Seit langem ist bekannt, dass sich Böden mehr oder weniger schnell verändern. Manche dieser Veränderungen haben natürliche Ursachen. Andere wiederum sind auf Bodenbelastungen zurückzuführen, die der Mensch direkt oder indirekt verursacht. Hierzu gehören zum Beispiel die Stoffeinträge über Niederschlag und Staub (Säuren, Nährstoffe, Schwermetalle, Radionukleide, organische Schadstoffe usw.). Aber auch der Land- oder Forstwirt verändert die Böden seit eh und je durch Kultivierung und Nutzung. Die weitaus meisten dieser Prozesse laufen sehr langsam und für die menschlichen Sinne nur schwer wahrnehmbar ab. Um mögliche Veränderungen zu dokumentieren, führt das LBEG das niedersächsische Boden-Dauerbeobachtungsprogramm durch. Hierzu wurde in Kooperation mit anderen Landesdienststellen ein Netz von insgesamt 90 so genannten Boden-Dauerbeobachtungsflächen (BDF) aufgebaut. Siebzig entfallen auf ortsüblich landwirtschaftlich (BDF-L) genutzte und zwanzig auf forstlich genutzte (BDF-F) Standorte. Die Auswahl von repräsentativen BDF erfolgte anhand geowissenschaftlicher Kriterien wie Boden- und Gesteinsverhältnisse, Klima und Morphologie. Darüber hinaus berücksichtigte das LBEG typische Bodennutzungen wie Land- und Forstwirtschaft oder Naturschutzflächen sowie Belastungsfaktoren (Immissionen, nutzungsbedingte Belastungen etc.). Knapp die Hälfte der BDF (43) wurden stellvertretend für bestimmte Bodenbelastungssituationen ausgewählt, beispielsweise Siedlungsgebiete, Immissionsgebiete, Auengebiete mit belasteten Flusssedimenten sowie erosionsgefährdete Gebiete. Die übrigen 47 BDF geben die Vielfalt der niedersächsischen Böden unter ortsüblicher Bewirtschaftung wieder. Sie dienen auch als Referenz für Flächen mit spezifischer Belastung. Um Aufschluss über die Ursachen und Auswirkungen möglicher Bodenveränderungen zu erhalten, ermittelt das LBEG auf allen 70 landwirtschaftlich genutzten BDF zusätzlich auch den Stoffeintrag über Dünger und Pflanzenbehandlungsmittel sowie den Stoffaustrag mit dem abgefahrenen Erntegut. Der Landwirt protokolliert alle seine Bearbeitungsmaßnahmen. Ziel ist es, auf Basis dieser repräsentativ ausgewählten Messflächen mögliche Bodenveränderungen aufzudecken, Ursache und Auswirkungen zu bewerten und zu prognostizieren. Gelingt dies, steht den Handelnden in Politik, Verwaltung und Bodennutzung rechtzeitig eine gesicherte Datengrundlage für ihre Entscheidungsprozesse zur Verfügung. In anderen Bundesländern gibt es ähnliche Programme, deren inhaltlicher Umfang unter den durchführenden Institutionen abgestimmt ist. Innerhalb Europas ist eine entsprechende Rahmenrichtlinie in Vorbereitung.
Seit langem ist bekannt, dass sich Böden mehr oder weniger schnell verändern. Manche dieser Veränderungen haben natürliche Ursachen. Andere wiederum sind auf Bodenbelastungen zurückzuführen, die der Mensch direkt oder indirekt verursacht. Hierzu gehören zum Beispiel die Stoffeinträge über Niederschlag und Staub (Säuren, Nährstoffe, Schwermetalle, Radionukleide, organische Schadstoffe usw.). Aber auch der Land- oder Forstwirt verändert die Böden seit eh und je durch Kultivierung und Nutzung. Die weitaus meisten dieser Prozesse laufen sehr langsam und für die menschlichen Sinne nur schwer wahrnehmbar ab. Um mögliche Veränderungen zu dokumentieren, führt das LBEG das niedersächsische Boden-Dauerbeobachtungsprogramm durch. Hierzu wurde in Kooperation mit anderen Landesdienststellen ein Netz von insgesamt 90 so genannten Boden-Dauerbeobachtungsflächen (BDF) aufgebaut. Siebzig entfallen auf ortsüblich landwirtschaftlich (BDF-L) genutzte und zwanzig auf forstlich genutzte (BDF-F) Standorte. Die Auswahl von repräsentativen Boden-Dauerbeobachtungsflächen (BDF) erfolgte anhand geowissenschaftlicher Kriterien wie Boden- und Gesteinsverhältnisse, Klima und Morphologie. Darüber hinaus berücksichtigte das LBEG typische Bodennutzungen (Land- und Forstwirtschaft, Naturschutzflächen) und Belastungsfaktoren (Immissionen, nutzungsbedingte Belastungen etc.). Ziel ist es, auf Basis dieser repräsentativ ausgewählten Messflächen mögliche Bodenveränderungen aufzudecken, Ursache und Auswirkungen zu bewerten und zu prognostizieren. Gelingt dies, steht den Handelnden in Politik, Verwaltung und Bodennutzung rechtzeitig eine gesicherte Datengrundlage für ihre Entscheidungsprozesse zur Verfügung. Das BDF-F-Programm besteht aus einer Kombination von Merkmals- und Prozessdokumentation. Die Merkmalsdokumentation beinhaltet die periodische Bestimmung von Vorräten und Zuständen wie physikalische, chemische und biologische Bodenuntersuchungen, Erhebungen der Biomasse und deren Inhaltsstoffe, Beurteilungen des Waldzustands durch Kronenansprache und Nadel-/Blattanalysen sowie Aufnahmen der Bodenvegetation. Die Prozessdokumentation geschieht durch die Messung von Flüssen im und über die Grenzen des Ökosystems. In Waldökosystemen stellen die Deposition, die Freisetzung durch Verwitterung, die Aufnahme in die Biomasse und der Sickerwasseraustrag wichtige Flüsse für viele Elemente dar. Daneben werden auch der Streufall und physikochemische Milieugrößen (Immission, Meteorologie) zur Beurteilung von Stresssituationen für die Waldökosysteme gemessen (Text: Nordwestdeutsche Forstliche Versuchsanstalt). In anderen Bundesländern gibt es ähnliche Programme, deren inhaltlicher Umfang unter den durchführenden Institutionen abgestimmt ist. Innerhalb Europas ist eine entsprechende Rahmenrichtlinie in Vorbereitung.
Die drei wesentlichen Zielstellungen des Waldumbaus umfassen: - Ziel 1: Mit einer ökologischen Stabilisierung der Waldbestände wird deren Fähigkeit erneuert, eine Aktivierung biotischer Schadfaktoren einzuschränken, dem Einfluss äußerer abiotischer Störfaktoren zu widerstehen bis nach erfolgter Störung die Funktionalität des Systems wieder hergestellt ist. - Ziel 2: Schaffung der Voraussetzungen ökologischer Nachhaltigkeit auf dem räumlichen Niveau des heutigen Einzelbestandes und damit verbunden eines geringeren Produktionsrisikos. - Ziel 3: Aufbau des notwendigen Potenzials zur biologischen Rationalisierung des Waldumbaus und der Steigerung der langfristigen betrieblichen Leistungsfähigkeit.
