelling suggests that this high can be correlated with the gravimetric effect of the Molucca Sea Plate subducting from the east under the Sangihe Arc. The reflection seismic data from the northern part of the Celebes Sea show indications for a juvenile subduction of oceanic Celebes Sea crust under the Sulu Archipelago. The oceanic crust bends down towards the Sulu Arc with angles between 2° and 5° and the sedimentary sequence above is deformed indicating a compressional stress regime. With the exception of two linear arranged seamount-like basement highs the Celebes Sea is dominated by two different oceanic crustal types showing distinct differences in the topography. The first one is showing a very similar reflection seismic pattern as it is found for oceanic crust of the Atlantic (HINZ et al., 1994). This type is characterized by a small-scale block-faulted relief of the top basement and a low reflectivity in lower crustal levels typically related as to be accreted at slow to intermediate spreading ridges. This type is found in the western, northern and southern part of the investigated area. In the eastern and especially in the southeastern part the igneous crust shows a very different image. The reflection of the top of the basement is less distinct and of lower frequency. The relief is very much smoother than in the previous type. This reflection seismic image indicates a volcanic/magmatic overprinting of the oceanic crust in this part of the Celebes Sea. Another target of cruise SO98 was the area of the active continental margin off North Sulawesi and its accretionary complex. The internal structure of the accretionary complex should be investigated to decide whether this active margin is also of the 'splinter-type' or not. During former geophysical cruises with RV SONNE oceanic crustal splinters were discovered in the accretionary wedges of the Sulu Sea and off Costa Rica (e.g. HINZ et al., 1991). From our reflection seismic measurements this active continental margin is morphologically subdivided into three units and consists of two accretionary complexes of different internal structural style: the lower and middle continental slope is underlain by an intensively thrusted, sedimentary accretionary wedge. This wedge was most probably formed during the last 5 Ma. Landward of this wedge an older and seismically very complex accretionary unit is present which is overlain at its landward termination by a sedimentary fore-arc basin. Within this older accretionary complex, units with a strong, low frequency reflection pattern were found which are interpreted to represent crustal splinters of igneous oceanic or ophiolitic nature. This interpretation is supported by our gravity and magnetic data. The magnetic profiles show an increase of the magnetic field towards the north arm of Sulawesi across the continental margin. This increase of the magnetic field suggests an increase of magnetized material within the older accretionary wedge towards the northern arm of Sulawesi where ophiolites are emplaced. During the interpretation of the reflection seismic data of the project GIGICS BSR's (bottom simulating reflectors) were discovered for the first time along the active continental margin of North-Sulawesi. BSR's are the seismic expression of a velocity decrease at the bottom of a gas hydrate zone. The distribution and depth of the BSR's correlates with the geochemical and geothermal results. Radiometric age dating and geochemical analyses from pillow basalts of a seamount from the southeastern Celebes Sea indicate hot-spot activity in this part of the Celebes Sea during or shortly after the formation of the oceanic crust approximately at 43 Ma ago. Three NW-striking ridges or seamount-chains in the northeastern Celebes Sea were mapped and investigated in detail. They are thought to represent a wrench fault system extending through the northeastern Celebes Sea. At the flank of one of these ridges a strongly alterated plagioclase-olivine basalt sample was dredged which was overlain by non-fossiliferous clay stone. A similar lithostratigraphic sequence was drilled during ODP leg 124 (RANGIN et al., 1990). The geochemical composition of these basalts is different from typical MORB. The existence of a large crustal splinter within the accretionary wedge off southwestern Mindanao obviously is responsible for a high thermal conductivity which in turn could have enhanced heat flow (108.1 mW/m2) and methanogenesis (405 ppb). The heat flow of 103.0 mW/m2 at the deformation front of the Mindanao wedge and the high methane concentration of 5.555 ppb suggests tectonically induced fluid transport within the wedge. High methane concentrations between 8.044 and 49.006 ppb at the lower slope off Sulawesi and in the North Sulawesi Trench are accompanied by high heat flow values of up to 100.5 mW/m2. Heat flow is significantly lower upslope (31.3 mW/m2). This general heat flow distribution pattern is seen over a large portion of the accretionary wedge. The elevated heat flow values and high methane concentrations near the deformation front most likely result from heat transport by fluids squeezed out from vertically and laterally compacting sediments. The reduced heat flow towards the coast is compatible either with a cooling effect of slow subduction of the oceanic crust, or stacking of cool slabs of compacted sediments. A subduction of oceanic crust with a heat flow around 60 mW/m2 over a period of more than 3 million years would have produced the low heat flow values of the upper slope if the wedge consists of claystone with a low thermal conductivity (1.2 - 1.7 W/mK). Even in the low-heat flow area isolated fluid venting is possible. Lateral variations in the heat flow pattern (e.g. broadening of the anomalies in the west) may be due to different thermal regimes within the subducted crust.
