Das Projekt "Sub project: Biodiversity and land-use effects on root biomass and arbuscular mycorrhizal communities in roots" wird vom Umweltbundesamt gefördert und von Freie Universität (FU) Berlin, Institut für Biologie, Arbeitsgruppe Ökologie der Pflanzen durchgeführt. As most land use practices in grasslands (grazing, mowing) remove aboveground plant biomass, an important carbon sink in grasslands is plant roots. Thus, knowledge on the impact of land use on root growth and biomass is important for studies on belowground biota and for models of carbon sink strength. Arbuscular mycorrhizyal fungi (AMF) are among the most common microbes associated with roots, providing a direct link from above to belowground biota, as AMF in roots are directly influenced by their host plant. We predict that host plant identity and specific plant traits (e.g. root structure) will lead to phylogenetic clustering in AMF communities, which should lead to closely related plant species being colonized by similar AMF. With increasing land use intensity AMF species richness declines, which will dissolve phylogenetic clusters, leading to more uniform communities between plants. We will also collaborate on a fine-scale (temporal and spatial) study where we expect variation in plant communities to lead to unique assemblages of AMF which are directly linked to diversity in other soil microorganism groups. Our project will yield data on AMF communities in roots at an unprecedented level of comprehensiveness, enabling us to test critical hypotheses about phylogenetic controls on communities. Through full integration in the Exploratory design the project will engender maximal synergies with other projects.
Das Projekt "Sub project: Dynamics of soil aggregation as affected by land use in grasslands and forests" wird vom Umweltbundesamt gefördert und von Freie Universität (FU) Berlin, Institut für Biologie, Arbeitsgruppe Ökologie der Pflanzen durchgeführt. Die Bodenaggregation ist ein wichtiger Ökosystemprozess in Grasland und Wäldern. Bodenaggregation wird in der Regel als statisches Phänomen erfasst; dies ignoriert, dass sich Aggregate fortwährend neu bilden und zerfallen. Böden die viel Kohlenstoff speichern zeigen regelmäßigen Durchsatz an Bodenaggregaten; in unseren Messungen fanden wir aber, dass bestimmte Landnutzungstypen zu erstaunlich stabilen Böden führen. Diese Stabilität ist zum Teil auf das Bodenmyzel von arbuskulären Mykorrhizapilzen (AM) zurückzuführen. Bodenaggregation ist weniger in Waldböden untersuch;, dort sind auch AM-Effekte weniger wichtig, da diese Pilzgruppe eher im Grasland auftritt. Hingegen sind Ektomykorrhiza und saprobische Pilze dort wichtiger. Unsere Haupthypothese ist, dass mit intensiverer Landnnutzung die Bodenaggregation verringert wird, Makroaggregate höheren Durchsatz haben, und weniger Mikroaggregate gebildet werden. Wir werden im Feld (Grasland und Wald, alle 300 Flächen) Hyphen in-growth cores einsetzen um Pilzefekte auf die Bodenaggregationsdynamik zu untersuchen; im Gewächshausversuch werden wir AM-Effekte von denen von nicht-AM Pilzen und Bakterien trennen. Dieses Projekt hat zum Ziel zu zeigen wie sich Landnutzungs-intensität auf die funktionelle Diversität von Bodenpilzen auswirkt (hier definiert als die Befähigung Boden zu aggregieren). Wir erwarten völlig neue mechanistische Informationen darüber wie sich Landnutzung auf Bodenaggregationsdynamik auswirkt.