Erklärung zur Barrierefreiheit Kontakt zur Ansprechperson Landesbeauftragte für digitale Barrierefreiheit Als Ansatz zur Ermittlung der unterschiedlichen Belastungsgrade des Kernindikators 1 des Berliner Umweltgerechtigkeitsansatzes wurde aus dem Set der Auswertungen der Strategischen Lärmkarten 2017 die Gesamtlärmkarte zur Nachtzeit gewählt. Die Verteilung der Lärmbelastung zeigt einen deutlichen Einfluss durch Hauptverkehrsstraßen und Haupteisenbahnstrecken. 09.01.1 Lärmbelastung 2021/2022 Weitere Informationen Als Ansatz zur Ermittlung der unterschiedlichen Belastungsgrade des Kernindikators 2 des Berliner Umweltgerechtigkeitsansatzes wurde die Verteilung der vor allem verkehrsbedingten Stickstoffdioxid-Belastung über die Stadt herangezogen. Die intensivste Belastung zeigt sich im Stadtzentrum, wo die Verkehrsdichte am höchsten ist. 09.01.2 Luftbelastung 2021/2022 Weitere Informationen Als Ansatz zur Ermittlung der unterschiedlichen Belastungsgrade des Kernindikators 3 des Berliner Umweltgerechtigkeitsansatzes wurde auf der Grundlage der ‚Versorgungsanalyse Grün‘ ein auf den Einzugsbereich bezogener dreistufiger Versorgungsgrad bestimmt ("schlecht/sehr schlecht", "mittel" und "gut/sehr gut"). 09.01.3 Grünversorgung 2021/2022 Weitere Informationen Als Ansatz zur Ermittlung der unterschiedlichen Belastungsgrade des Kernindikators 4 des Berliner Umweltgerechtigkeitsansatzes wurde für den Tag die blockweise Verteilung des Bewertungsindexes PET (Physiologisch Äquivalente Temperatur) sowie für die Nacht diejenige der Lufttemperatur auf die Ebene der Planungsräume aggregiert und in drei Stufen dreistufig bezogen auf die bioklimatische Belastung bewertet. 09.01.4 Thermische Belastung 2021/2022 Weitere Informationen Als Ansatz zur Ermittlung der unterschiedlichen Belastungsgrade des Kernindikators 5 des Berliner Umweltgerechtigkeitsansatzes wurde eine planungsraumbezogene 3-stufige Verteilung der sozialen Benachteiligungen ermittelt. Das Monitoring Soziale Stadtentwicklung (MSS) lieferte die notwendigen kleinräumigen Aussagen. 09.01.5 Soziale Benachteiligung 2021/2022 Weitere Informationen Die Mehrfachbelastungen, bewertet anhand der vier umweltbezogenen Kernindikatoren Luft, Lärm, Thermische Belastung und Grünflächenversorgung zeigen eine deutliche Konzentration im Innenstadtbereich Berlins - im Gegensatz dazu stehen die äußeren Bezirke mit zumeist geringerer Problemlage. 09.01.6 Mehrfachbelastung Umwelt 2021/2022 Weitere Informationen Die Erweiterung der vier umweltbezogenen Kernindikatoren Luft, Lärm, Thermische Belastung und Grünflächenversorgung um den fünften Kernindikator ‚Soziale Benachteiligung‘ verdeutlicht den Zusammenhang zwischen Umwelt- und Sozialstatus. So weisen die mehrfach umweltbelasteten Räume einen deutlich höheren Anteil an niedrigen und sehr niedrigen Indexwerten auf. 09.01.7 Mehrfachbelastung Umwelt und Soziale Benachteiligung 2021/2022 Weitere Informationen Die Ergänzung der zusammenfassenden Bewertung aller Kernindikatoren um eine Vulnerabilitätsbetrachtung (Einwohnerdichte, Qualität der Wohnlage) verdeutlicht die Schwerpunktbereiche auf Ebene der Planungsräume, die besondere Empfindlichkeiten in der Kombination der Belastungsfaktoren mit der Bevölkerungsverteilung aufweisen. 09.01.9 Integrierte Mehrfachbelastungskarte – Berliner Umweltgerechtigkeitskarte 2021/2022 Weitere Informationen
Erklärung zur Barrierefreiheit Kontakt zur Ansprechperson Landesbeauftragte für digitale Barrierefreiheit Als Ansatz zur Ermittlung der unterschiedlichen Belastungsgrade des Kernindikators 1 des Berliner Umweltgerechtigkeitsansatzes wurde eine monetäre Bewertung der Lärmwirkung in Verbindung mit der sozio-demografischen Struktur gewählt. Die Verteilung der Lärmbelastung zeigt einen Anstieg vom Stadtrand in Richtung Stadtzentrum. 09.01.1 Lärmbelastung 2012 Weitere Informationen Als Ansatz zur Ermittlung der unterschiedlichen Belastungsgrade des Kernindikators 2 des Berliner Umweltgerechtigkeitsansatzes wurde eine Einordnung relativ in Bezug in Berlin vorhandenen Luftbelastungen vorgenommen. 109 PLR (24 %) waren einer hohen, 58 % einer mittleren und 18 % einer niedrigen Luftbelastung durch PM2,5 und NO2 ausgesetzt. 09.01.2 Luftbelastung 2009 Weitere Informationen Als Ansatz zur Ermittlung der unterschiedlichen Belastungsgrade des Kernindikators 3 des Berliner Umweltgerechtigkeitsansatzes wurde auf der Grundlage der ‚Versorgungsanalyse Grün‘ ein auf den Einzugsbereich bezogener dreistufiger Versorgungsgrad bestimmt ("schlecht/sehr schlecht", "mittel" und "gut/sehr gut"). 09.01.3 Grünflächenversorgung 2012 Weitere Informationen Als Ansatz zur Ermittlung der unterschiedlichen Belastungsgrade des Kernindikators 4 des Berliner Umweltgerechtigkeitsansatzes wurde eine blockweise Verteilung des Bewertungsindexes PET (Physiologisch Äquivalente Temperatur) auf die Ebene der Planungsräume aggregiert und dreistufig bezogen auf die bioklimatische Belastung bewertet. 09.01.4 Bioklima/thermische Belastung 2011 Weitere Informationen Als Ansatz zur Ermittlung der Mehrfachbelastungen unterschiedlichen Belastungsgrade des Kernindikators 5 des Berliner Umweltgerechtigkeitsansatzes wurde eine planungsraumbezogene 3-stufige Verteilung der sozialen Unterschiede ermittelt. Das Monitoring Soziale Stadtentwicklung (MSS) lieferte die notwendigen kleinräumigen Aussagen. 09.01.5 Soziale Problematik/Status-Index 2013 Weitere Informationen Die Mehrfachbelastungen, bewertet anhand der vier umweltbezogenen Kernindikatoren Luft, Lärm, Thermische Belastung und Grünflächenversorgung zeigen eine deutliche Konzentration im Innenstadtbereich Berlins- Im Gegensatz dazu stehen die äußeren Bezirke mit geringer Problemlage. 09.01.6 Integrierte Mehrfachbelastung Umwelt 2013 Weitere Informationen Die Erweiterung vier umweltbezogenen Kernindikatoren Luft, Lärm, Thermische Belastung und Grünflächenversorgung um den fünften Kernindikator ‚Soziale Problematik‘ verdeutlicht den Zusammenhang zwischen Umwelt- und Sozialstatus. So weisen die mehrfach umweltbelasteten Räume einen deutlich höheren Anteil an niedrigen und sehr niedrigen Indexwerten auf. 09.01.7 Integrierte Mehrfachbelastung Umwelt und Soziale Problematik 2013 Weitere Informationen Die Überlagerung der vier umweltbezogenen Kernindikatoren Luft, Lärm, Thermische Belastung und Grünflächenversorgung mit dem Indikator ‚Soziale Problematik‘ weist auch Planungsräume aus, in denen ein Indikator besonders belastend wirkt. Daraus lassen sich Schlüsse für besondere Handlungsdringlichkeiten ableiten. 09.01.8 Integrierte Mehrfachbelastungskarte - thematisch 2013 Weitere Informationen Die Ergänzung der zusammenfassenden Bewertung aller Kernindikatoren um eine Vulnerabilitätsbetrachtung (Einwohnerdichte, Qualität der Wohnlage) verdeutlicht die Schwerpunktbereiche auf Ebene der Planungsräume, die besondere Empfindlichkeiten in der Kombination der Belastungsfaktoren mit der Bevölkerungsverteilung aufweisen. 09.01.9 Integrierte Mehrfachbelastungskarte - Berliner Umweltgerechtigkeitskarte 2013 Weitere Informationen
