API src

Found 110 results.

Related terms

Digitalisierte Wärmespeicher für die Energiewende

In dem Projekt DARING soll die Energieeffizienz von Wärmespeichern (z.B. Puffer- und Trinkwasserspeicher) im Bereich der Gebäudeenergieversorgung signifikant gesteigert werden. Dafür wird eine innovative Sensortechnologie (Sensorhaut) für die großflächige Erfassung des Temperaturprofils an den Speichern optimiert. Mit den generierten Daten lässt sich der exakte Beladungszustand bestimmen und die Energiezufuhr gezielter steuern. Durch eine bessere Steuerung von Wärmepumpensystemen kann eine Effizienzsteigerung um bis zu 10% erreicht werden. Für Solarthermie-Anlagen im Gebäudebereich sowie Fernwärme-Hausstationen werden äquivalente Werte prognostiziert. Bei der vorgelagerten Gebäudeversorgung über Wärmenetze besteht bei einer Integration in das übergeordnete Lastmanagement das Potenzial, vom kontinuierlichen in den Pulsbetrieb überzugehen, womit Trinkwasserspeicher gezielt beladen werden können. Die Technologie der Sensorhaut basiert auf druckbarer organischer Dünnschicht-Elektronik und erlaubt die zuverlässige Messung verschiedener Parameter (z.B. Temperatur) über große Flächen hinweg in Echtzeit. Durch den speziellen Herstellungsprozess (Flüssigprozessierung) sind die Sensorfolien in Form und Funktion nahezu beliebig konfigurierbar. Dabei entsteht nur ein minimaler Material- und Energieverbrauch, woraus sich im Vergleich zu herkömmlicher Sensorik Kostenvorteile sowie eine bessere CO2 Bilanz ergeben. DARING ist als Verbundprojekt konzipiert, in dem Experten aus Forschung und Praxis zusammenarbeiten. Dadurch wird gewährleistet, so nah an den realen Gegebenheiten und Bedürfnissen zu entwickeln wie möglich. Neben dem Institut für Angewandte Physik der TU Dresden sind die Professur für Gebäudeenergietechnik und Wärmeversorgung, die Firma Viessmann Climate Solutions SE sowie die Cupasol GmbH als direkte Projektpartner an der Umsetzung und Erprobung beteiligt. Darüber hinaus ist die Vonovia SE als Drittmittelgeber Teil des Konsortiums.

Softwaretool zur Identifizierung von emissionsarmen Prozessrouten entlang der Wertschöpfungskette 'Umformen-Wärmebehandeln-Zerspanen, Teilvorhaben: CO2-Fußabdrücke der Produktherstellung mit komplexen Prozessketten (inkl. Schmieden, Bearbeitung und Wärmebehandlung)

Immaterielle und ökologische Ressourcen im Rechnungswesen

Neben den im Rechnungswesen traditionell abgebildeten materiellen und finanziellen Ressourcen nutzen Unternehmen nicht abgebildete immaterielle und ökologische Ressourcen. Die Nutzung und Entwicklung dieser Ressourcen beeinflusst unternehmerische Entscheidungen und die zukünftige Unternehmensentwicklung. Im Rahmen dieses Forschungsschwerpunktes wird untersucht, ob und wenn ja, in welcher Form immaterielle und ökologische Ressourcen in der Unternehmenssteuerung und im Rechnungswesen berücksichtigt werden können. Bisher wurde ein Idealmodell entwickelt, dass eine Integration immaterieller und ökologischer Ressourcen in das vorhandene Rechnungswesen durch ein erweitertes Bilanzverständnis sieht. Aufgrund der absehbaren Beschränkungen in der Umsetzung dieses Ansatzes wurde darauf aufbauend ein dreistufiges Realmodell zur Berücksichtigung immaterieller und ökologischer Ressourcen im Rahmen des vorhandenen Rechnungswesens entwickelt.

