API src

Found 467 results.

Similar terms

s/bbiogeochemie/Biogeochemie/gi

Wozu bauen Coccolithophoriden eine Kalkschale? Dient sie zum Schutz gegen Fressfeinde und Pathogene?

Coccolithophoriden sind eine Gruppe von ca. 200-300 marinen Phytoplanktonarten, die in allen Weltmeeren vorkommt. Sie besitzen die besondere Fähigkeit eine Kalkschale (Coccosphäre) zu bauen, die sie aus vielen kleinen Kalkplättchen (Coccolithen) zusammensetzen. Aufgrund ihrer Fähigkeit zu kalzifizieren sind sie ein wichtiger Bestandteil im Klimasystem, denn die Produktion von Kalk nahe der Meeresoberfläche führt zu einem vertikalen Gradienten der Seewasseralkalinität, beschleunigt den Kohlenstoffexport in die Tiefsee und erhöht die Rückstrahlung von einfallender Sonnenenergie von der Erdoberfläche ins Weltall. Trotz intensiver Forschung an der Physiologie der Kalzifizierung und dessen biogeochemischer Relevanz konnten wir eine der entscheidenden Fragen immer noch nicht beantworten: Wozu bauen Coccolithophoriden eine Kalkschale? Die Beantwortung dieser Frage ist von außerordentlicher Bedeutung, denn solange wir nicht wissen wozu die Kalkschale dient können wir auch nicht vorraussagen in welchem Maße sich die durch die Ozeanversauerung zu erwartende Abnhame in der Kalzifizierung negativ auf die Fitness dieser Lebewesen in ihrem natürlichen Lebensraum auswirkt. In dem hier vorgestellten Projekt möchten wir die Frage nach der Bedeutung der Kalzifizierung erforschen, indem wir untersuchen ob die Coccosphäre einen Schutz gegen planktonische Räuber, Bakterien und Viren darstellt. Dazu haben wir eigens einen experimentellen Ansatz entwickelt wobei kalzifizierte und dekalzifizierte Coccolithophoridentzellen zusammen mit deren Fressfeinden und Pathogenen kultiviert werden. Dieser Ansatz erlaubt es uns folgende Fragestellungen zu untersuchen: 1) Sind kalzifizierte Zellen besser in der Lage sich gegen Fraß und Infektion zu schützen als Zellen ohne Coccosphäre? 2) Bevorzugen Fressfeinde und Pathogene solche Zellen, bei denen die Coccosphäre entfernt wurde, wenn ihnen beides angeboten wird? 3) Sind Wachstum und Reproduktion von Fressfeinden und Pathogenen verlangsamt, wenn sie kalzifizierte Zellen fressen oder infizieren?

Spurenelementkreisläufe und Flüsse im südlichen Indischen Ozean - ein Beitrag zu GEOTRACES

Der südliche Indische Ozean gehört zu den am wenigsten untersuchten Meeresgebieten. Entlang eines zonalen Transekts bei 23°S im südlichen Indischen Ozean wollen wir mit Hilfe der Verteilung von isotopischen Tracern (Radiumisotope, Thorium, Helium) die Quellen, die Senken und die Flüsse von Spurenelementen (TEs: Cd, Co, Cu, Fe, Mn, Mo, Ni, V, Zn) in der Wassersäule untersuchen. Die Anwendung von Radiumisotopen (224Ra, 223Ra, 228Ra,226Ra,), Thoriumisotopen (234Th, 232Th) und Heliumisotopen (3He, 4He) erlaubt ein besseres Verständnis der biogeochemischen Zyklen von TEs. Da einige dieser Spurenelemente als Mikronährstoffe fungieren, wollen wir ihre biogeochemischen Kreisläufe und ihre Wechselwirkungen mit der Bioproduktivität im Oberflächenwasser sowie ihre Wechselwirkungen mit den Kohlenstoff- und Nährstoffkreisläufen erforschen. Durch die Kombination von Messungen von TEs mit Radium- und 234Th-Isotopen als Tracer für vertikale und horizontale Flüsse, 232Th als Tracer für den Staubeintrag und Heliumisotope als Tracer für einen hydrothermalen Eintrag, werden wir die Zufuhrpfade von TEs aus der Atmosphäre, den Kontinenten (hauptsächlich dem Sambesi-Fluss), den Sedimenten der afrikanischen und australischen Kontinentalschelfe und aus den hydrothermalen Quellen (Hydrothermalismus am Mittelindischen Ozeanrücken) bestimmen und quantifizieren. Diese Untersuchungen sollen auf Probenmaterial basieren, das während der Sonne Ausfahrt SO-276 (Juli – August 2020) von Durban (Südafrika) nach Fremantle (Australien) gewonnen wird. Unsere Untersuchungen sind Teil des international koordinierten Programms GEOTRACES und werden zum „Second Indian Ocean Expedition Program (IIOE-2)“ beitragen. Wir erwarten, dass die Ergebnisse der vorgesehenen Untersuchungen einen signifikanten Beitrag zum Verständnis von Ökosystemen und ihrem chemischen Milieu liefern werden.