The expedition PS155/1 started on August 5th, 2018 in Tromsø (Norway) and ended in Longyearbyen (Spitsbergen) on September 3rd, 2018. In the course of BGR’s GREENMATE project the geological development of the European North Atlantic and the northern and north eastern Greenland shelf was analyzed using various marine geophysical methods (seismics, magnetics, gravity, heatflow measurements) and geological sampling (gravity corer, box corer, multi-corer, dredge). Sampling of marine Shelf sediments was undertaken in close correspondence with co-users from Geomar (add-on project ECHONEG), aiming to reconstruct Holocene paleo environmental and climatic evolution. Using the ship’s helicopters, marine sampling was complemented by onshore sampling operations to extract geological material at selected near coastal locations. Other scientific project groups used the cruise PS115.1 as an opportunity to quantify marine mammals and sea birds and their statistical distribution in our research area as part of the long-term project (add-on project Birds& Mammals) and to gather additional meteorological data via radiosondes (add-on Project YOPP). Against all expectations, outstanding ice conditions along the northern coast of Greenland enabled us to carry out reflection seismic surveys north of 84°N at the southern tip of Morris Jesup Rise with a 3 km long streamer. Structural data of this particular region of North Greenland is of special importance for BGR’s project GREENMATE for reconstructing the continental margin evolution. A 100 km long refraction seismic profile was measured to complement the reflection seismic data. After completing this, scientific work was concentrated on the northeastern Greenland shelf area between 76°N and 82.5°N. Over the time of the cruise a total of 2500 km of reflection seismic profiles (2250 km measured with 3km streamer length) and 100 km of refraction seismic profile (using nine ocean bottom seismometers) were measured, accompanied by gravity and magnetic surveys and seven heat flow measurement stations. Along the shelf and deep-sea area 21 geological sampling sites were chosen, with all together one dredge (around 200 kg of sample), 16 gravity cores (total core length 65 m), 12 box corers and 6 multi-corer stations. Onshore sediment sampling was done at 11 sampling sites. Beside sediment sampling hard rock from near coastal outcrops was collected in a total amount of 250 kg that will be used for age dating. The entire science program was carried out under consideration of the highest ecological standards to protect marine mammals and to meet all environmental requirements of the permitting authorities. In addition to external marine mammal observers (MMO) various acoustic monitoring systems and AWI’s on board infrared detection system AIMMS monitored any activity of marine mammals in the ships perimeter, especially during seismic operations.
The PANORAMA-2 research cruise was carried out between August 15th and September 20th 2015 aboard the Italian research vessel OGS Explora, like the PANORAMA-1 cruise in 2013. The intended survey area was the European sector of the Arctic east and southeast of the Svalbard archipelago in the area of the northern Barents Sea. Main target of the PANORAMA-2 cruise was the acquisition of new geophysical data and the probing of surficial sediments in the underexplored area of the Sørkapp Basin and Olga Basin. In the course of the 20 day lasting Leg1 of the PANORAMA-2 cruise geophysical data acquisition was carried out. About 1750 km of 2D multi-channel seismic data were acquired and about 350 km of wide angle seismic data by means of sonobuoys. Sediment echosounder data, multi-beam data, gravity data and geomagnetic data were acquired during the entire cruise in a 24/7 mode within the survey area. After a 1-day stopover in Longyearbyen for a crew change of a part of the scientific crew, the research vessel OGS Explora returned to the survey area for another 11 days. During Leg-2 of the PANORAMA-2 cruise the surficial sediments were sampled by means of gravity corer, multi corer and dredge at 34 stations all together. Sediment sampling was carried out during day-light times only. Night times were used for acquisition of geomagnetic data, gravity data, sediment echosounder data and multi-beam data.