Untersuchungen der energetischen Nutzungsoptionen von Hanffaserreststoffen zur exemplarischen Einbindung in das Energiekonzept eines Verarbeitungsstandorts, Teilvorhaben: Vorbehandlung von Reststoffen der Hanffaserproduktion und Prozesskettenentwicklung für die energetische Verwertung

Die Hanfindustrie hat sich in den vergangenen Jahren aufgrund neuer politischer Rahmenbedingungen und innovativer Produktfelder zu einem stark wachsenden Wirtschaftsbereich entwickelt. Hanfprodukte werden in der Lebensmittel-, Pharma-, Automobil-, Bau-, Textil und Papierindustrie eingesetzt. Das stärkste Wachstum der Hanfindustrie findet in der Produktion von Lebensmittel- und Lebensmittelzusätzen aus Hanfsamen, Hanf- und CBD-Ölen statt. Als Nebenprodukte fallen in diesen Wirtschaftsbereichen Extraktionsreste an, für die es derzeit nur bedingt Verwertungsmöglichkeiten gibt. In der industriellen Hanffaserproduktion werden aus getrocknetem Hanfstroh hochwertige Naturfasern gewonnen, die z.B. im Fahrzeugleichtbau zur Herstellung von Fahrzeugarmaturen und Verkleidungen eingesetzt werden. Hanffasern sind darüber hinaus ein etabliertes ökologisches Dämmstoffmaterial. Hanfdämmstoffe zeichnen sich durch eine bessere CO2 Bilanz gegenüber konventionellen Dämmstoffmaterialien wie Mineralwolle oder Styropor aus und bieten die Möglichkeit CO2 über mehrere Jahrzehnte im Dämmstoff zu fixieren. Im Dämmstoffherstellungsverfahren fallen neben dem Hauptprodukt Hanffasern im etwa gleichen Umfang zellulosehaltige Reststoffe an, die derzeit nur zu einem geringen Teil wirtschaftlich genutzt werden. Im Hinblick auf eine zunehmende regenerative Energieversorgung sowie knapper werdender Ressourcen bzw. der kritischen Diskussion um den Einsatz nachwachsender Rohstoffe zur Energiegewinnung kommt der Erschließung biogener Rest- und Abfallstoffe für die Erzeugung effizienter, speicherbarer, flexibler und dezentraler Bioenergieträger zunehmende Bedeutung zu. Im Vorhaben HanfNRG sollen energetischen Nutzungsoptionen von Reststoffen der Hanfverarbeitung untersucht werden zur exemplarischen Einbindung in das Energiekonzept einer Hanffaserfabrik.

Amtlicher Anzeiger, Teil II des Hamburgischen Gesetz- und Verordnungsblattes

Nach hamburgischem Landesrecht werden Veröffentlichungen durch Abdruck im Hamburgischen Gesetz- und Verordnungsblatt vorgenommen. Rechtsverbindlich ist deshalb ausschließlich die gedruckte Ausgabe des Hamburgischen Gesetz- und Verordnungsblattes Teile I und II (Amtlicher Anzeiger). Eine Inhaltssuche kann nur über die Internetseite der <a href="http://www.luewu.de/anzeiger/">Firma Lütcke & Wulff</a> erfolgen.

Digitalisierte Wärmespeicher für die Energiewende, Teilvorhaben: Optimierung Sensorhaut zur großflächigen Temperaturerfassung an Wärmespeichern

