API src

Found 78 results.

Related terms

Sonderforschungsbereich (SFB) 1357: MIKROPLASTIK - Gesetzmäßigkeiten der Bildung, des Transports, des physikalisch-chemischen Verhaltens sowie der biologischen Effekte: Von Modell- zu komplexen Systemen als Grundlage neuer Lösungsansätze; MICROPLASTICS - Understanding the mechanisms and processes of biological effects, transport and formation: From model to complex systems as a basis for new solut, Teilprojekt C 05: Abbau und Verhalten von Kunststoffen und deren Mikroplastik-Partikeln in technischen Systemen der Wasser- und Abfallwirtschaft

Das Projekt "Sonderforschungsbereich (SFB) 1357: MIKROPLASTIK - Gesetzmäßigkeiten der Bildung, des Transports, des physikalisch-chemischen Verhaltens sowie der biologischen Effekte: Von Modell- zu komplexen Systemen als Grundlage neuer Lösungsansätze; MICROPLASTICS - Understanding the mechanisms and processes of biological effects, transport and formation: From model to complex systems as a basis for new solut, Teilprojekt C 05: Abbau und Verhalten von Kunststoffen und deren Mikroplastik-Partikeln in technischen Systemen der Wasser- und Abfallwirtschaft" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: Universität Bayreuth, Fakultät für Ingenieurwissenschaften, Lehrstuhl für Bioprozesstechnik.Teilprojekt C05 hat zum Ziel, den wichtigen Eintragsweg für Kunststoffe, in Form von Mikroplastik, in die Umwelt aus technischen Anlagen (MP) mechanistisch aufzuklären. Gleichzeitig sollen neue Ansätze verfolgt werden, die zur Vermeidung bzw. Reduktion von MP aus Standardkunststoffen maßgeblich beitragen sollen. Zu diesem Zweck sollen Polyethylen, Polypropylen, Polystyrol, Nylon, Polyethylenterephthalat, Polyisopren und Polyvinylchlorid durch Beschleuniger (in situ) in ihren Oberflächeneigenschaften für die Biofilmbildung modifiziert und dadurch unter Prozessbedingungen biologisch angreifbar und abbaubar gemacht werden. So können auch Standardkunststoffe umweltverträglicher bezüglich der MP-Partikel Bildung werden. Damit geht TP C05 weit über die bislang üblichen eher deskriptiven Studien zu MP in technischen Anlagen und der Umwelt hinaus. Folgende zentrale Fragen sollen in TP C05 in Hinblick MP-Partikel in technischen Anlagen der Abfall- und Abwasserwirtschaft beantwortet werden: 1. Kommt es in den Anlagen zu spezifischen (biologischen) Abbau- und Degradationsvorgängen? 2. Wie hängen die zu beobachtenden Prozesse von MP-Charakteristika (Materialsorte, Zusammensetzung, Größe, Morphologie, Beschichtung) ab, ? 3. Lassen sich die Vorgänge ('Bioabbaubarkeit') durch gezielte Modifikation der Partikeloberfläche vor oder in den Anlagen beschleunigen? 4. Welche ökologischen Konsequenzen einer Ausbringung der (modifizierten) Partikel in die Umwelt und hier vor allem in den Boden lassen sich postulieren?

Multi Skalen Modellierung von Abtragprozessen bei Biofilmen mit einem poroviskoelastischen Modell

Das Projekt "Multi Skalen Modellierung von Abtragprozessen bei Biofilmen mit einem poroviskoelastischen Modell" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: Leibniz Universität Hannover, Institut für Strömungsmechanik und Umweltphysik im Bauwesen.Das Biofilmwachstum in Biofilmreaktoren wird hauptsächlich durch den Abtragprozess reguliert. Den Abtragprozess zu kontrollieren ist daher ein wichtiges Anliegen für den stabilen Betrieb eines Bioreaktors. Zur Kontrolle des Reaktors und um die größte Effizienz zu erreichen sind mathematische (bzw. numerische) Modelle, die den Abtragsprozess darstellen, hilfreich. Solche Modelle können möglicherweise sogar für den Entwurf von Biofilmreaktoren nützlich zu sein. In diesem Projekt soll ein multidimensionales, poroviskoleastisches Biofilm Modell entwickelt werden, das den Abtragsprozess abbildet. Dabei soll auch der Abtrag durch das Auslösen von größeren Stücken ('sloughing'), das durch die Schubspannungen an der Biofilm Grenzfläche und durch das Spannungsfeld im Biofilm entsteht, erfasst werden. Das Modell für den Abtrag soll basierend auf den Schubspannungen an der Grenzfläche und dem Spannungsfeld im Biofilm formuliert werden. Das Modell wird mit experimentellen Beobachtungen kalibriert und validiert. Biofilm Modelle, die für Reaktoren verwendet werden, sind in der Regel eindimensional (1D). Aus diesem Grund soll in diesem Projekt mittels Modellrechnungen mit dem validierten multi-dimensionalen Abtragmodell ein vereinfachtes ('upscaled') 1D Modell entwickelt werden.