In the period from February 13th to March 2nd 1980 4,037 km of magnetic, gravity and bathymetric lines and 1,195 km of digital reflection seismic lines were recovered on the 2nd leg of METEOR cruise no. 53. Heat flow measurements have been performed on 13 stations; on two stations sonobuoy refraction measurements and dredging have been carried out. From a preliminary interpretation of the seismic monitor records the Mazagan Plateau is part of the Moroccan Meseta. Seawards of this stable swell lies the 75 km wide, downfaulted rift graben characterized by salt diapirs. A submarine body, 150 square kilometres large, lying at the foot of the Mazagan Escarpment in water depths of 3000 m - 3800 m beneath sea level, from which western flank few granitic fragments were retrieved, is interpreted as a subsided and tilted block of the Mazagan Plateau. The north-trending magnetic anomalies, discovered during METEOR cruise no. 46 within the Essaouira continental margin segment have also been recognized within the Tafelney Plateau segment, situated between latitudes 30°45'N and 31°30'N off Morocco. Two neo-volcanic zones were found west of the Conception Bank and west of the Betancuria Massif/Fuerteventura Is. The Mesozoic and Tertiary depositional sequences are highly deformed by small piercement structures interpreted as dykes within these zones.
On the first leg of SONNE cruise SO-36 in the period from 11th February to 12th March 1985, geophysical investigations have been carried out on the Lord Howe Rise off eastern Australia by the Federal Institute for Geosciences and Natural Resources (BGR) in co-operation with the Bureau of Mineral Resources, Geology and Geophysics, Canberra. A total of 3,660 km of digital seismic reflection profiles, 6,740 km of gravity, magnetics, multibeam echosounder and sub-bottom profiler profiles, as well as 8 sonobuoy refraction profiles were recorded during this survey. A geomagnetic monitoring station of the BGR was operated during a part of the cruise on Lord Howe Island under the supervision of the BMR. These measurements provided a detailed picture of the structures of the survey area of the Lord Howe Rise. The samples proved that the Lord Howe Rise and the Dampier Ridge west of it consist of continental crust. Indications for structures rich in hydrocarbons were not observed. The 2nd and 3rd leg of SONNE cruise SO-36 were designed to investigate the structure, geological development and hydrocarbon potential of two frontier areas, the western and southwestern continental margin of Tasmania and the South Tasman Rise. On the 2nd leg (12.03.-12.04.1985) multichannel seismic reflection measurements were carried out in parallel with magnetic, gravimetric, sea-beam and 3.5 kHz subbottom profiler measurements on 19 lines with a total length of 3,820 km. In addition, 2,140 km were surveyed with magnetics, gravity meter, sea-beam and 3.5 kHz subbottom profiler in transit from and to Sydney, respectively. On the 3rd leg, which started in Sydney on 12th April 1985 and ended in Suva/Fiji one month later, 63 stations were sampled by dredging and coring with the aim (a) to provide lithology and biostratigraphic information about the seismic sequences mapped during leg 2, and (b) to obtain geochemical evidence of hydrocarbon generation from the character of gases absorbed onto the surficial sediment. Samples came from 33 stations off Western Tasmania, from 23 stations on the South Tasman Rise, and from 7 stations in the region of the Lord Howe Rise and the Dampier Ridge. In transit to the sampling sites, 11 single channel seismic lines with a total length of 470 km were surveyed, and in addition, 4,230 km were surveyed with magnetics, gravity meter, sea-beam, and subbottom profiler. Seven regional seismic unconformities were recognized and sampled, and the structural style of both areas was established. Thermogenic hydrocarbons in substantial concentration were found in the surface sediments at the western Tasmanian slope.