In dem Projekt DARING soll die Energieeffizienz von Wärmespeichern (z.B. Puffer- und Trinkwasserspeicher) im Bereich der Gebäudeenergieversorgung signifikant gesteigert werden. Dafür wird eine innovative Sensortechnologie (Sensorhaut) für die großflächige Erfassung des Temperaturprofils an den Speichern optimiert. Mit den generierten Daten lässt sich der exakte Beladungszustand bestimmen und die Energiezufuhr gezielter steuern. Durch eine bessere Steuerung von Wärmepumpensystemen kann eine Effizienzsteigerung um bis zu 10% erreicht werden. Für Solarthermie-Anlagen im Gebäudebereich sowie Fernwärme-Hausstationen werden äquivalente Werte prognostiziert. Bei der vorgelagerten Gebäudeversorgung über Wärmenetze besteht bei einer Integration in das übergeordnete Lastmanagement das Potenzial, vom kontinuierlichen in den Pulsbetrieb überzugehen, womit Trinkwasserspeicher gezielt beladen werden können. Die Technologie der Sensorhaut basiert auf druckbarer organischer Dünnschicht-Elektronik und erlaubt die zuverlässige Messung verschiedener Parameter (z.B. Temperatur) über große Flächen hinweg in Echtzeit. Durch den speziellen Herstellungsprozess (Flüssigprozessierung) sind die Sensorfolien in Form und Funktion nahezu beliebig konfigurierbar. Dabei entsteht nur ein minimaler Material- und Energieverbrauch, woraus sich im Vergleich zu herkömmlicher Sensorik Kostenvorteile sowie eine bessere CO2 Bilanz ergeben. DARING ist als Verbundprojekt konzipiert, in dem Experten aus Forschung und Praxis zusammenarbeiten. Dadurch wird gewährleistet, so nah an den realen Gegebenheiten und Bedürfnissen zu entwickeln wie möglich. Neben dem Institut für Angewandte Physik der TU Dresden sind die Professur für Gebäudeenergietechnik und Wärmeversorgung, die Firma Viessmann Climate Solutions SE sowie die Cupasol GmbH als direkte Projektpartner an der Umsetzung und Erprobung beteiligt. Darüber hinaus ist die Vonovia SE als Drittmittelgeber Teil des Konsortiums.

Entwicklung von ressourceneffizienten und umweltentlastenden Düngestrategien mithilfe innovativer Saatgutbehandlungen

Zielsetzung: Die Pflanzennährstoffe Stickstoff und Phosphat sind fundamental wichtig für ein gesundes Wachstum und hohe Erträge. Doch ein Überschuss an Nährstoffen kann durch Auswaschung ins Grundwasser und durch Oberflächenabfluss in Flüsse und Meere gelangen. Durch die Intensivierung der Landwirtschaft geraten zudem auch landwirtschaftlich genutzte Ökosysteme aus der Balance. Anfällige Pflanzenbestände mit geringer Resilienz sind die Folge. Ein steigender Pflanzenschutzmitteleinsatz wird somit vielerorts notwendig. Der Pestizid-Einsatz stellt jedoch eine weitere Gefahr für die Umwelt auf verschiedenen Ebenen dar und stört das ökologische Gleichgewicht, gefährdet die Wasserqualität und wirkt sich durch die Akkumulation von Rückständen in der Umwelt auf die gesamte Nahrungskette aus. Für eine zukunftsfähige Landwirtschaft stehen Landwirt*innen vor der Herausforderung, Düngemittel und Pflanzenschutzmittel auf das geforderte umweltverträgliche Maß zu reduzieren, ohne dabei die Nahrungsmittelsicherheit zu gefährden. Unter den Bedingungen der novellierten Düngeverordnung muss die Düngemenge bundesweit in nitratbelasteten roten Gebieten 20 % unter dem durchschnittlichem Düngebedarf liegen. Ebenso müssen zusätzliche Auflagen bei der Phosphor-Düngung in gelben Gebieten mit hoher Eutrophierung von Oberflächengewässern durch Phosphor/Phosphat eingehalten werden. Die stark angestiegenen Dünger- und Betriebsmittelpreise kommen erschwerend hinzu. Es braucht eine Landwirtschaft, die umweltfreundlich wirtschaftet und trotzdem bezahlbare Lebensmittel erzeugt. Der durch SeedForward angestrebte Lösungsweg beschreibt die Erprobung von ressourceneffizienten Düngestrategien, die bei reduziertem Düngereinsatz gleichbleibend hohe Erträge ermöglichen. Dies gelingt durch eine verbesserte Ressourcennutzung der Pflanzen, welche auf eine höhere Nährstoffeffizienz der Pflanze zurückzuführen ist, die durch die SeedForward Saatgutbehandlung hervorgerufen wird. An den Kulturen Mais, Getreide und Raps werden neben den Saatgutbehandlungen zusätzlich innovative Mikroorgansimen eingesetzt, denn der Einsatz dieser pflanzenförderlichen Mikroorganismen in Kombination mit der Saatgutbehandlung kann ihren Effekt noch verstärken. Die in dem Projekt geplante Vorgehensweise ermöglicht es, standortbezogene Einsparungen zu prognostizieren und zielgerichtet auszuschöpfen, um die Transformation zu einer zukunftsfähigen Agrarlandnutzung zu unterstützen und die Umwelt zu schützen.