Das Projekt "Sub project: Core Project 2 - The Local Management Teams" wird vom Umweltbundesamt gefördert und von Universität Ulm, Institut für Evolutionsökologie und Naturschutzgenomik durchgeführt. Die Local Management Teams (LMTs) schaffen die Voraussetzungen für die erfolgreiche Arbeit aller Projekte der Biodiversitäts-Exploratorien. Die LMTs erhalten die Infrastruktur der Biodiversitäts-Exploratorien und unterstützen die Forschung der einzelnen Forschungsprojekte. Die Hauptaufgaben der der drei LMTs (je eins pro Exploratorium) sind: (1) die Aufrechterhaltung der 300 Versuchsflächen (EPs) inklusive der Versuchsflächen mittlerer Intensität (MIPs) und der Intensivflächen (VIPs), (2) die Aufrechterhaltung der neuen Grossexperimente mit vielen Grünland- und Waldflächen, (3) die Erlangung der notwendigen Genehmigungen, um die Feldforschung durchführen zu können, (4) die Einführung der Forschenden in den Aufbau der Versuchsflächen und die logistische Unterstützung der Projekte, (5) die Unterstützung der wissenschaftlichen Aktivitäten der einzelnen Projekte, (5) die Erlangung und Bereitstellung von Daten für alle Projekte, insbesondere zur Landnutzung und zur Meteorologie, (6) Öffentlichkeitsarbeit in den jeweiligen Regionen. Die LMTs sind das Gesicht der Biodiversitäts-Exploratorien in den drei Regionen und der zentrale regionale Ansprechpartner für Landnutzer, Landbesitzer, Behörden und die Öffentlichkeit. Die LMTs bilden, zusammen mit dem zentralen Koordinationsbüro (BEO) das administrative Rückgrat der Biodiversitäts-Exploratorien. Angesichts der hohen Anzahl beteiligter Wissenschaftler, der speziellen Situation von vielen Versuchsparzellen mit Gestattungsverträgen, der Regionen mit einer Vielzahl involvierter Stakeholder sowie der Notwendigkeit, die Versuchsflächen aufwändig instand zu halten, sind die LMTs unabdingbar.
Das Projekt "Sub project: Impact of soil negative feedbacks on plant-species diversity" wird vom Umweltbundesamt gefördert und von Freie Universität (FU) Berlin, Institut für Biologie, Arbeitsgruppe Ökologie der Pflanzen durchgeführt. Recent research indicates that plant-soil feedbacks may contribute to explaining a large proportion of the relative abundance of plant species in communities and therefore to mechanisms enabling species coexistence. We wish to use the framework of the Biodiversity Exploratories to test two main hypotheses: (1) that plant species with large individual biomass production that are not locally dominant are most strongly limited by specific negative soil feedbacks; and that (2) potentially invasive plant species profit from the absence of specific soil-negative feed-backs in their new habitat. These two hypotheses will be examined by two different sets of plant species, which show the relevant variability in the traits examined, i.e. for (1) biomass and relative abundance, and for (2) occurrence along a South-North gradient in the Exploratories. For these tests, we will use soil microbial samples from all 50 experimental grassland plots. In greenhouse experiments, we will additionally provide mechanistic resolution regarding the nature of the soil (negative) feedback, by examining different soil fractions, including arbuscular mycorrhizal fungi, root pathogenic fungi, and a microbial mish (mixture of pathogens and saprobes). Additionally, we will test FTIR, a new and high-throughput fast analysis of root material, which could subsequently be utilized also for other projects in the Exploratories that are faced with large sample numbers. With our large-scale and phylogenetially diverse screening, we hope to make an unprecedented contribution to the study of mechanisms enabling plant species coexistence and biodiversity; this knowledge can be integrated with other soil biota and plant-focused projects in the Exploratories.
Das Projekt "Sub project: Linking biodiversity to biogeochemical cycling (C-N cycling) in grasslands by soil structure (BIOSTRUC)" wird vom Umweltbundesamt gefördert und von Helmholtz-Zentrum für Umweltforschung GmbH - UFZ - Department Bodensystemforschung durchgeführt. Soil structure, the spatial arrangement of pores and solid soil parts, is a key element in grassland ecosystem functioning. Soil structure is affected by land use, develops under the influence of soil biota such as earthworms, characterizes the microhabitat for non-burrowing soil organisms and determines C-N transformation processes in soil. The analysis of soil structure may provide explanations for different microbial and faunal soil communities at differently managed grassland sites. It also enables to assess functional effects of biodiversity, and allows predictions of C-N transformation processes in soil. It is the aim of this project, in close cooperation with other research groups, a) to characterize soil structure by X-ray computed microtomography down to a resolution of 5 ÎÌm, b) to relate morphological features of soil structure to distribution patterns of soil communites, and c) to predict C-N dynamics in differently managed grassland sites with simulation models based on soil structure. With this project, it is envisaged to functionally link landuse, biodiversity and C-N dynamics in grasslands.
