Systemraum: vollständige Barit-Produktion Geographischer Bezug: Europa Zeitlicher Bezug: 2004 Weitere Informationen: Die Bereitstellung von Investionsgütern wird in dem Datensatz nicht berücksichtigt. Allgemeine Informationen zur Förderung: Art der Förderung: Untertagebau Rohstoff-Förderung: China 55,3% Indien 11,9% USA 7,4% Marokko 4,4% Iran 3,6% Mexiko 2,6% Fördermenge Deutschland: 85524 t verwertbare Menge Jahr 2006 Importmenge Deutschland: 232590 t im Jahr 2007 Abraum: k.A.t/t Fördermenge weltweit: 7961000t/a Reserven: 190000000t Statische Reichweite: 23,9a
Die Karte beinhaltet Vorkommen und Lagerstätten von Metallen und Fluorit/Baryt im sächsischen und böhmischen Erzgebirge. Die Lagerstätten (namentliche Nennung) werden nach Grössen klassifiziert und entsprechend ihrer Mineralisation dargestellt. Geogene Belastungen des Bodens und des Wassers durch Schwermetalle werden besonders gekennzeichnet
Systemraum: Abbau Rohmaterial bis fertiges Produkt Geographischer Bezug: Weltmix Zeitlicher Bezug: 2004 Weitere Informationen: Die Bereitstellung von Investionsgütern wird in dem Datensatz nicht berücksichtigt. Allgemeine Informationen zur Förderung: Art der Förderung: Untertagebau Rohstoff-Förderung: China 55,3% Indien 11,9% USA 7,4% Marokko 4,4% Baryt im Jahr 2006 Produktionsmenge weltweit: keine Daten verfügbar Abraum: k.A.t/t Produktionsmenge: 7961000t/a Reserven: 190000000t Statische Reichweite: 23,9a
technologyComment of barite production (CA-QC, RER, RoW): Barite is mined both in open pit and underground mines. About 60 to 120 kg of Barite can be yielded from one cubic meter of ore. The ore is transported via lorry (usually less than 5km) to a washing installation. Subsequently, it is separated from the water and grinded wet or dry. Between 65% and 85% of barite contained in the ore can be extracted. This dataset includes resource extraction and processing of the material. technologyComment of niobium mine operation and beneficiation, from pyrochlore ore (BR, RoW): Open-pit mining is applied and hydraulic excavators are used to extract the ore with different grades, which is transported to stockpiles awaiting homogenization through earth-moving equipment in order to attain the same concentration. Conveyor belts (3.5 km) are utilized to transport the homogenized ore to the concentration unit. Initially, the ore passes through a jaw crusher and moves to the ball mills, where the pyrochlore grains (1 mm average diameter) are reduced to diameters less than 0.104 mm. In the ball mills, recycled water is added in order to i) granulate the concentrate and ii) remove the gas from the sintering unit. The granulated ore undergoes i) magnetic separation, where magnetite is removed and is sold as a coproduct and ii) desliming in order to remove fractions smaller than 5μm by utilizing cyclones. Then the ore enters the flotation process - last stage of the beneficiation process – where the pyrochlore particles come into contact with flotation chemicals (hydrochloric & fluorosilic acid, triethylamene and lime), thereby removing the solid fractions and producing pyrochlore concentrate and barite as a coproduct which is also sold. The produced concentrate contains 55% Nb2O5 and 11% water and moves to the sintering unit, via tubes or is transported in bags while the separated and unused minerals enter the tailings dam. In the sintering unit, the pyrochlore concentrate undergoes pelletizing, sintering, crushing and classification. These units not only accumulate the material but are also responsible for removing sulfur and water from the concentrate. Then the concentrate enters the dephosphorization unit, where phosphorus and lead are removed from the concentrate. The removal of sulphur and phosphorus have to be executed because of the local pyrochlore ore composition. Then the concentrate undergoes a carbothermic reduction by using charcoal and petroleum coke, producing a refined concentrate, 63% Nb2O5 and tailings with high lead content that are disposed in the tailings dam again.
ADer Sulfat-Haushalt hängt maßgeblich von den lithologischen Gegebenheiten der Einzugsgebiete (hohe Konzentrationen bei anstehendem Anhydrit und Gips), den anthropogenen Beeinflussungen (Altbergbau/Bergbau, Abwasser) sowie der Menge an Schwefeloxiden in den Niederschlägen ab. Außerdem müssen aerob-mikrobielle Prozesse wie die Oxidation von Sulfid, Polysulfid, Thiosulfat oder elementarem Schwefel sowie die anaerobe Mineralisation von Schwefelorganika, vor allem Thioaminosäuren berücksichtigt werden. Sulfat ist die bedeutendste Schwefelverbindung im Grundwasser. Es kommt vor allem in Sedimentgesteinen in mineralischer Form als Gips, Anhydrit, Bittersalz, Schwerspat und Glaubersalz vor. Nach TrinkwV bleiben geogen verursachte Grenzwertüberschreitungen bis zu 500 mg/l außer Betracht. Nach SCHLEYER & KERNDORFF (1992) hingegen wird der geogene Normalbereich im Lockergestein bis 105 mg/l, im Festgestein bis 210 mg/l angegeben. Der Schwellenwert nach GrwV beträgt für Sulfat 250 mg/l. Weitere Informationen zum Thema finden Sie hier .