The SONNE cruise SO-49/1 from 6th April to 7th May 1987 was designed to investigate the Cotabato subduction zone off Mindanao and the geological structure of the eastern part of the Sulu Sea including the convergent continental margins off Zamboanga Peninsula, Negros, and Panay by a geophysical survey. On the 1st leg multichannel seismic reflection measurements were carried out in parallel with magnetic, gravimetric, sea beam and 3.5 kHz subbottom profiler measurements on 16 lines with a total length of 2,700 km. The SONNE cruise SO-49/1 was financed by the Federal Ministry of Research and Technology (BMFT). The geophysical survey in the Celebes Sea and in the Sulu Sea was carried out as a co-operative project by the Federal Institute for Geosciences and Natural Resources (BGR), the Bureau of Mines and Geoscience (BMG) and the Bureau of Energy Development (BED). 16 German scientists and technicians and 4 Philippine scientists attended SONNE cruise SO-49/1. The seismic lines surveyed across the Cotabato Trench/Celebes Sea and the Sulu Trench/Sulu Sea illustrate the active deformation of the layered sediments of the Celebes Sea and the SE Sulu Basin along the trenches: The seismic data suggest an active development of imbricate thrust sheets at the toe of the accretionary wedges and a simultaneous duplex-kind shortening within the wedges above the downgoing oceanic crust of the Celebes Sea and the SE Sulu Basin. The surface of the downgoing oceanic crust forms a major detachment plane or sole thrust. By these processes mass is added to the accretionary wedges resulting in thickening and growing of the wedges. The sedimentary apron overlaying the wedge is only mildly affected by these processes because the surface of the accretionary wedges forms a roof thrust. The collected geophysical data suggest that the oceanic SE Sulu Basin previously extended northward into Panay Island. It was closed by eastward subduction of oceanic crust beneath the upthrusted/updomed Cagayan Ridge. The Negros Trench, a 4.000 to 5,000 m deep bathymetric depression, is thought to represent the collision suture of the opposed subduction systems. The Cagayan Ridge which divides the Sulu Sea into the NW Sulu Basin and the SE Sulu Basin continues into the Antique Ridge of Panay. Approximately 45 suitable and problem-oriented sampling locations have been defined and documented for the subsequent geological and geochemical program by on-board analysis and interpretation of the seismic near trace records and the recordings of the 3.5 kHz subbottom profiler and the sea beam system. On cruise SO49/2 from 10th May to 21st June 1987, the research vessel SONNE of the Federal Republic of Germany undertook geoscience cruises in the South China Sea. The multidisciplinary study of the tectonic and natural resources of the region was a cooperative project between the Federal Institute for Geosciences and Natural Resources (BGR) and the Second Institute of Oceanography (SIO) in the frame of the Agreement between the State Oceanic Administration of the People's Republic of China and the Federal Ministry for Research and Technology of the Federal Republic of Germany on Cooperation in Marine Science and Technology. The first part of cruise SO49/2 was primarily to acquire multichannel seismic data, together with gravity, magnetic, sea beam, and 3.5 kHz measurements, and consisted of 4,112 km of traverses across the deep eastern and western sub-basins of the South China Sea from the Dangerous Grounds to the Chinese continental margin. The observed complex crustal deformation in the Southwestern South China Sea basin and in particular deep intracrustal reflection suggest a large-scale simple-shear kinematic mechanism for the development of at least the western sub-basins. The second part of cruise SO49/2 had primarily geological, geochemical and geothermal objectives and 21 dredge stations, 17 geochemical stations and 6 heat flow stations were carried out. The aims of the sampling were firstly to determine the lithologies and ages of the seismic sequences, and secondly to collect unconsolidated sediments for geochemical study of sorbed hydrocarbon gases in combination with heat flow measurements. Late Oligocene shallow-water carbonates dredged from 700 m to 2700 m of water depth indicate a strong subsidence of the investigated area. The underlying basement consists of continental crust with basaltic intrusions. The hydrocarbon gases of the outer continental slope originated by thermogenic processes from source rocks with a predominantly high maturity of the organic substances.
Origin | Count |
---|---|
Bund | 92 |
Land | 69 |
Type | Count |
---|---|
Ereignis | 2 |
Förderprogramm | 66 |
Text | 55 |
Umweltprüfung | 4 |
unbekannt | 23 |
License | Count |
---|---|
closed | 65 |
open | 78 |
unknown | 7 |
Language | Count |
---|---|
Deutsch | 140 |
Englisch | 17 |
unbekannt | 4 |
Resource type | Count |
---|---|
Archiv | 10 |
Bild | 13 |
Datei | 4 |
Dokument | 14 |
Keine | 87 |
Webdienst | 6 |
Webseite | 41 |
Topic | Count |
---|---|
Boden | 129 |
Lebewesen & Lebensräume | 139 |
Luft | 88 |
Mensch & Umwelt | 150 |
Wasser | 136 |
Weitere | 139 |