Schwerpunktprogramm (SPP) 1803: EarthShape: Earth Surface Shaping by Biota, DeepEarthshape - Reaktionsfronten in tiefem Regolith und deren Bildungsmechanismen

Die meisten Ökosysteme der Erde kommen in der 'tiefen Biosphäre' in permanenter Dunkelheit vor. Die Verwitterungszone - der unterirdische Teil der 'Critical Zone' - bildet einen aktiven Teil dieses Lebensraums. Wir werden die Formung dieser Zone mittels innovativer Isotopen- und geochemischer Methoden erforschen. Dieses Vorhaben ist Teil der 'DeepEarthshape' Projektgruppe, die Geochemie, Mikrobiologie, Geophysik, Geologie und Biogeochemie verbindet. 'DeepEarthshape' beruht auf den Erkenntnissen der ersten EarthShape Phase. An allen vier untersuchten Standorten ist die Verwitterungszone so tief, dass deren Basis in keinem der Bodenprofile angetroffen wurde. Jedoch wurden im gesamten Saprolith beträchtliche Mengen an mikrobieller Biomasse gefunden.Die Frage ist nun: wie trägt Niederschlag und Pflanzenbedeckung entlang des Earthshape-Transekts zur Formung der tiefen Verwitterungszone bei? Folgende Hypothesen werden geprüft: 1) die Verwitterungsfronten an den EarthShape-Standorten sind heute aktiv; 2) die Massenverluste durch Erosion und chemische Verwitterung werden durch die Abtiefung der Verwitterungsfront ausgeglichen; und 3) die Verwitterungszone umfasst eine Reihe von unterscheidbaren, komplexen Fronten, die unterschiedliche biogeochemische Prozesse widerspiegeln (z. B. Wasserinfiltration, Eisenoxidation, mikrobielle Aktivität und organischem Kohlenstoffkreislauf).Im Mittelpunkt aller DeepEarthshape Projekte steht eine Bohrkampagne, die durch geophysikalische Bildgebung der tiefen 'Critical Zone' ergänzt wird. An allen vier Standorten werden wir Bohrkerne entnehmen, die durch Boden und Saprolith hindurch bis in das unverwitterte Ausgangsgestein führen. Durch die innovative Kombination von Methoden der Uran-Zerfallsreihen (Bestimmung der Abtiefunggeschwindigkeit der Verwitterungsfront) mit in situ kosmogenem Beryllium-10 (Bestimmung der Abtragungsrate) werden wir das Gleichgewicht zwischen der Produktion von verwittertem Material in der Tiefe und dessen Verlust an der Oberfläche ermitteln. Zusätzlich werden wir die Tiefenverteilung von meteorischem kosmogenen 10Be als Proxy für die Wasserinfiltration und die des stabilen 9Be als Proxy für die silikatische Verwitterung in der Tiefe verwenden. Wir werden die mineralogische und chemische Zusammensetzung der Kerne beschreiben und Elementabreicherung, Dichte, Porosität, Öberfläche und den Redoxzustand von Eisen messen, um die Verwitterungsfronten zu lokalisieren. Mit den Ergebnissen können wir den Einfluss von Klima und Vegetation auf die Bildungsmechanismen der einzelnen Verwitterungsfronten bestimmen. Der relative Einfluss dieser zwei Faktoren wird anhand eines Massenbilanzmodells ermittelt, welches Verwitterungskinetik und Nährstoffbedarf der nachwachsenden Pflanzenmasse verknüpft. Dieses Vorhaben leitet somit einen Beitrag, mit dem der Einfluss der tiefen Biosphäre und der tiefen 'Critical Zone' auf den CO2-Entzug aus der Atmosphäre und damit das Klima der Erde bilanziert werden kann.