Wechselwirkungen zwischen saisonale arktische Meereisprozessen und Stabilität der Halokline – auf dem Weg zum Verständnis arktischer Gas- und Stoffflüsse

In Folge des globalen Klimawandels hat sich die Meereisdecke in der Arktis dramatisch verändert. Im derzeitigen Zustand spielt die arktische Eisdecke eine wichtige Rolle; so schirmt sie das Oberflächenwasser, die sogenannte arktische Halokline (Salzgehaltsschichtung), von der Erwärmung durch die sommerliche Sonneneinstrahlung ab. Zudem wird die Halokline durch die Salze, welches beim Gefrierprozess des Meerwassers aus der Kristallstruktur austritt, gebildet und stabilisiert. Gleichzeitig wirkt die Halokline als Barriere zwischen der Eisdecke und dem darunter liegenden warmen atlantischen Wasser und trägt so zum Erhalt der arktischen Meereisdecke bei. Dieses Gleichgewicht ist nun durch die insgesamt wesentlich dünnere arktische Meereisdecke und ihre verringerte sommerliche Ausdehnung gestört. Im Meerwasser sind zudem Gase und biogeochemisch wichtige Spurenstoffen enthalten. Diese werden durch die Gefrierprozesse eingeschlossen, beeinflusst und wieder ausgestoßen. So beeinflusst die Meereisdecke die Gas- und Stoffflüsse zwischen Atmosphäre, Eis und oberer Wasserschicht. Durch die Eisbewegung findet außerdem ein Transport statt z.B. in der sogenannten Transpolarendrift von den sibirischen Schelfgebieten, über den Nordpol, südwärts bis ins europäische Nordmeer. Nun wird mit den weitreichenden Veränderungen des globalen und arktischen Klimawandels bereits von der „neuen Arktis“ gesprochen, da angenommen wird, dass sich die Arktis bereits in einem neuen Funktionsmodus befindet. Dabei ist jedoch weitgehend unbekannt wie dieses neue System funktioniert, sich weiterentwickelt und wie sich dies auf die Eisbildungsprozesse und damit die Stabilität der Halokline und die damit verbundenen Gas- und Stoffflüsse auswirkt. Für solche Untersuchungen werden über den Jahresverlauf Proben der oberen Wassersäule und der Eisdecke benötigt. Ermöglicht wird dies durch die wissenschaftliche Initiative MOSAiC. Mithilfe der stabilen Isotope des Wassers (?18O und ?D) aus dem Eis und der Wassersäule kann Rückschlüsse auf die Herkunftswässer und den Gefrierprozess gezogen werden und diese Ergebnisse sollen in direkten Zusammenhang mit Gas- und biogeochemischen Stoffuntersuchungen (aus Partnerprojekten) gesetzt werden. Dabei können z.B. Stürme, Schmelzprozesse, Schneebedeckung, Teichbildung und Alterungseffekte des Eises eine Rolle spielen. Untersucht wird parallel die Veränderung der Wassersäule welche z.B. durch Wärmetransport, wiederum die Eisdecke beeinflussen kann.Diese prozessorientierten Untersuchungen der saisonalen Eisbildungsprozesse in Eis und Wassersäule der zentralen Arktis, werden einen wichtigen Beitrag zum Verständnis der Stabilität der arktischen Halokline und der arktischen Gas- und Stoffflüsse liefern. Da sich die Gase und Stoffe nicht-konservativ verhalten, während die Isotope im Gefrierprozess konservativ sind, erwarten wir aus der Diskrepanz wiederum wichtige Informationen z. B. über wiederholtes Einfrieren von Süßwasserbeimengungen ableiten zu können.