Die Eignung einer Stadt als Lebensraum für Tiere und Pflanzen hängt maßgeblich davon ab, wie unterschiedlich die Standortqualitäten hinsichtlich der Böden, der Topographie und des Wasserhaushaltes sind und wie reich und vernetzt die Biotopstrukturen. Oft ist die biologische Vielfalt an den Randbereichen der Stadt mit ihren vielfältigen Freiräumen und geringerem landwirtschaftlichen ‚Leistungsdruck‘ sogar höher als im Umland. Das gilt auch für die grüne Metropole Berlin. Sie ist reich an Lebensräumen, mit einem Wechsel ausgestalteten und ‚wilderen‘ Parkanlagen, gänzlich spontaner Vegetation auf Brachflächen, Trockenrasen auf diversen Nutzflächen, nassen Fließtälern und Mooren, Wiesen, Wäldern und Wasserlandschaften. Auch aufgrund menschlicher Einwirkung ist die Vielfalt der Landschaften so groß. Mit die wertvollsten Trockenrasen Berlins befinden sich auf den ehemaligen Flugfeldern Tegel, Johannistal und Tempelhof. Der Flughafensee war früher eine Sand- und Kiesgrube und ist heute bedeutsames Vogelschutzgebiet, die offenen Wiesen der Rieselfelder dienten einst der Abwasserbehandlung. Selbst unsere Häuser mit ihren Spalten, Simsen, Ritzen und Höhlungen sind Ersatz-Felslandschaften für viele Brutvögel und Fledermäuse. Es ist der Mix aus unterschiedlichen Stadt- und Landschaftsräumen, der vielen Arten bietet, was sie zum Leben brauchen. Entsprechend breit ist die Berliner Strategie zur Biologischen Vielfalt aufgestellt, die für die unterschiedlichen Standorte entsprechende Ziele formuliert. Berlin ist eine der artenreichsten Städte in ganz Europa. Neben den fast 3,7 Millionen Menschen leben hier geschätzt 20.000 Pflanzen- und Tierarten. Von den in Deutschland vorkommenden Arten sind es fast 2.200 von 3.300 Gefäßpflanzen, mehr als 300 von über 550 Wildbienenarten und 185 von 260 Brutvogelarten in Berlin. Berühmt sind die Berliner Nachtigallen, die mit bis zu 1.700 Brutpaaren vertreten sind. Mit mindestens 43 Winterquartieren und allein 10.000 Übernachtungsgästen in der Zitadelle Spandau, ist Berlin europäische Hauptstadt der Fledermäuse. Der Biber hält sich in Havel und Spree auf. Der Teichmolch laicht in fast allen naturnahen Kleingewässern, auch in den urbanen Parkanlagen. Die Population der Dachse nimmt zu und auch Feldhasen werden immer öfter im Stadtgebiet gesichtet. Elemente des Stadtgrüns werden auch als grüne Infrastruktur bezeichnet, denn sie sind für die Daseinsvorsorge unerlässlich und bedürfen einer strategischen Planung. Die grüne Infrastruktur ist der Lebensraum für Pflanzen und Tiere, Bewegungs- und Erholungsraum für die Berlinerinnen und Berliner, essenziell für Klima, Wasserhaushalt, Luftqualität und vieles mehr. Was viele von uns immer schon als Bauchgefühl hatten, wird wissenschaftlich immer besser belegt: Menschen brauchen den Kontakt zur Natur. Dabei geht es nicht nur darum, dass eine gesunde Umwelt und intakte Ökosysteme unsere Lebensgrundlage sind, sondern dass die grüne Infrastruktur für die mentale und soziale Gesundheit wichtig ist. Aktuelle Forschungsergebnisse belegen, dass Menschen besser mit den stadttypischen Stressfaktoren umgehen können, wenn sie einen guten Zugang zu öffentlichen Grünflächen haben. Insbesondere dann, wenn diese den sozialen Austausch fördern. Es wird zudem immer mehr über die positive Wirkung eines biologisch vielfältigen Wohnumfelds für das Immunsystem bekannt. Nicht erst seit der Corona-Pandemie wissen wir: Parks und Grünflächen sind unverzichtbar für die Lebensqualität in der Stadt. Lesen Sie weiter: Teil 1: Biologische Vielfalt – globaler Kontext Teil 3: Berliner Strategien und Maßnahmen für eine gute Nachbarschaft von Mensch, Tier und Grün
Gewässer in Europa: Es gibt viel zu tun Die Europäische Union wird das in der Wasserrahmenrichtlinie festgelegte Ziel, ihre Gewässer bis spätestens 2027 in einen guten Zustand zu versetzen, nicht erreichen. Dies zeigt ein Bericht der Europäischen Umweltagentur (EEA) mit Beteiligung des UBA. Basierend auf der umfangreichsten Datengrundlage zu Europas Gewässern unterstreicht der Bericht die dringende Notwendigkeit zum schnelleren Handeln. Bedrohung der Artenvielfalt Nur 37 Prozent der europäischen Flüsse, Seen und Küstengewässer werden derzeit als ökologisch intakt bewertet – eine Zahl, die sich seit 2015 kaum verändert hat. Deutschland liegt mit neun Prozent weit unter dem europäischen Mittel. Grund hierfür sind zu hohe Nähr- und Schadstoffeinträge aus Landwirtschaft, Kläranlagen und Industrie und massive Eingriffe durch Begradigungen, Uferverbau und -befestigungen und die Vielzahl an Querbauwerken (Wehre, Schleusen, Wasserkraftwerke) in den Gewässern. Dadurch fehlen vielen Tier- und Pflanzenarten ihre natürlichen Lebensräume. Allgegenwärtige Chemikalienverschmutzung Lediglich 29 Prozent der europäischen Oberflächengewässer und 77 Prozent des Grundwassers erreichen einen guten chemischen Zustand. Problematisch bleiben vor allem Pestizide aus der Landwirtschaft, Quecksilber aus der Kohleverbrennung und andere Chemikalien aus verschiedenen Quellen. In Deutschland erreicht derzeit kein Oberflächengewässer einen guten chemischen Zustand. Hiermit stehen wir nicht alleine da: Auch in Schweden gelten alle Gewässer als chemisch belastet. Besser sieht es beim Grundwasser aus: 67 Prozent der Grundwasserkörper in Deutschland sind in einem guten chemischen Zustand. Doch auch das ist nicht ausreichend, denn so kann das Wasser nicht ohne Aufbereitung als Trinkwasser genutzt werden. Klimawandel und Extremwetter bedrohen die Wassersicherheit Trotz eines mengenmäßig guten Zustands von 91 Prozent des Grundwassers in Europa sind bereits 30 Prozent der europäischen Bevölkerung von Wasserknappheit betroffen. Extremwetterereignisse wie Dürren und Überschwemmungen verursachen Schäden in Milliardenhöhe, wie die europaweite Trockenheit 2022 und das Hochwasser 2021 in Deutschland, Belgien und den Niederlanden zeigen. Diese Extremereignisse nehmen durch den Klimawandel weiter zu und gefährden die Wasserversorgung in Europa. Auch in Deutschland steigt der Nutzungsdruck von Wasser vor dem Hintergrund des Klimawandels. Wassermenge und Wasserqualität sind daher in den Fokus zu stellen. Hierbei unterstützt die Nationale Wasserstrategie mit zahlreichen Aktionen zum Schutz der Ressource. Landwirtschaft als Hauptverursacher der Belastung Der größte Belastungsfaktor für Europas Gewässer ist die Landwirtschaft, die nicht nur den höchsten Wasserverbrauch aufweist, sondern auch durch Nährstoffe und Pestizide zur Verschmutzung beiträgt. Weitere Belastungen kommen aus der Energieerzeugung, der Stadtentwicklung, dem Hochwasserschutz und den Kläranlagen. Die Landwirtschaft spielt auch in Deutschland eine erhebliche Rolle für die Gewässer. Bei 77 Prozent der Oberflächengewässer und 29 Prozent des Grundwassers ist sie Ursache für die Zielverfehlung eines guten Zustands. Handlungsbedarf in Europa und Deutschland Der Handlungsbedarf in Europa und Deutschland ist hoch. Maßnahmen müssen noch viel stringenter und schneller umgesetzt werden, um das Ziel eines guten Gewässerzustands zu erreichen: weniger Wasserverbrauch, reduzierte Schad- und Nährstoffeinträge sowie ein naturnaher Wasserhaushalt. Für Bäche, Flüsse und Auen ist mehr Raum erforderlich, um Hochwasser zu verteilen, Tieren und Pflanzen Lebensräume bereitzustellen und Wasser für Trockenperioden zu speichern. Diese und eine Vielzahl weiterer effektiver Maßnahmen sind notwendig, um den Zustand der Gewässer in Europa langfristig zu verbessern und ihre Resilienz gegen die Vielzahl von Belastungen zu erhöhen.