Teilprojekt MIKRO: Räumliche Verteilung und Aktivität von mikrobiellen Lebensgemeinschaften in urbanen Böden

Das Projekt "Teilprojekt MIKRO: Räumliche Verteilung und Aktivität von mikrobiellen Lebensgemeinschaften in urbanen Böden" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: Technische Universität Berlin, Institut für Technischen Umweltschutz, Fachgebiet Umweltmikrobiologie.In Böden spielen Biofilme und bakterielle Aggregate eine große Rolle für die Struktur und die physiko-chemischen Eigenschaften der Bodenmatrix. Hierfür sind vor allem makromolekulare Substanzen verantwortlich, die von Mikroorganismen und Bodentieren produziert werden. Im vorliegenden Projekt soll das Vorkommen, die Struktur und Dichte, sowie die Bedeutung von mikrobiellen Biofilmen für die Wasser- und Stofflüsse in urbanen Böden untersucht werden, die im Hinblick auf Trockenheit, Schadstoff- und Salzeintrag häufig Extremstandorte darstellen. Bei den Untersuchungen an Feldproben soll mit mikroskopischen Methoden, in Verbindung mit molekularen Methoden (FISH), die Struktur und räumliche Verteilung der detektierbaren Bakteriengruppen ermittelt werden. Außerdem soll an suspendierten Bakterien aus der Bodenprobe mittels FISH die phylogenetische Diversität der vorhandenen Population bestimmt werden. Daneben werden aus den untersuchten Böden relevante Bakterienarten isoliert. Proben aus den experimentellen Bodensäulen sollen hinsichtlich der gleichen Parameter wie die Freilandproben untersucht werden, um in Kooperation mit den anderen Teilprojekten die kombinierten Effekte von Huminstoffen, Mikroorganismen und Bodentieren zu ermitteln. Ursächliche Zusammenhänge, die aufgrund der verschiedenen Untersuchungen an den Bodenproben vermutet werden, sollen dann in definierten Systemen (Biofilmreaktoren) weiter überprüft werden.

Mikrobielle Biofabriken: Kontinuierliche Bioproduktion mit maßgeschneiderten Biokatalysatoren in Bioelektrochemischen Fermentern, Teilprojekt C

Das Projekt "Mikrobielle Biofabriken: Kontinuierliche Bioproduktion mit maßgeschneiderten Biokatalysatoren in Bioelektrochemischen Fermentern, Teilprojekt C" wird/wurde gefördert durch: Bundesministerium für Forschung, Technologie und Raumfahrt. Es wird/wurde ausgeführt durch: Technische Universität Hamburg, Institut für Technische Mikrobiologie V-7.

Mikrobielle Biofabriken: Kontinuierliche Bioproduktion mit maßgeschneiderten Biokatalysatoren in Bioelektrochemischen Fermentern, Teilprojekt A

Das Projekt "Mikrobielle Biofabriken: Kontinuierliche Bioproduktion mit maßgeschneiderten Biokatalysatoren in Bioelektrochemischen Fermentern, Teilprojekt A" wird/wurde gefördert durch: Bundesministerium für Forschung, Technologie und Raumfahrt. Es wird/wurde ausgeführt durch: Karlsruher Institut für Technologie (KIT), Engler-Bunte-Institut, Lehrstuhl für Wasserchemie und Wassertechnologie.

Mikrobielle Biofabriken: Kontinuierliche Bioproduktion mit maßgeschneiderten Biokatalysatoren in Bioelektrochemischen Fermentern

Das Projekt "Mikrobielle Biofabriken: Kontinuierliche Bioproduktion mit maßgeschneiderten Biokatalysatoren in Bioelektrochemischen Fermentern" wird/wurde gefördert durch: Bundesministerium für Forschung, Technologie und Raumfahrt. Es wird/wurde ausgeführt durch: Karlsruher Institut für Technologie (KIT), Engler-Bunte-Institut, Lehrstuhl für Wasserchemie und Wassertechnologie.