Das Projekt "Sub project: Tree species effects on the release of dissolved organic carbon and nitrogen from decomposing logs" wird vom Umweltbundesamt gefördert und von Universität Bayreuth, Fachgruppe Geowissenschaften, Bayreuther Zentrum für Ökologie und Umweltforschung (BayCEER), Lehrstuhl für Bodenökologie durchgeführt. The release of dissolved organic matter (DOM) from decomposing logs might be a significant contribution to their mass loss and an important C input to the soil underneath the logs. Here we will contribute to the BeLongDead initiative by investigating concentrations, properties and fluxes of DOM as influenced by tree species, forest management, climatic conditions and time of log exposure. Furthermore we will follow the fluxes of mineral N and establish DOM and N budgets of the logs by comparing throughfall fluxes and fluxes with runoff from the logs. The runoff water from the logs will be collected periodically at selected sites using small gutters placed underneath the logs. In total, runoff water from 120 logs will be sampled. All 13 tree species will be studied in the Hainich sites, while at Schorfheide and Schwäbische Alb sites only beech, spruce and oak logs are compared. The elemental composition of DOM (C, N), its spectroscopic properties and 13C signatures will be determined. In addition, the mineralization of DOM to CO2 by soil organisms is investigated in laboratory incubations. In cooperation with the other members of we will be able to achieve ground braking progress on the processes driving the decomposition of logs, the related DOM release and N turnover as influenced by tree species, wood properties, climate, insect and fungi invasion.
Das Projekt "Sub project: Resource fluctuations and niche separation in plant communities: Can land-use effects on soil moisture explain observed patterns in plant diversity?" wird vom Umweltbundesamt gefördert und von Universität Freiburg, Institut für Geo- und Umweltnaturwissenschaften, Abteilung für Biometrie und Umweltsystemanalyse durchgeführt. Plant diversity in grassland systems has been hypothesised Silvertown et al. (1999 Nature) to be related to the plant species' tolerance to drought and water saturated soil, respectively. They argue that drought-tolerant species are particularly sensitive to water-logged soils and vice versa, yielding a drought-water logging-trade off that explains plant diversity. This hydro-ecological hypothesis has as such not been tested independently or experimentally. Here, we propose to use the unique data collected within the Biodiversity Exploratories to test the hydro-ecological hypothesis. Furthermore, we propose to investigate the effect of land use and soil type on hydrological conditions and to test alternative explanations for the hydrological effect (particularly related to soil chemistry). Also, we propose to carry out two manipulative experiments in mesocosms to test the causal link between fluctuating soil moisture and plant diversity, and to disentangle the contribution of nutrient availability and soil moisture. Finally, we propose a pilot study to transfer the hydro-ecological hypothesis to the forest understorey. Here adaptation to shade may trade-off against physiological tolerance of light spots and thus forest floor plant diversity may be similarly explained by differential adaptation to fluctuating resource conditions.
Das Projekt "Sub project: Land use effects on response diversity in animal - plant interactions (Acronym: RESPONSE)" wird vom Umweltbundesamt gefördert und von Technische Universität Darmstadt, Institut für Zoologie, Arbeitsgruppe Ecological Networks durchgeführt. Land use intensification is considered a threat to biodiversity and ecosystem functioning, but mechanisms and consequences are poorly understood. The goal of the proposed project is to understand how response diversity - in addition to the more commonly studied biodiversity and functional diversity - changes with land use. Response diversity is the prerequisite for the resilience of ecosystem functions, suggesting that the insurance of a system against disturbance relies on functionally 'redundant' species that differ in their responses to environmental changes. This study will focus on interspecific variation in temperature responses and related drought stress in pollinators, herbivores and plants. Besides an increase in average temperature, variation in winter and summer temperatures are likely to increase with climate change, and periods with extreme conditions become more frequent. This variability will affect species in different ways. The core question is whether increasing land use, corresponding to decreased biodiversity, leads to lower response diversity and projected resilience in communities. The project will present the first large-scale investigation of land use impacts on functional redundancy as well as response diversity, using plant-pollinator and plant-herbivore interaction networks as target systems.