Ozon - Einhaltung von Zielwerten zum Schutz der Pflanzen Bodennahes Ozon kann Pflanzen schädigen. Wirkungsschwellenwerte (Critical Levels) markieren, welche Ozonbelastung nicht überschritten werden darf, um Schäden an Kultur- und Wildpflanzen zu vermeiden. Die Zielwerte zum Schutz der Vegetation nach EU-Richtlinie 2008/50/EG werden in Deutschland vielerorts überschritten. Neue Bewertungsmethoden führen zu einer noch präziseren Risikobewertung. Wirkungen von bodennahem Ozon auf Pflanzen Pflanzen, die zu viel Ozon durch ihre Spaltöffnungen aufnehmen, tragen oft Schäden davon. Als sichtbare Anzeichen treten Verfärbungen und abgestorbene Blattteile auf (siehe Foto „Sichtbare Blattschäden bei Kartoffelpflanzen“). Diese und andere nicht sichtbare Stoffwechselveränderungen in den Pflanzen führen bei Kulturpflanzen zu Ertrags- und Qualitätsverlusten. Bäume werden ebenfalls geschwächt. Experimente belegen langfristig verminderte Zuwachsraten und eine erhöhte Empfindlichkeit gegenüber anderen Stressfaktoren (siehe Foto „Zuwachsminderung bei jungen Eichen durch die Einwirkung von Ozon“). Es gibt auch deutliche Hinweise darauf, dass sich bodennahes Ozon auf die biologische Vielfalt und die Ökosystemfunktionen auswirken kann ( Bergmann 2015) . Wie bodennahes Ozon entsteht, erfahren Sie hier . Sichtbare Blattschäden bei Kartoffelpflanzen Quelle: Johann Heinrich / Thünen-Institut Braunschweig Zuwachsminderung bei jungen Eichen durch die Einwirkung von Ozon Quelle: Felicity Hayes Critical Levels für Ozon – Schutzwerte für Pflanzen „Critical Levels“ sind Wirkungsschwellenwerte zum Schutz der Vegetation, die im Internationalen Kooperativprogramm zur Bewertung von Luftverunreinigungen auf die Vegetation ( ICP Vegetation ) im Rahmen der Genfer Luftreinhaltekonvention definiert wurden. Wie hoch das Risiko durch bodennahes Ozon für Pflanzen ist, hängt neben den Ozonkonzentrationen auch vom Witterungsverlauf im entscheidenden Zeitabschnitt ab. Zwei unterschiedliche Herangehensweisen in der Risikobewertung sind zu unterscheiden: AOT40 : Die Abkürzung AOT kommt aus dem Englischen und bedeutet „Accumulation Over a Threshold“ . Bei dieser Methodik werden alle Überschreitungen eines Stundenmittels der Ozonkonzentration von 40 Teilen pro Milliarde (parts per billion, ppb ) − das entspricht 80 Mikrogramm pro Kubikmeter während der Tageslichtstunden − über die Zeitspannen mit intensivem Wachstum summiert (Critical Levels als AOT40: siehe Tab. „Konzentrationsbasierte Critical Levels für Ozon“). In dieser Zeit reagieren Pflanzen besonders empfindlich auf Ozon. Phytotoxische Ozondosis ( POD ): Eine weiterentwickelte Methodik, die das tatsächliche Risiko wesentlich präziser abbildet, bezieht sich auf den Ozonfluss aus der Atmosphäre über die Spaltöffnungen in die Pflanzen. Sie berücksichtigt, dass sich die Spaltöffnungen unter bestimmten Witterungsbedingungen schließen und dadurch der Ozonfluss unterbunden ist. Es ist zu erwarten, dass sich dieser Risikoindikator zum Schutz der Pflanzen sowohl international als auch in Deutschland durchsetzen wird (Critical Levels als POD-Werte: siehe Tab. „Critical Levels für Ozon bezogen auf kritische Ozonflüsse in die Pflanzen, standortbezogene Risikobewertung“). Einzelheiten zu diesen und weiteren Methoden der Critical Levels-Berechnung stehen im Kapitel 3 Methodenhandbuchs des International Cooperative Programme zur Modellierung und Kartierung von Critical Loads und Levels ( ICP Modelling and Mapping Manual ). Tab: Konzentrationsbasierte Critical Levels für Ozon (AOT40) Quelle: ICP Modelling and Mapping Tabelle als PDF Tabelle als Excel Tab: Critical Levels für Ozon bezogen auf kritische Ozonflüsse in die Pflanzen ... Quelle: ICP Modelling and Mapping Tabelle als PDF Tabelle als Excel Zielwerte der Europäischen Union zum Schutz der Vegetation Nach der Richtlinie 2008/50/EG des Europäischen Parlaments und des Rates vom 21. Mai 2008 über Luftqualität und saubere Luft für Europa (in deutsches Recht umgesetzt durch die 39. Verordnung zum Bundes-Immissionsschutzgesetz ) gilt als Zielwert für den Schutz der Vegetation nach wie vor der Expositionsindex AOT40 von 18.000 Mikrogramm pro Kubikmeter und Stunde (µg/m³*h), gemittelt über fünf Jahre. Dieser soll seit 2010 an jeder Station eingehalten werden (siehe Abb. „Ozon AOT40 – gleitende 5-Jahres-Mittelwerte, gemittelt über alle ländlichen Hintergrundstationen“). Langfristig soll flächendeckend ein niedrigerer Zielwert von 6.000 µg/m³*h zum Schutz der Vegetation eingehalten werden (siehe Abb. „Ozon AOT40-Mittelwerte (Schutz der Vegetation) für Einzeljahre, gemittelt über alle ländlichen Hintergrundstationen“). Dieser langfristige Zielwert entspricht dem Critical Level für Ozon als AOT40 für landwirtschaftliche Nutzpflanzen (Weizen) (siehe Tab. „Konzentrationsbasierte Critical Levels für Ozon“). Die Richtlinie 2008/50/EG soll in den nächsten Jahren überarbeitet werden. Es ist anzunehmen, dass dabei auch die Zielwerte und die langfristigen Ziele zum Schutz der Vegetation an den neuesten Stand des Wissens angepasst werden. Die im Dezember 2016 überarbeitete Richtlinie (EU) 2016/2284 über die Reduktion der nationalen Emissionen bestimmter Luftschadstoffe, zur Änderung der Richtlinie 2003/35/EG und zur Aufhebung der Richtlinie 2001/81/EG