technologyComment of barium carbonate production (GLO): Barium carbonate is manufactured in two reaction steps from barium sulfate (barite). Barite is treated with coal from coke to deliver barium sulfide. There are two main routes to receive barium carbonate: precipitation with carbon dioxide and precipitation with soda (Kresse et al., 2007). The main producers (e.g. Solvay) are using the carbon dioxide method, this is modelled here. In this reaction the barium sulfide is treated with carbon dioxide, which was formed in the first reactions step, which produces barium carbonate and hydrogen sulfide. Hydrogen sulfide is assumed to be neutralised in waste water treatment and turned into Sulfate The reaction temperature is between 60 and 70 degree C. It is followed by filtering of the resulting slurry, washing, drying, grinding and packaging of barium carbonate. The assumed process efficiency is 90% per reaction step. BaSO4 + 2 C --> BaS + 2 CO2 BaS + CO2 --> BaCO3 + H2S This inventory representing production of a particular chemical compound is at least partially based on a generic model on the production of chemicals. The data generated by this model have been improved by compound-specific data when available. The model on production of chemicals is using specific industry or literature data wherever possible and more generic data on chemical production processes to fill compound-specific data gaps when necessary. The model has been updated and extended with newly available data from the chemical industry. In the model, unreacted fractions are treated in a waste treatment process, and emissions reported are after a waste treatment process that is included in the scope of this dataset. For volatile reactants, a small level of evaporation is assumed. Solvents and catalysts are mostly recycled in closed-loop systems within the scope of the dataset and reported flows are for losses from this system. In the model, unreacted fractions are treated in a waste treatment process, and emissions reported are after a waste treatment process that is included in the scope of this dataset. For volatile reactants, a small level of evaporation is assumed. Solvents and catalysts are mostly recycled in closed-loop systems within the scope of the dataset and reported flows are for losses from this system. The main source of information for the values for heat, electricity, water (process and cooling), nitrogen, chemical factory is industry data from Gendorf. The values are a 5-year average of data (2011 - 2015) published by the Gendorf factory (Gendorf, 2016, Umwelterklärung, www.gendorf.de), (Gendorf, 2015, Umwelterklärung, www.gendorf.de), (Gendorf, 2014, Umwelterklärung, www.gendorf.de). The Gendorf factory is based in Germany, it produces a wide range of chemical substances. The factory produced 1657400 tonnes of chemical substances in the year 2015 (Gendorf, 2016, Umwelterklärung, www.gendorf.de) and 740000 tonnes of intermediate products. References: Hischier, R. (2005) Establishing Life Cycle Inventories of Chemicals Based on Differing Data Availability (9 pp). The International Journal of Life Cycle Assessment, Volume 10, Issue 1, pp 59–67. 10.1065/lca2004.10.181.7 Gendorf (2020) Umwelterklärung 2019, Werk Gendorf Industriepark, www.gendorf.de Kirk-Othmer Encyclopedia of Chemical Technology. 3rd ed., Volumes 1-26. New York, NY: John Wiley and Sons, 1978-1984., p. V3: 466 (1978) Kresse, R., Baudis, U., Jäger, P., Riechers, H. H., Wagner, H., Winkler, J. and Wolf, H. U. 2007. Barium and Barium Compounds. Ullmann's Encyclopedia of Industrial Chemistry. pp. 15-16. Wiley-VCH, Weinheim.
Grundwassermessstellen dienen der Überwachung des Grundwassers. Dieser Datensatz enthält die Messdaten der Messstelle E SW Kleve Br.5. Wasserart: reines Grundwasser
Grundwassermessstellen dienen der Überwachung des Grundwassers. Dieser Datensatz enthält die Messdaten der Messstelle E SW Kleve Br.9. Wasserart: reines Grundwasser
Grundwassermessstellen dienen der Überwachung des Grundwassers. Dieser Datensatz enthält die Messdaten der Messstelle EGLV 8499987 Haltern-Ost 3. Wasserart: reines Grundwasser
Grundwassermessstellen dienen der Überwachung des Grundwassers. Dieser Datensatz enthält die Messdaten der Messstelle EGLV 8499994 Haltern-Ost 10. Wasserart: reines Grundwasser
Origin | Count |
---|---|
Bund | 30 |
Land | 1423 |
Type | Count |
---|---|
Förderprogramm | 24 |
Kartendienst | 1 |
Messwerte | 1419 |
Text | 8 |
unbekannt | 1 |
License | Count |
---|---|
closed | 1278 |
open | 171 |
unknown | 4 |
Language | Count |
---|---|
Deutsch | 1453 |
Englisch | 3 |
Resource type | Count |
---|---|
Archiv | 148 |
Bild | 2 |
Datei | 4 |
Dokument | 6 |
Keine | 1290 |
Webdienst | 1 |
Webseite | 158 |
Topic | Count |
---|---|
Boden | 1406 |
Lebewesen & Lebensräume | 1442 |
Luft | 1414 |
Mensch & Umwelt | 1453 |
Wasser | 1440 |
Weitere | 1453 |