Das Projekt "Sub project: Chemical signatures of floral resource competition between honeybees and wild bees along a landuse gradient" wird vom Umweltbundesamt gefördert und von Universität Bochum, Fakultät für Biologie und Biotechnologie, Lehrstuhl für Evolutionsökologie und Biodiversität der Tiere durchgeführt. Domesticated honeybees (Apis mellifera) are suspected to have negative impacts on native pollinators, particularly wild bees, due to their large numbers, generalist resource use, and competitive strength. However, evidence for such effects is scant since competition for resources is difficult to demonstrate in mobile and long-lived organisms. We will exploit the unique advantages of the biodiversity exploratories to probe for competitive interactions between honeybees and their wild eusocial relatives, bumblebees (Bombus spp.). First, we will 'read' hydrocarbon deposits ('footprints') of honeybees and bumblebees on flowers to assess floral resource overlap between them. The novel technique will provide visitation data for sufficient replicate plant species across all grassland experimental plots so as to allow the detection of bumblebee displacement from preferred flowers in areas with high honeybee abundance. Second, we will measure fitness-related traits in bumblebees and analyze whether variation in these traits is explained by competition with honeybees, by land use or by a combined effect of these two factors. Third, we will conduct a field experiment with bumblebees in artificial hives to test directly for honeybee effects on bumblebee foraging and reproduction. The combination of multi-replicate correlative approaches with field experiments will allow general conclusions on the competitive impact of honeybees on wild pollinators in Central Europe and interactions with land use.
Das Projekt "Sub project: Core Projekt 9 - Monitoring of aboveground arthropod diversity with main emphasis on xylobionts" wird vom Umweltbundesamt gefördert und von Universität Würzburg, Theodor-Boveri-Institut für Biowissenschaften, Biozentrum durchgeführt. Arthropods are highly diverse and essentially involved in numerous biological processes. Tree crowns provide habitats for a large part of this diversity, but are still a vastly uncharted territory. The major aim of this project is to quantitatively and qualitatively assess the influence of forest management on the diversity and functional roles of canopy arthropods. For this we 1) perform a thorough recording of the diversity of canopy arthropods. Based on data of several years we analyse the structure, dynamics and guild composition of tree specific arthropod communities in forests under different management regimes. 2) We experimentally accumulate dead wood - a rare key resource in managed forests - in individual trees and on the ground and analyse the effects on the populations of xylobionts and their interaction with other guilds (e.g. predator-prey relationships), 3) we investigate (also experimentally and in cooperation with other projects) the importance of xylobiontic arthropods for coarse woody debris decomposition. The repeated monitoring of canopy arthropod diversity by means of insecticidal knock down allows an estimation of stability and resilience of species-rich communities. Our project provides important data for other projects, allowing relating canopy diversity with that of other habitats and communities with the aim to achieve a more comprehensive modelling of forest ecosystem processes. Our previous work has shown that increasing land-use intensity in grasslands leads to changes in pollinator composition (more dipterans, fewer bees) and also affects plants where land use winners (e.g. fly-pollinated Heracleum sphondylium and Ranunculus acris) and losers can be distinguished. We currently investigate whether this translates into lower pollination of selected losers (e.g. bee-pollinated Lotus or Campanula), and higher pollination of winners. Such processes will accelerate the success and decline of plant populations in intensively used grasslands. Long-term monitoring of these processes is applied for here.
Origin | Count |
---|---|
Bund | 67 |
Type | Count |
---|---|
Förderprogramm | 67 |
License | Count |
---|---|
open | 67 |
Language | Count |
---|---|
Deutsch | 67 |
Englisch | 67 |
Resource type | Count |
---|---|
Webseite | 67 |
Topic | Count |
---|---|
Boden | 59 |
Lebewesen & Lebensräume | 67 |
Luft | 35 |
Mensch & Umwelt | 67 |
Wasser | 33 |
Weitere | 67 |