empfiehlt bereits ozonflussbasierte Indikatoren und Critical Levels zur langfristigen Beobachtung und Bewertung der Wirkungen von bodennahem Ozon auf die Vegetation. Die konkreten Anforderungen für die Umsetzung dieses Wirkungsmonitorings werden in einer internationalen Expertengruppe abgestimmt. Ozon AOT40 – gleitende 5-Jahres-Mittelwerte, gemittelt über alle ländlichen Hintergrundstationen Quelle: Umweltbundesamt Diagramm als PDF Diagramm als Excel mit Daten Ozon AOT40-Mittelwerte (Schutz der Vegetation) für Einzeljahre, gemittelt über alle ländlichen ... Quelle: Umweltbundesamt Diagramm als PDF Diagramm als Excel mit Daten Tab: Konzentrationsbasierte Critical Levels für Ozon (AOT40) Quelle: ICP Modelling and Mapping Tabelle als PDF Tabelle als Excel Entwicklung und Ziele bei der Ozonbelastung Sowohl konzentrationsbasierte als auch flussbasierte Critical Levels für Ozon (ICP Vegetation) werden in Europa und auch in Deutschland großflächig überschritten (vgl. Bender et al. 2015 ). Einige der in diesem Forschungsbericht genannten flussbasierten Critical Levels, die für eine flächenhafte Modellierung und Bewertung herangezogen wurden, sind seither jedoch angepasst worden, sodass inzwischen eine Überprüfung der Aussagen des Berichts notwendig wäre, insbesondere für Grasland). Die Abbildung “Ozon AOT40 -5-Jahres-Mittelwerte, gemittelt über alle ländlichen Hintergrundstationen“ zeigt die über fünf Jahre gemittelten Werte für alle ländlichen Hintergrundstationen (je nach Jahr 44 bis 75). Die Mittelung über 5 Jahre dient dazu, witterungsbedingte Schwankungen auszugleichen. Die Situation kann an einzelnen Stationen deutlich besser oder schlechter sein als der Durchschnitt der Stationen, wie die Abbildung „Ozon AOT40 - Einhaltung des Zielwertes zum Schutz der Vegetation (nur ländlicher Hintergrund)“ zeigt. Ziel der Europäischen Union (EU) und Deutschlands ist es, den Zielwert für 2010 und zukünftig auch den langfristigen Zielwert (siehe Abb. „Ozon AOT40-Mittelwerte (Schutz der Vegetation) für Einzeljahre, gemittelt über alle ländlichen Hintergrundstationen“) immer an allen Stationen einzuhalten. Die scheinbar deutliche Senkung der 5-Jahres-Mittelwerte für den Zeitraum 2007 bis 2016 ist vor allem darauf zurückzuführen, dass das Jahr 2006, welches besonders hohe Ozonkonzentrationen aufwies (siehe Abb. „Ozon AOT40-Mittelwerte (Schutz der Vegetation) für Einzeljahre, gemittelt über alle ländlichen Hintergrundstationen“), aus dem Berechnungszeitraum herausfiel. 2018 war erneut ein Jahr mit sehr hoher Ozonbildung. Der erste 5-Jahres-Durchschnittswert, bei dem dieses Jahr einbezogen ist, liegt deshalb wieder deutlich höher, wenn auch unterhalb des Zielwertes. Im Gegensatz zum Zielwert ab 2010 gilt der langfristige Zielwert zum Schutz der Vegetation nach EU-Richtlinie 2008/50/EG für jedes einzelne Jahr. Die AOT40-Jahreswerte lagen von 1995 bis 2023 auch im Mittel der ländlichen Messstationen weit über dem langfristigen Zielwert und zeigten keinen eindeutigen Trend (siehe Abb. “Ozon AOT40 – Mittelwerte für Einzeljahre zum Schutz der Vegetation (nur ländlicher Hintergrund)“). Den starken Einfluss meteorologischer Verhältnisse auf die Ozonbelastung veranschaulichen vor allem die Werte der Jahre 1995, 2003, 2006 und 2018. In diesen Jahren traten während der Vegetationsperiode sehr hohe Temperaturen und Strahlungsintensitäten und somit für die Ozonbildung besonders günstige Bedingungen auf. Ozon AOT40 – gleitende 5-Jahres-Mittelwerte, gemittelt über alle ländlichen Hintergrundstationen Quelle: Umweltbundesamt Diagramm als PDF Diagramm als Excel mit Daten Ozon AOT40 – Einhaltung des Zielwertes zum Schutz der Vegetation (nur ländlicher Hintergrund) Quelle: Umweltbundesamt Diagramm als PDF Diagramm als Excel mit Daten Ozon AOT40-Mittelwerte (Schutz der Vegetation) für Einzeljahre, gemittelt über alle ländlichen ... Quelle: Umweltbundesamt Diagramm als PDF Diagramm als Excel mit Daten
Überschreitung der Belastungsgrenzen für Versauerung Die versauernden Schwefel- und Stickstoffeinträge aus der Luft in Land-Ökosysteme haben in den letzten Jahren stark abgenommen. Zur Bewertung dieser Belastung stellt man ökosystemspezifische Belastungsgrenzen (Critical Loads) den aktuellen Stoffeinträgen aus der Luft gegenüber. Ammoniumstickstoffeinträge aus der Landwirtschaft sind mittlerweile die Hauptursache für Versauerung. Situation in Deutschland 2019 Der Anteil der Flächen, auf denen die kritischen Eintragsraten für Versauerung deutlich bis sehr deutlich überschritten wurden, nahm zwischen 2005 und 2019 von 58 auf 26 % ab. Die Abnahme der Belastungen spiegelt den Rückgang der Emissionen in Folge von Luftreinhaltemaßnahmen wider (siehe Abb. „Flächenanteile mit Überschreitung der Belastungsgrenzen für Versauerung“). Besonders Einträge versauernder Schwefelverbindungen haben deutlich abgenommen. Für versauernde Stickstoffeinträge ist eine so deutliche Abnahme hingegen nicht zu verzeichnen. Sie sind hauptverantwortlich für die andauernden Überschreitungen der ökologischen Belastungsgrenzen ( Critical Loads ) für Versauerung in Deutschland (siehe Karte „Überschreitung des Critical Load für Versauerung durch Schwefel- und Stickstoffeinträge im Jahr 2019“). Bis Mitte der 1990er Jahre waren die Einträge versauernder Stoffe und