Gas-Austausch und Reaktive Prozesse in gekoppelten Untergrund/Atmosphäre-Systemen

Der Gasaustausch zwischen der Atmosphäre und dem Untergrund spielt eine Schlüsselrolle für biogeochemische Kreisläufe, Schadstoffausbreitungsdynamiken sowie im Allgemeinen für die Grundwasserqualität. Solche Austauschphänomene an der Grenzfläche zwischen Atmosphäre und Untergrund und ihr Einfluss auf die beschriebenen geochemischen Prozesse sind stark von dynamischen Einwirkungen (z.B. Wärme und Wind) durch die Atmosphäre kontrolliert. Um ein besseres Verständnis für die Grundwasserqualität zu erlangen, vor allem auch im Hinblick auf den Klimawandel und die globale Erderwärmung, müssen daher die Wechselwirkungen zwischen Atmosphäre und reaktiven Strömungs- und Transportprozesse im Untergrund untersucht werden. Das wichtigste Ziel des geplanten Vorhabens ist ein verbessertes Verständnis der Mechanismen, die (a) die atmosphärischen Einwirkungen auf den Austausch gasförmiger Komponenten an der Grenzfläche zum Untergrund kontrollieren, (b) das Ausbreitungsverhalten dieser Komponenten im Untergrund beeinflussen sowie (c) deren chemische Reaktionen mit reaktiven Mineralien im Grundwasser. Unser Schwerpunkt liegt auf dem Austausch und Transport von Mehrkomponenten-Gasgemischen mit Sauerstoff, Kohlenstoffdioxid und Wasserdampf in gekoppelten Systemen aus porösen Medien und freier Strömung. Wir analysieren dabei den Einfluss ihres Transportverhaltens auf mineralische Reaktionen im Untergrund. Konkrete Ziele umfassen (i) die Untersuchung des Einflusses von Wärmetransport auf den Austausch der Komponenten und die Rückkopplung auf die geochemischen Reaktionen, (ii) die Quantifizierung des Einflusses von Wind sowie Rauigkeit auf den Gasaustausch und den reaktiven Transport im porösen Medium; des Weiteren (iii) die Aufklärung der Rolle von physikalischen und chemischen Heterogenitäten auf Evaporation und Verteilung von Fluiden im porösen Medium, sowie auf die Reaktion und Reaktionsrate der Minerale. Die Methodik kombiniert dabei hochauflösende, mehrdimensionale Laborexperimente mit prozessbasierten numerischen Modellen, um die komplexen Interaktionen zwischen physikalischen und geochemischen Prozessen zu charakterisieren und zu quantifizieren. Die Ergebnisse dieses Projekts sind für verschiedene Umweltsysteme relevant, die durch schnell sich verändernde atmosphärische Bedingungen, wie sie durch den Klimawandel erwartet werden, beeinflusst werden; als Beispiele können genannt werden die Versalzung von Böden, die Verwitterung reaktiver Mineralien und geogene Freisetzung von Schadstoffen, Treibhausgasemissionen aus Böden oder auch der Transport von volatilen Schadstoffen.

Biologische Bodenzustandserhebung deutscher Wälder, Teilvorhaben 1: Beprobung von Flächen des forstlichen Umweltmonitorings und integrierende Auswertung von Biodiversität und Standortsfaktoren

Die Vielfalt und Aktivität der Bodengemeinschaften aus Pilzen, Bakterien, Archaeen und anderen Einzellern ist wichtig für Funktionen wie die C Speicherung, die Resilienz von Bäumen gegenüber dem Klimawandel und den Umsatz von organischen Bestandteilen. Es gibt zwar mit der Bodenzustandserhebung im Wald (BZE) ein bundesweites Monitoring, welches Auskunft über die Vitalität der Bäume und den physikochemischen Bodenzustand gibt. Die Bodenbiologie wird dabei allerdings nicht berücksichtigt. Ein erweitertes systematisches Monitoring kann helfen, Zusammenhänge zwischen standörtlichen Gegebenheiten und Bodenorganismen und deren Funktionen besser zu verstehen. Dieses Projekt zielt daher darauf ab, die umfangreichen Daten der BZE mit neu erhobenen Daten zu Biodiversität und biologische Aktivität im Boden zu verknüpfen. Im Zuge der dritten BZE soll eine deutschlandweite Probennahme an BZE-Punkten und auf Flächen des Level-II-Intensivmonitorings stattfinden. Die Proben sollen hinsichtlich der Biodiversität mithilfe molekularer und komplementärer Verfahren zur Messung von Biomasse und Aktivität analysiert werden. Ziel ist ein besseres prozessbasiertes Verständnis des Beitrags von Wäldern und Waldböden zu ausgeglichenen und nachhaltigen biogeochemischen Kreisläufen. Daraus lassen sich waldbauliche Handlungsempfehlungen zur Vorbeugung und Anpassung an den globalen Wandel entwickeln. Gleichzeitig kann eine Wissenslücke zum Zustand der Biodiversität in Deutschlands Waldböden geschlossen werden.