Interne Elimination von Ammoniak und Aerosolen aus der Stallluft mithilfe eines Moving Bed Biofilm-Reaktors (EliAAS), Teilprojekt 3

Das Projekt "Interne Elimination von Ammoniak und Aerosolen aus der Stallluft mithilfe eines Moving Bed Biofilm-Reaktors (EliAAS), Teilprojekt 3" wird/wurde gefördert durch: Bundesministerium der Justiz und für Verbraucherschutz. Es wird/wurde ausgeführt durch: Kunststoff-Spranger GmbH.Vorhabenbeschreibung: Ziel des Vorhabens ist die experimentelle Entwicklung eines innovativen, auf Basis eines Moving Bed Biofilm- Reaktors (MBBR) in Kombination mit einem Luftwäscher arbeitenden Verfahrens zur Elimination von Ammoniak und Aerosolen aus der Stallluft bei Haltung landwirtschaftlicher Nutztiere. MBBR haben sich in Kreislaufsystemen zur Aufzucht aquatischer Organismen sowie in der kommunalen Klärtechnik als leistungsfähige Wasseraufbereitungskomponenten bewährt. Es ist zu erwarten, dass ein hinreichend dimensionierter Luftwäscher neben Ammoniak auch Aerosole aus der Stallluft eliminiert, die einerseits zu einer hinreichenden Versorgung der Nitrifikanten und Denitrifikanten im MBBR mit den neben Ammonium/Ammoniak/Nitrit/Nitrat benötigten Nährstoffen führt. Sich im Füllkörperbett des MBBR ansiedelnde heterotrophe Bakterien werden andererseits zur Mineralisation der organischen Substanz aus Aerosolen führen und sie somit ebenfalls im Ablaufwasser bzw. Sediment des MBBR binden. Gelingt die praktische Umsetzung, stellt die Innovation einen Beitrag zur Reduzierung von Emissionen aus der Nutztierhaltung dar. Aufgrund der geringen Platzansprüche des angestrebten Verfahrens ist es vorgesehen, Luftwäscher und MBBR innerhalb der Stallhülle zu platzieren und die Stallluft kontinuierlich durch das System zu rezirkulieren. Das Konzept kann somit auch dazu beitragen geringe Ammoniak- und Aerosolkonzentrationen innerhalb des Stalles zu realisieren. Durch diese Verbesserung der Stallluftqualität kann auch ein Beitrag zu mehr Tierwohl in der Nutztierhaltung und zu einem verbesserten Arbeitsschutz erbracht werden. Der MBBR soll so ausgelegt werden, dass auch Betriebszustände mit intermittierenden Denitrifikationsphasen gefahren werden können. Hierdurch besteht gegenüber konventionellen Luftwäschern die Möglichkeit der Überführung von Ammoniak in nach Umweltgesichtspunkten unproblematischen gasförmigen Stickstoff.

IBÖ-07: BIOBED - Erweiterung des kultivierbaren Algenspektrums um bisher nicht im industriellen Maßstab produzierbare Mikroalgen. Hierfür werden benthische Kieselalgenarten auf bioaktive Eigenschaften gescreent, sowie eine mehrstufige integrierte Photobioreaktoranlage für deren Kultivierung entwickelt.

Das Projekt "IBÖ-07: BIOBED - Erweiterung des kultivierbaren Algenspektrums um bisher nicht im industriellen Maßstab produzierbare Mikroalgen. Hierfür werden benthische Kieselalgenarten auf bioaktive Eigenschaften gescreent, sowie eine mehrstufige integrierte Photobioreaktoranlage für deren Kultivierung entwickelt." wird/wurde gefördert durch: Bundesministerium für Forschung, Technologie und Raumfahrt. Es wird/wurde ausgeführt durch: Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und Meeresforschung.

Interne Elimination von Ammoniak und Aerosolen aus der Stallluft mithilfe eines Moving Bed Biofilm-Reaktors (EliAAS), Teilprojekt 1