die Überschreitungen der ökologischen Belastungsgrenzen in verursachernahen Waldgebieten Thüringens und Sachsens am höchsten. Inzwischen werden die Extremwerte im norddeutschen Tiefland auf empfindlichen Böden als Folge hoher Einträge von Ammoniumstickstoff aus landwirtschaftlichen Quellen, vor allem aus der Intensivtierhaltung, erreicht. In diesen Regionen werden auch die ökologischen Belastungsgrenzen für Eutrophierung am stärksten überschritten. Im Rahmen eines UBA -Vorhabens zur Modellierung der Stickstoffablagerung (PINETI-4, Abschlussbericht in prep.) konnte die Entwicklung der Belastung methodisch konsistent für eine lange Zeitreihe (2000-2019) rückgerechnet werden. Flächenanteile mit Überschreitung der Belastungsgrenzen für Versauerung Quelle: Kranenburg et al. (2024) Diagramm als PDF Diagramm als Excel mit Daten Karte: Überschreitung des Critical Load für Versauerung durch Schwefel- und Stickstoffeinträge ... Quelle: Kranenburg et al. (2024) Was sind ökologische Belastungsgrenzen für Versauerung? Ökologische Belastungsgrenzen ( Critical Loads ) für Versauerung sind kritische Belastungsraten für luftgetragene Stickstoff- und Schwefeleinträge. Nach heutigem Stand des Wissens ist bei deren Einhaltung nicht mit schädlichen Wirkungen auf Struktur und Funktion eines Ökosystems zu rechnen. Betrachtet werden meist empfindliche Ökosysteme wie Wälder, Heiden, Moore und angrenzende Systeme (zum Beispiel Oberflächengewässer und Grundwasser). Ökologische Belastungsgrenzen sind somit ein Maß für die Empfindlichkeit eines Ökosystems und erlauben eine räumlich differenzierte Gegenüberstellung der Belastbarkeit eines Ökosystems mit aktuellen Luftschadstoffeinträgen. Das dadurch angezeigte Risiko bedeutet nicht, dass in dem betrachteten Jahr tatsächlich schädliche chemische Kennwerte erreicht oder biologische Wirkungen sichtbar sind. Es kann Jahrzehnte dauern, bis Ökosysteme auf Überschreitungen der ökologischen Belastungsgrenzen reagieren. Dies ist abhängig von Stoffeintragsraten, meteorologischen und anderen Randbedingungen sowie (bio)chemischen Ökosystemeigenschaften. Folgen der Versauerung Die Einträge versauernd wirkender Schwefel- und Stickstoffverbindungen aus der Luft führen bei Überschreitung der Pufferkapazität des Bodens zu einer Auswaschung basischer Kationen (Calcium, Magnesium, Kalium und Natrium) und zu Nährstoffungleichgewichten. Hierdurch verändern sie neben anderen chemischen Parametern auch die Nährstoffverfügbarkeit im Boden. Zusätzlich werden Bodenorganismen und die Bodenstruktur negativ beeinflusst. Ein lange anhaltender Säurestress führt über unausgewogene Ernährung zur Minderung der Vitalität von Pflanzen. Dies kann unter anderem zu einer Verschiebung der Artenzusammensetzung oder zu eingeschränkten Abwehrkräften gegenüber sekundären Stressfaktoren (zum Beispiel Dürre , Frost, Herbivorie) führen. Viele Ökosystemfunktionen können dann nur noch eingeschränkt erfüllt werden. Die atmosphärischen Einträge führen weiterhin zu einer weiträumigen Angleichung der Bodenverhältnisse auf einem ungünstigen, versauerten Niveau. Die Versauerung der Böden kann wiederum die Artenzusammensetzung von Pflanzengesellschaften verändern: Auf neutrale Bodenverhältnisse angewiesene Pflanzenarten und Pflanzengesellschaften werden von im sauren Milieu konkurrenzstärkeren Arten und Gesellschaften verdrängt. Da viele Tierarten auf bestimmte Pflanzenarten spezialisiert sind, wird durch die Versauerung auch die Fauna beeinflusst: indirekt (über Verschiebung der Pflanzenartenzusammensetzung) und direkt (durch das geänderte Milieu; beispielsweise können Regenwürmer in versauerten Böden mit pH unter 4 nicht mehr existieren). Strategien zur Emissionsminderung Der möglichst umfassende und langfristige Schutz der Ökosysteme vor Versauerung ist weiterhin ein wichtiges politisches Ziel. International wurden deshalb in der sogenannten neuen NEC-Richtlinie ( Richtlinie (EU) 2016/2284 vom 14.12.2016) für alle Mitgliedstaaten weitere Minderungsverpflichtungen der Emission von Schwefel- und Stickstoff (SO 2 , NH x , NO x ) vereinbart, die bis 2030 erreicht werden müssen. Für Deutschland ergeben sich folgende nationale Reduktionsziele für das Jahr 2030 und darüber hinaus im Vergleich zum Basisjahr 2005: • Ammoniak (NH 3 ): minus 29 % • Stickstoffoxide (NO x ): minus 65 % • Schwefeldioxid (SO 2 ): minus 58 % (siehe auch „Emissionen von Luftschadstoffen“ ). Konkrete nationale Maßnahmen, zur Erreichung der oben genannten Ziele werden derzeit in einem Nationalen Luftreinhalteprogramm zusammengestellt. Maßnahmen zur Minderung der negativen Auswirkungen von reaktivem Stickstoff, zu denen auch die Versauerung von Ökosystemen zählt, sind in der Veröffentlichung des Umweltbundesamtes "Stickstoff - Element mit Wirkung" enthalten. Auch das Bundesministerium für Umwelt, Naturschutz und Reaktorsicherheit ( BMU ) verfolgt den Ansatz einer nationalen Stickstoffminderungsstrategie . Weitere Informationen bietet auch das Sondergutachten des SRU "Stickstoff: Lösungen für ein drängendes Umweltproblem" . Hintergrundwissen zur Modellierung von atmosphärischen Stoffeinträgen bietet der Bericht zum Forschungsvorhaben „PINETI-4: Modelling and assessment of acidifying and eutrophying atmospheric deposition to terrestrial ecosystems“.