Biologische Bodenzustandserhebung deutscher Wälder

Die Vielfalt und Aktivität der Bodengemeinschaften aus Pilzen, Bakterien, Archaeen und anderen Einzellern ist wichtig für Funktionen wie die C Speicherung, die Resilienz von Bäumen gegenüber dem Klimawandel und den Umsatz von organischen Bestandteilen. Es gibt zwar mit der Bodenzustandserhebung im Wald (BZE) ein bundesweites Monitoring, welches Auskunft über die Vitalität der Bäume und den physikochemischen Bodenzustand gibt. Die Bodenbiologie wird dabei allerdings nicht berücksichtigt. Ein erweitertes systematisches Monitoring kann helfen, Zusammenhänge zwischen standörtlichen Gegebenheiten und Bodenorganismen und deren Funktionen besser zu verstehen. Dieses Projekt zielt daher darauf ab, die umfangreichen Daten der BZE mit neu erhobenen Daten zu Biodiversität und biologische Aktivität im Boden zu verknüpfen. Im Zuge der dritten BZE soll eine deutschlandweite Probennahme an BZE-Punkten und auf Flächen des Level-II-Intensivmonitorings stattfinden. Die Proben sollen hinsichtlich der Biodiversität mithilfe molekularer und komplementärer Verfahren zur Messung von Biomasse und Aktivität analysiert werden. Ziel ist ein besseres prozessbasiertes Verständnis des Beitrags von Wäldern und Waldböden zu ausgeglichenen und nachhaltigen biogeochemischen Kreisläufen. Daraus lassen sich waldbauliche Handlungsempfehlungen zur Vorbeugung und Anpassung an den globalen Wandel entwickeln. Gleichzeitig kann eine Wissenslücke zum Zustand der Biodiversität in Deutschlands Waldböden geschlossen werden.

Sind permeable Sedimente in Küstengebieten Hotspots für die Bildung von nicht-flüchtigem gelöstem organischem Schwefel (DOS) im Meer?