Das Projekt "Interne Elimination von Ammoniak und Aerosolen aus der Stallluft mithilfe eines Moving Bed Biofilm-Reaktors (EliAAS), Teilprojekt 1" wird/wurde gefördert durch: Bundesministerium der Justiz und für Verbraucherschutz. Es wird/wurde ausgeführt durch: Institut für Binnenfischerei e.V., Potsdam-Sacrow.Ziel des Vorhabens ist die experimentelle Entwicklung eines innovativen, auf Basis eines Moving Bed Biofilm- Reaktors (MBBR) in Kombination mit einem Luftwäscher arbeitenden Verfahrens zur Elimination von Ammoniak und Aerosolen aus der Stallluft bei Haltung landwirtschaftlicher Nutztiere. MBBR haben sich in Kreislaufsystemen zur Aufzucht aquatischer Organismen sowie in der kommunalen Klärtechnik als leistungsfähige Wasseraufbereitungskomponenten bewährt. Es ist zu erwarten, dass ein hinreichend dimensionierter Luftwäscher neben Ammoniak auch Aerosole aus der Stallluft eliminiert, die einerseits zu einer hinreichenden Versorgung der Nitrifikanten und Denitrifikanten im MBBR mit den neben Ammonium/Ammoniak/Nitrit/Nitrat benötigten Nährstoffen führt. Sich im Füllkörperbett des MBBR ansiedelnde heterotrophe Bakterien werden andererseits zur Mineralisation der organischen Substanz aus Aerosolen führen und sie somit ebenfalls im Ablaufwasser bzw. Sediment des MBBR binden. Gelingt die praktische Umsetzung, stellt die Innovation einen Beitrag zur Reduzierung von Emissionen aus der Nutztierhaltung dar. Aufgrund der geringen Platzansprüche des angestrebten Verfahrens ist es vorgesehen, Luftwäscher und MBBR innerhalb der Stallhülle zu platzieren und die Stallluft kontinuierlich durch das System zu rezirkulieren. Das Konzept kann somit auch dazu beitragen geringe Ammoniak- und Aerosolkonzentrationen innerhalb des Stalles zu realisieren. Durch diese Verbesserung der Stallluftqualität kann auch ein Beitrag zu mehr Tierwohl in der Nutztierhaltung und zu einem verbesserten Arbeitsschutz erbracht werden. Der MBBR soll so ausgelegt werden, dass auch Betriebszustände mit intermittierenden Denitrifikationsphasen gefahren werden können. Hierdurch besteht gegenüber konventionellen Luftwäschern die Möglichkeit der Überführung von Ammoniak in nach Umweltgesichtspunkten unproblematischen gasförmigen Stickstoff.

Interne Elimination von Ammoniak und Aerosolen aus der Stallluft mithilfe eines Moving Bed Biofilm-Reaktors (EliAAS), Teilprojekt 2

Das Projekt "Interne Elimination von Ammoniak und Aerosolen aus der Stallluft mithilfe eines Moving Bed Biofilm-Reaktors (EliAAS), Teilprojekt 2" wird/wurde gefördert durch: Bundesministerium der Justiz und für Verbraucherschutz. Es wird/wurde ausgeführt durch: Johann Heinrich von Thünen-Institut, Bundesforschungsinstitut für Ländliche Räume, Wald und Fischerei, Institut für Agrartechnologie.Ziel des Vorhabens ist die experimentelle Entwicklung eines innovativen, auf Basis eines Moving Bed Biofilm- Reaktors (MBBR) in Kombination mit einem Luftwäscher arbeitenden Verfahrens zur Elimination von Ammoniak und Aerosolen aus der Stallluft bei Haltung landwirtschaftlicher Nutztiere. MBBR haben sich in Kreislaufsystemen zur Aufzucht aquatischer Organismen sowie in der kommunalen Klärtechnik als leistungsfähige Wasseraufbereitungskomponenten bewährt. Es ist zu erwarten, dass ein hinreichend dimensionierter Luftwäscher neben Ammoniak auch Aerosole aus der Stallluft eliminiert, die einerseits zu einer hinreichenden Versorgung der Nitrifikanten und Denitrifikanten im MBBR mit den neben Ammonium/Ammoniak/Nitrit/Nitrat benötigten Nährstoffen führt. Sich im Füllkörperbett des MBBR ansiedelnde heterotrophe Bakterien werden andererseits zur Mineralisation der organischen Substanz aus Aerosolen führen und sie somit ebenfalls im Ablaufwasser bzw. Sediment des MBBR binden. Gelingt die praktische Umsetzung, stellt die Innovation einen Beitrag zur Reduzierung von Emissionen aus der Nutztierhaltung dar. Aufgrund der geringen Platzansprüche des angestrebten Verfahrens ist es vorgesehen, Luftwäscher und MBBR innerhalb der Stallhülle zu platzieren und die Stallluft kontinuierlich durch das System zu rezirkulieren. Das Konzept kann somit auch dazu beitragen geringe Ammoniak- und Aerosolkonzentrationen innerhalb des Stalles zu realisieren. Durch diese Verbesserung der Stallluftqualität kann auch ein Beitrag zu mehr Tierwohl in der Nutztierhaltung und zu einem verbesserten Arbeitsschutz erbracht werden. Der MBBR soll so ausgelegt werden, dass auch Betriebszustände mit intermittierenden Denitrifikationsphasen gefahren werden können. Hierdurch besteht gegenüber konventionellen Luftwäschern die Möglichkeit der Überführung von Ammoniak in nach Umweltgesichtspunkten unproblematischen gasförmigen Stickstoff.

1 2 3 4 5 6 7 8