Berechnung der CO₂-Emissionen aus dem Heizen mit Holz Das Umweltbundesamt äußert sich zur Kritik an seiner im CO₂-Rechner angewandten Methode zur Berechnung der Treibhausgase, die durch das Heizen mit Holz verursacht werden, in einem offenen Brief. Mit dem CO 2 -Rechner des Umweltbundesamtes können alle Interessierten ihren CO 2 -Fußabdruck berechnen und so Potenziale für mehr Klimaschutz im Alltag herausfinden. Im März 2024 hat das UBA auf Grundlage neuester wissenschaftlicher Erkenntnisse die Berechnung der CO 2 -Emissionen aus dem Heizen mit Holz angepasst. In einem offenen Brief vom 31. Juli 2024 hat der emeritierte Professor Roland Irslinger die neue Berechnungsmethode kritisiert. Das UBA hat Herrn Prof. Irslinger am 23.08.2024 mit einem offenen Brief geantwortet: Sehr geehrter Herr Prof. Irslinger, das Umweltbundesamt weist seit vielen Jahren zusammen mit vielen anderen Institutionen, Wissenschaftler*innen und NGOs auf die kritischen Seiten einer verstärkten Biomassenutzung hin. Konsequenterweise haben wir im März dieses Jahres nach längeren Detaildiskussionen die Emissionsfaktoren für Holzbrennstoffe im CO 2 -Rechner angepasst. Die wesentlichen Gründe hierfür sind in dem Ihnen vorliegenden Schreiben an Frau Dr. Kersten genannt. Diese Anpassung in unserem Bilanzierungstool für Privatpersonen wird unter Waldbesitzer*innen und in der Bioenergiewirtschaft kontrovers diskutiert. Ihrem Schreiben entnehme ich aber, dass wir durchaus wichtige Sichtweisen teilen. Lassen Sie mich deshalb diese zuvorderst festhalten: Es ist nützlich, sinnvoll und international vorgeschrieben, Verbrennungsemissionen und Einbindungen von CO 2 getrennt zu erfassen und zu betrachten. Es ist mit einer weltweit steigenden Nachfrage nach Holz – nicht zuletzt ausgelöst durch den aus Klimaschutzgründen nötigen Ausstieg aus fossilen Rohstoffen – zu rechnen. Das betrifft auch die ansteigende Nachfrage aus der Baubranche und der chemischen Industrie. Holz wird unter diesen Voraussetzungen teurer werden. Unabhängig von der Frage, mit welchen erneuerbaren Energien wir künftig Gebäude heizen bzw. kühlen, ist es grundsätzlich wichtig, den Wärmebedarf von Gebäuden durch Wärmedämmung zu senken. Gleichzeitig ist völlig klar, dass wir im Hinblick auf eine nachhaltige Waldwirtschaft vor enormen Herausforderungen stehen, wo es angesichts der Komplexität von Waldökosystemen mit hohen standortspezifischen Abhängigkeiten und durch den Klimawandel verstärkte Stressfaktoren keine einfachen Lösungen geben wird. Kurzum: Holz ist mehr denn je ein sehr wertvoller Rohstoff. Für uns sind diese Punkte Motivation, das Bewusstsein für die Wertigkeit des Rohstoffes Holz zu stärken. Die transparente Ausweisung der Verbrennungsemissionen im CO 2 -Rechner ist für uns hierbei ein wichtiger Beitrag. An diesem Punkt widersprechen Sie mit sehr weitreichenden Vorwürfen dem UBA. In den von Ihnen angebrachten Begründungen lassen sich allerdings einige Missverständnisse ausmachen, auf die ich kurz eingehen und die ich richtigstellen möchte: Das UBA arbeitet selbstverständlich auch bei der Betrachtung und Bewertung von Holzbrennstoffen wissenschaftlich. Der CO 2 -Rechner trifft keine wertenden Aussagen über eine „richtige“ Waldbewirtschaftung. Das UBA steht zu der Aussage, dass die Heiztechnik auch bei Holzheizungen in den letzten Jahrzehnten effizienter und schadstoffärmer geworden ist. Dem UBA ist bewusst, dass der im Holz gebundene Kohlenstoff nicht nur bei Verbrennung, sondern auch bei Verrottung freigesetzt wird. Das UBA arbeitet selbstverständlich auch bei der Betrachtung und Bewertung von Holzbrennstoffen wissenschaftlich. Wir gehen davon aus, dass das Hintergrundpapier im CO 2 -Rechner klar als solches erkennbar ist: Eine Erläuterung für die interessierte Öffentlichkeit, weshalb und wie wir – auf wissenschaftlicher Basis – die Emissionsfaktoren im Rechner geändert haben. Es ist weder ein Gutachten noch ein Studienbericht. Insofern wäre ein großes Quellverzeichnis in einem Dreiseiter offensichtlich fehl am Platz. In unserem Hintergrundpapier sind die zentralen wissenschaftlichen Studien aufgelistet, in denen selbstverständlich vollständige und umfassende Quellverzeichnisse zu finden sind. Bei den Studien handelt es sich u.a. um aufwendige Modellierungen, die natürlich die Daten zu Waldinventuren und der nationalen Treibhausgasbilanz berücksichtigen bzw. zentral auf diesen aufbauen. Der CO 2 -Rechner trifft keine wertenden Aussagen über eine „richtige“ Waldbewirtschaftung. Ein Großteil Ihres Schreibens betrifft Aspekte innerhalb der Systemgrenze Wald. Sie verweisen insbesondere auf den Zusammenhang von Bewirtschaftung und Waldzuwachs. Hier besteht allerdings gar kein grundlegender Dissens zwischen Ihrer und der Position des UBA. Sie schließen allerdings aus der Tatsache, dass wir die Verbrennungsemissionen ausweisen und nicht mit den Senkenleistungen des deutschen Waldes im CO 2 -Rechner verrechnen, dass das UBA eine Nichtnutzung des Waldes als Ziel verfolgen würde. Das ist mitnichten der Fall. Mit anderen Worten: Nur weil wir die Verbrennungsemissionen explizit ausweisen, heißt das nicht, dass wir Holzernte und Waldbewirtschaftung ablehnen würden. Eine stärkere politische und marktliche Fokussierung auf eine Kaskadennutzung von Holz könnte die Wertschöpfung der Forstwirtschaft sogar stärken. Ich verweise an dieser Stelle auf die Initiative „Bauhaus der Erde“ von Prof. Schellnhuber, die beispielhaft aufzeigt, wie viele innovative Ideen und Möglichkeiten durch eine nachhaltige Nutzung von Holz und biobasierten Produkten es jenseits der Verbrennung von Holz gibt, um CO 2 aus der Atmosphäre zurückzuholen und längerfristig im Produktspeicher zu binden. Die Heiztechnik ist auch bei Holzheizungen in den letzten Jahrzehnten effizienter und schadstoffärmer geworden. Das UBA bestreitet nicht, dass Holzheizungen in den letzten Jahrzehnten effizienter und schadstoffärmer geworden sind. Eine effizientere Heiztechnik ist aber eben nur die eine Seite der Medaille. Die zweite Seite, die Sie auch selbst erwähnen, ist die Senkung des Energiebedarfs. Hier sendete der CO 2 -Rechner in der Vergangenheit aber das Signal, dass man bei einem Wechsel auf eine Holzheizung seinen CO 2 -Fußabdruck durch zusätzliche Wärmedämmmaßnahmen nur noch marginal verbessern konnte. Eine ambitionierte Wärmedämmung erschien damit aus Klimaschutzsicht für die Besitzer*innen von Holzheizungen überflüssig. Es ist aber unstrittig, dass das nachhaltig nutzbare Holzenergiepotenzial begrenzt ist und selbst im optimistischen Falle nur einen Teil der aktuellen Wärmeversorgung in Deutschland übernehmen kann. Fest steht, dass die energetische Sanierung des Gebäudebestands schneller voranschreiten und die Wärmeversorgung, wo immer möglich, auf brennstofffreie Alternativen umgestellt werden muss. Dem UBA ist bewusst, dass der im Holz gebundene Kohlenstoff nicht nur bei Verbrennung, sondern auch bei Verrottung freigesetzt wird. Sie legen in Ihrer Argumentation vielfach nahe, dass das Holz, das heute verbrannt wird, ansonsten ungenutzt verrotten würde. Sie schreiben: „Der Kohlenstoff im Holz ist aber Teil des natürlichen biosphärisch-atmosphärischen Kreislaufes. Sie würden durch Verrottung exakt in derselben Höhe stattfinden, auch wenn wir das Holz nicht energetisch nutzen würden, die energetische Nutzung ist lediglich der Beipass im Vergleich zur Verrottung, die Freisetzung von CO 2 erfolgt im Ofen anstatt im Wald - in derselben Menge in derselben Zeit.