Organische Schwefelkomponenten sind abundant in marinen Sedimenten. Diese Verbindungen werden v.a. durch die abiotische Reaktion anorganischer Schwefelverbindungen mit Biomolekülen gebildet. Wegen seiner Bedeutung für globale Stoffkreisläufe, für die Nutzung von Erdöllagerstätten und für die Erhaltung des Paleorecords, gibt es eine Vielzahl von Studien zum Thema. Sehr wenig Aufmerksamkeit wurde allerdings wasserlöslichen Komponenten geschenkt, die beim Prozess der Sulfurisierung entstehen und als gelöster organischer Schwefel (DOS) in die Meere gelangen können. Anhand der wenigen verfügbaren Informationen ist Schwefel vermutlich das dritthäufigste Heteroelement im gelösten organischen Material (DOM) der Meere, nach Sauerstoff und Stickstoff. Einige Schwefelverbindungen, insbesondere Thiole, sind für die Verbreitung von Schadstoffen aber auch essenzieller Spurenstoffe verantwortlich. Wichtige klimarelevante Schwefelverbindungen entstehen aus DOS. Daher spielt der marine DOS-Kreislauf eine Rolle für die Meere und Atmosphäre. Trotz seiner Bedeutung sind die Quellen marinen DOS, seine Umsetzung im Meer und Funktion für Meeresbewohner unbestimmt. Auch ist die molekulare Zusammensetzung von DOS unbekannt. In diesem Projekt werden wir Pionierarbeit in einem neuen Forschungsfeld der marinen Biogeochemie leisten. Wir wollen grundlegende Fragen bzgl. der Bildung und Verteilung von nicht-flüchtigem DOS im Meer beantworten. Unsere wichtigsten Hypothesen:* Bildung von DOS:(1) Sulfatreduzierende Sedimente sind wesentlich für die Bildung von DOS.(2) Reduzierte Schwefelverbindungen (v.a. Thiole) dominieren in Zonen der DOS-Entstehung.(3) DOS wird v.a. über abiotische Sulfurisierung in der Frühdiagenese gebildet.* Transport und Schicksal von DOS im Ozean:(4) DOS wird von sulfat-reduzierenden intertidalen Grundwässern an das Meer abgeben.(5) In der Wassersäule oxidiert DOS schnell (z.B. zu Sulfonsäuren).(6) DOS aus intertidalen Sedimenten ist in oxidierter Form auf den Kontintentalschelfen stabil.Neben dem wissenschaftlichen Ziel der Beantwortung dieser Hypothesen, wird das Projekt drei Promovierenden (eine in Deutschland und zwei in Brasilien) die außergewöhnliche Gelegenheit bieten, ihre Doktorarbeiten im Rahmen eines internationalen Projektes durchzuführen. Wir werden die Stärken beider Partner in Feld- und Laborstudien und Elementar-, Isotopen- und molekularen Analysen kombinieren. Wir werden unterschiedliche Regionen im deutschen Wattenmeer und in brasilianischen Mangroven (Rio de Janeiro and Amazonien) beproben, sowie die benachbarten Schelfmeere. Sulfurisierungsexperimente werden die Feldstudien ergänzen. Zur quantitativen Bestimmung und molekularen Charakterisierung von DOS werden wir neue Ansätze anwenden, die von den beiden Arbeitsgruppen entwickelt wurden. Dabei kommen u.a. ultrahochauflösende Massenspektrometrie (FT-ICR-MS), und andere massenspektrometrischen und chromatographischen Methoden zu Anwendung.

Biogeochemical modelling of biosphere-atmosphere-hydrosphere interactions

This project aims at the improvement and testing of a modeling tool which will allow the simulation of impacts of on-going and projected changes in land use/ management on the dynamic exchange of C and N components between diversifying rice cropping systems and the atmosphere and hydrosphere. Model development is based on the modeling framework MOBILE-DNDC. Improvements of the soil biogeochemical submodule will be based on ICON data as well as on results from published studies. To improve simulation of rice growth the model ORYZA will be integrated and tested with own measurements of crop biomass development and transpiration. Model development will be continuously accompanied by uncertainty assessment of parameters. Due to the importance of soil hydrology and lateral transport of water and nutrients for exchange processes we will couple MOBILE-DNDC with the regional hydrological model CMF (SP7). The new framework will be used at field scale to demonstrate proof of concept and to study the importance of lateral transport for expectable small-scale spatial variability of crop production, soil C/N stocks and GHG fluxes. Further application of the coupled model, including scenarios of land use/ land management and climate at a wider regional scale, are scheduled for Phase II of ICON.

Gasblasen in aquatischen Ökosystemen: Entstehung, Dynamik und Bedeutung für Stofftransport

