Das Projekt "Teilprojekt: Metabarcoding alter eukaryotischer DNA aus Chew Bahir, Ethiopia: Rekonstruktion der Folgen drastischer Umweltänderungen für die Biodiversität" wird vom Umweltbundesamt gefördert und von Universität Potsdam, Institut für Biochemie und Biologie durchgeführt. Das Chew Bahir Drilling Projekt (CBDP) erbrachte tropische Sedimente aus den letzten 650000 Jahren. DNA-Metabarcoding an diesen Proben erschließt ein einzigartiges paläolimnologisches Archiv bezüglich Zeitspanne und zeitlicher Auflösung. In einer Pilotstudie konnten wir mittels Hybridization-Capture-basiertem Metabarcoding eukaryotische DNA aus den ca. 280 m langen Chew Bahir-Kernen in Sedimenten bis 70m Tiefe (ca. 150000 Jahren) analysieren. Dabei werden Sedimentproben einer Taxon- und Gen-spezifischen DNA-Anreicherung mit spezifischen Sonden ('baits') unterzogen und mittels Next-Generation-Sequencing analysiert. Wir wollen das Potenzial des DNA-Metabarcodings in den langen CBDP-Kernen weiter untersuchen. Unsere grundlegenden wissenschaftlichen Fragen sind: (1) Wie reagiert das Ökosystem auf kurze, aber signifikante Störungen, z.B. Dürren oder erhöhte Feuchtigkeit? Wir testen die Hypothese, dass einzelne Störungen das Ökosystem dauerhaft verändern, indem wichtige Komponenten des Ökosystems ausgetauscht werden. Da wir die Gesamtheit der Eukaryoten erfassen, können wir die Effekte für die Biodiversität quantifizieren und Folgen für Ökosystemfunktionen ableiten. (2) Was sind die Folgen globaler und lokaler Klimaveränderung, z.B. an Kipppunkten (tipping points)? Hier untersuchen wir, ob und wie ein Ökosystem infolge einer Störung von einem stabilen Zustand in einen anderen übergeht. Ein spezieller Fokus ist, ob ökologische Nischen nach einer Störung von den gleichen Taxa wiederbesiedelt werden oder ob sie durch andere Taxa ersetzt werden, wodurch sich Eigenschaften des Ökosystems verändern können. (3) Welche Langzeit-Trends finden sich in den Lebensgemeinschaften in Chew Bahir und anderen afrikanischen Sedimentkernen? Wir werden zeitliche Trends unserer Ziel-Eukaryotentaxa ermitteln, sowohl bezüglich der Artzugehörigkeit als auch bezüglich kryptischer genetischer Variation und (halbquantitativ) relativer Abundanz. Dies umfasst als Proxies etablierte Planktonorganismen (Ostracoda, Cladocera, Rotatoria, Diatomeen), aber auch wichtige terrestrische Arten (Insekten, Nagetiere, Huftiere, höhere Pflanzen). (4) Wie lange zurück in der Zeit können DNA-Reste im Chew Bahir und anderen HSPDP-Kernen extrahiert und analysiert werden? Hier werden wir Möglichkeiten DNA-basierter Detektion von Organismen in tieferen Schichten der Kerne (unter 70m) evaluieren. Weiterhin werden wir unsere Analyseprotokolle optimieren, um die DNA-Ausbeute unserer Zieltaxa zu maximieren und methodische Verzerrungen zu minimieren. Darüberhinaus werden wir Möglichkeiten und Grenzen halbquantitativer Abundanzschätzungen mittels NGS und qPCR zwischen Kernschichten und Taxa evaluieren. Wir analysieren gezielt Sedimente vor, während und nach drastischen Umweltveränderungen (vor allem Transitionen zwischen Dürren und Feuchtperioden), die in lithologischen Untersuchungen unserer Kooperationspartner identifiziert werden.
Das Projekt "Aquatisch-terrestrische Kopplung: Export von mehrfachungesättigten Fettsäuren aus aquatischen Ökosystemen durch Insekten und mögliche Konsequenzen für terrestrische Konsumenten" wird vom Umweltbundesamt gefördert und von Universität Konstanz, Limnologisches Institut durchgeführt. Der Transport von organischem Material über Ökosystemgrenzen hinweg kann die Produktivität benachbarter Systeme entscheidend beeinflussen. Emergierende aquatische Insekten sind erheblich am Transport von organischem Material aus Binnengewässern in angrenzende terrestrische Systeme beteiligt. Mögliche Effekte von Nährstoffflüssen auf angrenzende Nahrungsnetze hängen in erster Linie von der Menge der transferierten Biomasse ab; ob angrenzende Nahrungsnetze auch von qualitativen Unterschieden in der transferierten Biomasse beeinflusst werden können wurde noch nicht untersucht. Ziel des Projekts ist es, denn Export von essentiellen mehrfachungesättigten Fettsäuren (PUFA) aus stehenden Binnengewässern durch emergierende Insekten zu quantifizieren, um den möglichen Transfer dieser potentiell limitierenden Nährstoffe in angrenzende terrestrische Habitate und deren Bedeutung für terrestrische Konsumenten abschätzen zu können. Emergenzfallen werden auf verschiedenen Seen installiert, um habitatspezifische Unterschiede im PUFA-Export erfassen zu können. Teichexperimente mit markierten Substraten (stabile Isotope) sollen dabei helfen, den PUFA-Export über emergierende Insekten, den Eintrag und die Verteilung aquatischer PUFA in angrenzenden terrestrischen Habitaten und den Beitrag aquatischer PUFA zur Ernährung terrestrischer Konsumenten abzuschätzen. In Laborexperimenten mit wirbellosen Prädatoren (Spinnen) wird untersucht, ob diese eine Präferenz für aquatische Insekten zeigen und ob sich aquatische und terrestrische Insekten in ihrer Futterqualität aufgrund einer unterschiedlichen PUFA-Zusammensetzung unterscheiden. Die erarbeiteten Ergebnisse werden das Verständnis von Nährstoffflüssen über Systemgrenzen hinweg und deren Bedeutung für angrenzende Habitate entscheidend verbessern.
Das Projekt "Teilprojekt A 05: Entschlüsselung der komplexen Prozesse, welche die Biodiversität und Ökosystemfunktion von Aquifergemeinschaften steuern" wird vom Umweltbundesamt gefördert und von Deutsches Zentrum für integrative Biodiversitätsforschung (iDiv) Halle-Jena-Leipzig durchgeführt. Das Ziel dieser Studie ist zu verstehen, wie komplexe zeitliche und räumliche Prozesse die Biodiversität und funktionelle Diversität der mikrobiellen Gemeinschaft im Hainich CZE steuern. Ebenso wollen wir die dafür verantwortlichen Mechanismen entschlüsseln. Wir werden zur Hypothesenbildung mathematische Nahrungsnetzmodelle simulieren, und wie in der mikrobiellen Gemeinschaft sich die Biodiversität, funktionelle Diversität und Ökosystemfunktion verhalten. Die Hypothesen werden anhand empirischer Felddaten getestet. Dafür werden wir Daten der verschiedenen AquaDiva Projekte aus der ersten und zweiten Phase synthetisieren und analysieren.