Modulares Antriebskonzept mit Brennstoffzelle für Anwendungen im Spezialtiefbau, Teilvorhaben: Entwicklung eines effizienten Kühlsystems für die Brennstoffzelle und akustische Optimierung des Gesamtsystems Drehbohrgerät

Die Verbundpartner erarbeiten gemeinsam ein Konzept, um Baumaschinen für den Spezialtiefbau CO2-emissionsfrei betreiben zu können. Hierfür ist die Entwicklung eines Antriebssystems bestehend aus Wasserstoff-Brennstoffzelle, Peripherie-Komponenten ('balance of plant'), elektronischer Steuerung, Pufferbatterie und Tanksystem sowie die Einbindung in das elektronische und mechanische System des Großdrehbohrgeräts geplant. Als Basis dient ein elektro-hydraulisches Spezialtiefbaugerät der BAUER Maschinen GmbH, das aktuell entweder mit Strom aus dem Netz oder aus Akkus gespeist wird. Das Brennstoffzellensystem sowie die zusätzlich notwendigen Komponenten wie H2-Speicher und Kühlungseinheit werden möglichst universell einsetzbar als Plug-In-Modul konzipiert. Innerhalb des Projekts werden Betriebsstrategien von Brennstoffzelle und Pufferbatterie im Hinblick auf technische und wirtschaftliche Anforderungen untersucht. Darüber hinaus stehen Simulation und Entwicklung des Kühlkonzepts inklusive Auswahl passender Komponenten im Fokus. Ein weiterer Arbeitsschwerpunkt ist das gezielte Beeinflussen der Schallemissionen, die beim Betrieb von Baumaschinen eine Belastung für Geräteführer und Umwelt darstellen. Gestützt durch Aeroakustik-Simulationen und dem Ableiten von schallreduzierenden Maßnahmen ist es das Ziel, die Emissionen im Vergleich zu einem konventionellen, dieselbetriebenen Gerät erheblich zu senken. Ein weiterer Schwerpunkt wird die Wasserstoffbereitstellung und -Speicherung sowohl generell für eine Baustelle als auch konkret auf der Baumaschine sein. Nach dem Aufbau der Gesamt-Steuerung werden die Module zur Validierung des Gesamtkonzepts als Anbau-Aggregat auf einem BAUER Gerät installiert und im Praxiseinsatz erprobt.

Modulares Antriebskonzept mit Brennstoffzelle für Anwendungen im Spezialtiefbau, Teilvorhaben: Analyse makroskopischer und mikroskopischer Energieflüsse eines brennstoffzellenbetriebenen Tiefbohrgerätes

Die Verbundpartner erarbeiten gemeinsam ein Konzept, um Baumaschinen für den Spezialtiefbau CO2-emissionsfrei betreiben zu können. Hierfür ist die Entwicklung eines Antriebssystems bestehend aus Wasserstoff-Brennstoffzelle, Peripherie-Komponenten ('balance of plant'), elektronischer Steuerung, Pufferbatterie und Tanksystem sowie die Einbindung in das elektronische und mechanische System des Großdrehbohrgeräts geplant. Als Basis dient ein elektro-hydraulisches Spezialtiefbaugerät der BAUER Maschinen GmbH, das aktuell entweder mit Strom aus dem Netz oder aus Akkus gespeist wird. Das Brennstoffzellensystem sowie die zusätzlich notwendigen Komponenten wie H2-Speicher und Kühlungseinheit werden möglichst universell einsetzbar als Plug-In-Modul konzipiert. Innerhalb des Projekts werden Betriebsstrategien von Brennstoffzelle und Pufferbatterie im Hinblick auf technische und wirtschaftliche Anforderungen untersucht. Darüber hinaus stehen Simulation und Entwicklung des Kühlkonzepts inklusive Auswahl passender Komponenten im Fokus. Ein weiterer Arbeitsschwerpunkt ist das gezielte Beeinflussen der Schallemissionen, die beim Betrieb von Baumaschinen eine Belastung für Geräteführer und Umwelt darstellen. Gestützt durch Aeroakustik-Simulationen und dem Ableiten von schallreduzierenden Maßnahmen ist es das Ziel, die Emissionen im Vergleich zu einem konventionellen, dieselbetriebenen Gerät erheblich zu senken. Ein weiterer Schwerpunkt wird die Wasserstoffbereitstellung und -Speicherung sowohl generell für eine Baustelle als auch konkret auf der Baumaschine sein. Nach dem Aufbau der Gesamt-Steuerung werden die Module zur Validierung des Gesamtkonzepts als Anbau-Aggregat auf einem BAUER Gerät installiert und im Praxiseinsatz erprobt.

1 2 3 4 59 10 11