Gasblasen mit Grössen zwischen einigen Mikrometern bis Zentimetern sind allgegenwärtig in aquatischen Ökosystemen. Sie beeinflussen nicht nur die physikalischen Eigenschaften des Wassers, sie ermöglichen auch einen wichtigen Transportweg mit hoher Relevanz für globale biogeochemische Kreisläufe und das Klima. An der Luft-Wasser-Grenzfläche beschleunigen Blasen den Gasaustausch und beeinflussen damit den globalen Kohlenstoffkreislauf. Aus Sedimenten freigesetzte Blasen (Ebullition) sind ein wichtiger Transportweg für Methan in die Atmosphäre. Darüber hinaus transportieren Blasen nicht nur Gase, sondern auch Partikel, gelöste Stoffe und Bakterien auf ihren Oberflächen. Dieses Material, darunter Kohlenstoff, Nährstoffe und Schadstoffe, stammt aus den Sedimenten oder wurde während des Aufstiegs aus der Wassersäule entfernt. Trotz dieser potenziellen Bedeutung ist wenig über Gasblasen und ihre Eigenschaften in Süßwasserökosystemen bekannt, bestehendes Wissen basiert hauptsächlich auf Beobachtungen in marinen Systemen. In diesem Projekt untersuchen wir diejenigen Prozesse, welche das Vorkommen und die Eigenschaften von Gasblasen in Süßwasserökosystemen kontrollieren, sowie die Rolle der Blasen für den Transport von Gasen, gelösten Stoffen und Partikeln. Wir unterscheiden zwischen Luftblasen die an der Wasseroberfläche eingetragen werden, Blasen die durch Gasübersättigung in der pelagischen Zone entstehen, sowie Blasen die in Sedimenten gebildet werden. Wir gehen davon aus, dass diese drei unterschiedlichen Arten von Blasen unterschiedliche Eigenschaften haben. Auf der Grundlage von Feldmessungen und Laborexperimenten untersuchen wir die Entstehung, Alterung und das Schicksal dieser drei Arten von Blasen und der von ihnen transportierten Substanzen in unterschiedlichen aquatischen Systemen. Die Beobachtungen und Ergebnisse werden mit prozessbasierten Modellen verknüpft um einen theoretisch fundierten und empirisch validierten Rahmen für die Bewertung der Relevanz von Stofftransport durch Gasblasen in aquatischen Ökosystemen zu entwickeln. Dies erlaubt die Übertragung der Ergebnisse dieses Projekts auf eine Vielzahl von Fragestellungen in unterschiedlichen Bereichen der aquatischen Forschung, der Gewässerüberwachung und des Gewässermanagements.

Stickstofffixierung in der monsunbeeinflussten Flussfahne des Mekong

Das Südchinesische Meer ist das größte Randmeer der Erde und ausschließlich von stark besiedelten Ländern wie China, Indonesien, Philippinen oder Vietnam umgeben. Klimaänderung und menschliche Einflüsse im Einzugsgebiet des Mekong (18 geplante Stauseen zu Stromgewinnung und Intensivierung der Aquakultur) werden die Flusseinträge drastisch verändern und in der Folge die Biogeochemie der Küstengewässer. Die Geschwindigkeit und Größenordnung dieser Veränderungen lassen es wahrscheinlich erscheinen, dass das hier geplante Feldprogramm eine der wenigen Gelegenheiten sein wird, dieses Meeresgebiet zu erfassen, bevor es sich grundlegend verändert hat. Die gegenwärtige Rolle der Nährstoffeinträge des Mekong für die Produktivität des Südchinesischen Meeres soll im Vergleich zu den Nährstoffeinträgen durch den Auftrieb während des SW Monsuns untersucht werden. Ergebnisse früherer Arbeiten von uns lassen vermuten, dass die Stickstofffixierung von Cyanobakterien, die in Symbiose mit Diatomeen vorkommen, eine zentrale Rolle spielt. Zudem gibt es einzellige und koloniebildende N-Fixierer wie Trichodesmium in der Flussfahne. Die Interaktion von stickstofffixierenden Organismen, die von den Einträgen des Mekong abzuhängen scheinen, ist bislang nicht verstanden und steht im Fokus dieses Projektes. Die Nährstoffzusammensetzung in Wasser und die Aufnahme von markierten Kohlenstoff und Stickstoffverbindungen wird in der Flussfahne und im Auftriebsgebiet quantifiziert. Zudem wird auf Zellebene der Austausch von Stickstoff und Kohlenstoff zwischen Diatomeen und ihren stickstofffixierenden Symbionten mittels NanoSIMS analysiert. Zeitgleich wird die Gemeinschaft der Stickstofffixierer entlang der Flussfahne und im offenen südchinesischen Meer von amerikanischen und vietnamesischen Kollegen durch genomische, molekularbiologische und taxonomische Methoden erfasst. In der Synthesephase des Projektes soll durch die Zusammenführung aller Ergebnisse ein tiefgreifendes Verständnis des menschlichen Einflusses auf die Biogeochemie des Küstenmeeres vor Vietnam erreicht werden. Zwei Expeditionen in das Gebiet des Mekongausstroms sind bereits durch einen genehmigten Antrag des Schmidts Oceanographic Institute aus den USA abgesichert, so dass Probennahmen und Experimente an Board geplant werden können. Aufgrund des früheren, sehr erfolgreichen DFG finanzierten Vorhabens bestehen enge Kontakte zum Institute of Oceanography in Nha Trang, Vietnam, auf die hier aufgebaut wird.

1 2 3 4 545 46 47