“ Diese Aussage ist zu allgemein, wenn man die von Ihnen selbst genannten Absatzmärkte für Holzreststoffe jenseits von Holzbrennstoffen berücksichtigt. Unsere gerade veröffentlichte Studie „Auswirkungen der energetischen Nutzung forstlicher Biomasse in Deutschland auf deutsche und internationale LULUCF -Senken“ (BioSINK) beleuchtet auf der Basis von Modellierungen viele wichtige Detailaspekte hierzu. Sicherlich stimmt das UBA der Aussage zu, dass der im Holz gebundene Kohlenstoff sowohl bei der Verbrennung als auch bei der Verrottung freigesetzt wird. Das bedeutet, dass für den Fall, dass Holz verbrannt wird, das sonst zeitnah verrotten würde, dies keinen Einfluss auf den CO 2 -Speicher hat. Es ist wichtig anzuerkennen, dass der Holzmarkt im Detail eine komplexe Angelegenheit ist: Schlagraumgrößen, Besitzverhältnisse, Marktdynamiken, Naturereignisse und anderes mehr beeinflussen Angebot und Nachfrage. Genau aus diesem Grund haben wir im UBA-CO 2 -Rechner auch die Kategorie „Holz aus Garten- und Landschaftspflege“, in der weiterhin keine direkten Verbrennungsemissionen dem verbrannten Holz angerechnet werden. Der Nutzende des CO 2 -Rechners hat hier die Möglichkeit, selbst zu entscheiden, ob der von ihm genutzte Brennstoff diese Bedingung erfüllt. Die Schlüsselfrage ist allerdings: Für welches Holz bzw. für welche Sägenebenprodukte gibt es keinen alternativen Markt? An dieser Stelle beginnt unser Dissens. Ich sehe zwei zentrale Aspekte, bei denen Dissens besteht: Besteht eine direkte Kausalität zwischen der Holzverbrennung einerseits und der Einbindung von CO 2 durch Waldzuwachs andererseits? Sie behaupten, dass Energieholz aus nachhaltiger Waldwirtschaft die Atmosphäre nicht mit CO 2 belasten würde und unterstellen eine direkte Kausalität zwischen der Holzverbrennung und der Einbindung von CO 2 durch Waldzuwachs. Diese Annahme ist zu einfach und wird der Realität der Klimakrise immer weniger gerecht. Bei der Verbrennung von kohlenstoffhaltigen Stoffen entsteht CO 2 . Umgekehrt gilt: Beim Wachstum von Pflanzen wird das C aus dem CO 2 aus der Luft in organische Stoffe umgewandelt und gebunden. Aus dem Schornstein entweichendes CO 2 lässt sich kausal dem Brennstoff zuordnen, der verbrannt wurde. Wichtig ist aber, dass man das CO2 , das beim Wachstum von Wäldern aus der Luft aufgenommen wird, nicht eindeutig zuordnen kann. Es könnte z. B. auch CO 2 aus einem Kohlekraftwerk sein. Der Zuwachs des Waldes wiederum ist unabhängig davon, ob das geerntete Holz verbrannt oder ob hieraus Papier, Spanplatten, Pflanzenkohle oder andere Produkte hergestellt werden. Damit stehen die Verbrennungsemissionen aus Holz einerseits nicht in direktem kausalem Zusammenhang mit der Senkenleistung eines Waldes andererseits. Der Kontext des Klimaschutzes ist hier entscheidend: Die Senkenleistung der Wälder droht abzunehmen, während sie tatsächlich maximiert werden muss, um die Klimaschutzziele zu erreichen. Umso wichtiger ist, restliche (unvermeidbare) THG-Emissionen (z. B. aus Landwirtschaft) durch negative CO 2 -Emissionen des Waldes zu kompensieren. Das Klimaschutzgesetz gibt ambitionierte Ziele für den Landsektor vor, und ein entscheidendes Mittel ist Waldmodellierungen zufolge die verringerte Holzentnahme. So kann die Senkenleistung im Wald verbessert werden (unabhängig vom angenommenen Niveau der natürlichen Störungen), während zugleich waldbauliche Maßnahmen zur Stabilisierung instabiler Waldbestände einen notwendigen Beitrag leisten. Dieser Mix an Maßnahmen ist für eine möglichst lange Speicherung von Kohlenstoff im Wald und in Produkten notwendig und stellt eine wichtige Stellschraube für erfolgreichen Klimaschutz dar. Stoffliche Verwertung vor Verbrennung: Wie groß ist das Angebot von nicht anderweitig nutzbarem Holz, das ansonsten ungenutzt verrotten würde? Der Grundsatz "stoffliche Verwertung vor Verbrennung" sollte im Vordergrund stehen. Deshalb fordert das UBA, die sich auf hohem Niveau befindliche Biomassenutzung nicht weiter durch Fördergelder und idealisierende Beschreibungen anzuheizen (und damit den Preis für den Energieträger Holz über die steigende Nachfrage tendenziell zu verteuern). Es gilt vielmehr den Energiebedarf zu senken, zur Deckung des restlichen Energiebedarfs wo immer möglich brennstofffreie Alternativen zu nutzen und alternative Holzverwendungsmöglichkeiten im Sinne der Kaskadennutzung zu fördern, zu etablieren und weiter auszubauen. Sie schreiben: „Der Logik Ihrer Argumentation folgend müsste der CO 2 -Rechner dem Nutzer die Frage stellen, ob das Brennholz aus nachhaltiger Waldwirtschaft stammt oder nicht.“ Unsere Argumentation ist hier nicht adäquat wiedergegeben (siehe vorheriger Punkt zur Kausalität). Wie Sie gehen auch wir davon aus, dass gemäß dem Bundeswaldgesetz Waldbesitzer*innen „kahlgeschlagene Waldflächen oder verlichtete Waldbestände in angemessener Frist wieder aufforsten“ (BWaldG, § 11 (1)). Entscheidend ist deshalb die Frage, ob es alternative Verwendungsmöglichkeiten für das Holz gibt oder ob es tatsächlich sonst ohne Nutzung verrotten würde. Ob Holz, das nicht verbrannt wird, ungenutzt verrotten würde, hängt aber von sehr verschiedenen, dynamischen Faktoren ab. In den vergangenen Jahrzehnten wurde der Markt für Holzenergie – politisch angetrieben – deutlich vergrößert. Insofern ist auch klar, dass sich diese Stoffströme nicht „über Nacht“ in neue Wege lenken lassen. Dennoch existieren diese alten und neuen Anwendungsfelder, und sie nehmen zu – wie Sie selbst in Ihrem Schreiben festgestellt haben. Mit dem Klimaschutzgesetz ist der Ausstieg aus den fossilen Energieträgern beschlossen. Nun geht es darum, den Umbau zu einem klimaresilienten Wald als zentrale Kohlenstoffsenke voranzutreiben und die Weichen für eine umfassende Kaskadennutzung von Holz zu stellen. Der UBA-CO 2 -Rechner und seine transparente Ausweisung von Verbrennungsemissionen helfen dabei, die Wertigkeit des Rohstoffes Holz bewusst zu machen und für vielfältige und innovative Anwendungsfelder jenseits der direkten Verbrennung zu sensibilisieren. In dem Sinne dient er einer zukunftsfähigen Ausrichtung der Forst- und Holzwirtschaft. Mit freundlichem Gruß Prof. Dr. Dirk Messner Präsident des Umweltbundesamtes
Origin | Count |
---|---|
Bund | 648 |
Land | 43 |
Type | Count |
---|---|
Ereignis | 2 |
Förderprogramm | 609 |
Text | 47 |
Umweltprüfung | 1 |
unbekannt | 19 |
License | Count |
---|---|
geschlossen | 53 |
offen | 622 |
unbekannt | 3 |
Language | Count |
---|---|
Deutsch | 635 |
Englisch | 122 |
Resource type | Count |
---|---|
Archiv | 3 |
Bild | 2 |
Datei | 6 |
Dokument | 24 |
Keine | 493 |
Multimedia | 1 |
Webdienst | 4 |
Webseite | 163 |
Topic | Count |
---|---|
Boden | 677 |
Lebewesen & Lebensräume | 677 |
Luft | 677 |
Mensch & Umwelt | 677 |
Wasser | 677 |
Weitere | 669 |