API src

Found 713 results.

Related terms

Naturschutzorganisation WWF legt „Living Planet Reports 2016“ vor

Die Menschheit verbraucht jedes Jahr 60 Prozent mehr Ressourcen, als die Erde innerhalb dieses Zeitraums regenerieren und damit nachhaltig zur Verfügung stellen kann. Setzt sich diese Entwicklung ungebremst fort, sind 2030 zwei komplette Planeten nötig, um den Bedarf an Nahrung, Wasser und Energie zu decken. Das ist das Ergebnis des „Living Planet Reports 2016“, den die Naturschutzorganisation WWF am 27. Oktober 2016 in Berlin vorgelegt hat. Laut dem globalen Zustandsbericht nehmen die ökologischen Reserven der Erde immer weiter ab. So zeigt etwa der Living Planet Index (LPI) steil nach unten. Der LPI erfasst den Zustand der biologischen Vielfalt. Er basiert auf Daten zu 14.152 untersuchten Populationen von Wirbeltierarten auf der ganzen Erde. Für den Zeitraum von 1970 bis 2012 ermittelt der globale LPI einen Rückgang von 58 Prozent. Die Auswirkungen des Raubbaus sind laut WWF bereits heute spürbar: Dürre und extreme Wetterereignisse, Hungersnöte oder Artensterben nehmen immer dramatischere Ausmaße an. Insgesamt sind vier von neun ökologischen Belastungsgrenzen, die die Stabilität der planetaren Lebensräume definieren, überschritten: beim Klimawandel, dem Verlust der Biodiversität, der Landnutzung sowie den biogeochemischen Kreisläufen von Stickstoff und Phosphor. Der Living Planet Report misst die Veränderungen der weltweiten Biodiversität und des menschlichen Konsums. Die Studie wird alle zwei Jahre vom WWF gemeinsam mit der Zoologischen Gesellschaft London (ZSL) und dem Global Footprint Network (GFN) erstellt.

Emerging and legacy organic contaminants in the polar regions

Organische Schadstoffe in Polarregionen sind aufgrund ihrer Persistenz, Bioakkumulation und ihres Toxizitätspotenzials zu erheblichen Bedenken geworden. Der Klimawandel kann den biogeochemischen Kreislauf von persistenten organischen Schadstoffen (POPs) und neuartigen organischen Schadstoffen (EOCs) verändern und ihre Auswirkungen auf polare Ökosysteme verstärken. Das Auftreten von POPs und EOCs durch Ferntransport und lokalen Austritt hat Auswirkungen auf empfindliche polare Ökosysteme hinterlassen. Daher sind dringend Maßnahmen erforderlich, um die zeitlichen Trends von POPs zu überwachen und neue EOCs in Polarregionen zu untersuchen. Die Daten zu klassischen POPs in Umweltmedien und Biota zeigen aufgrund der weltweiten Bestrebungen, ihre Herstellung und Verwendung zu verbieten, sowohl in der Arktis als auch in der Antarktis rückläufige Trends. Es wurde jedoch die Reemission von POPs beobachtet, die sich zuvor in der polaren Umgebung angesammelt haben, und diese POPs können nach den durch die globale Erwärmung verursachten Prozessen des Eisrückgangs, des Gletscherschmelzens und des Permafrostauftauens wieder in den globalen Kreislauf eintreten. Daher sollte in Polargebieten eine kontinuierliche Überwachung von klassischen POPs durchgeführt werden. Screening-Erhebungen auf EOCs in Umwelt- und biologischen Matrizes wurden durch nationale und regionale Forschungsprogramme durchgeführt. Der weiträumige Umwelttransport von EOCs wurde durch ihr Vorkommen in Eisbohrkernen, Schnee und Seewasser in Polarregionen hervorgehoben. Daher muss die Untersuchung von EOCs in der Antarktis durch nationale und internationale Forschungsprogramme verstärkt werden. Gletschereis und -schnee fungierten als sekundäre Emissionsquellen in den Polarregionen und setzten POPs und EOCs in Atmosphäre und Ozean frei. Daher muss die zukünftige Forschung die verschiedenen biogeochemischen und geophysikalischen Prozesse unter Klimawandel und anthropogenen Belastungen verstehen, um das Umweltverhalten und das Toxizitätsrisiko von EOCs in Polarregionen vorhersagen zu können. Quelle: Forschungsbericht

Recyclieren Bäume CO2 durch Stammatmung? (GIF 2)

Das Projekt "Recyclieren Bäume CO2 durch Stammatmung? (GIF 2)" wird vom Umweltbundesamt gefördert und von Max-Planck-Institut für Biogeochemie durchgeführt.

JGOFS-Pilotuntersuchung: CO2-Traverse durch den Mittelatlantik zwischen Funchal und Panama vom 30.11.-18.12.1991 mit FS Sonne (SO 76a)

Das Projekt "JGOFS-Pilotuntersuchung: CO2-Traverse durch den Mittelatlantik zwischen Funchal und Panama vom 30.11.-18.12.1991 mit FS Sonne (SO 76a)" wird vom Umweltbundesamt gefördert und von Universität Hamburg, Zentrum für Meeres- und Klimaforschung, Fachbereich Geowissenschaften, Institut für Biogeochemie und Meereschemie durchgeführt. Auf der Forschungsfahrt (SO 76 a) Lissabon-Panama vom 30.11. - 18.12.1991 soll eine CO2-Traverse durch den Mittelatlantik als Pilotstudie zu JGOFS (JOINT GLOBAL OCEAN FLUXES STUDY) gelegt werden. Ziel der Fahrt ist die Charakterisierung des marinen CO2-Systems im Hinblick auf den staendig ansteigenden CO2-Partialdruck (PCO2) der Luft (Treibhausseffekt). Dass ca. 50 Prozent des atmosphaerischen Kohlendioxid (CO2) -Anstiegs durch den Ozean gepuffert werden, ist durch Messungen der Alkalinitaet (TA) des Gesamt-CO2 (TCO2) und des PCO2 bisher kaum belegt. Ergaenzend dazu sollen die organischen Pfade, CO2 im Ozean zu fixieren, durch die Messung des Gehalts des gesamten geloesten organischen Kohlenstoffs (DOC) und an Methan (CH4) untersucht werden. - Das Messprogramm wird von 4 Arbeitsgruppen durchgefuehrt.

Observing vegetation status and function from the ground to the space (SAVNET)

Das Projekt "Observing vegetation status and function from the ground to the space (SAVNET)" wird vom Umweltbundesamt gefördert und von Max-Planck-Institut für Biogeochemie durchgeführt.

Die Bildung von Methan in marinen Algen

Das Projekt "Die Bildung von Methan in marinen Algen" wird vom Umweltbundesamt gefördert und von Universität Heidelberg, Institut für Geowissenschaften durchgeführt. Methan (CH4), das zweitwichtigste anthropogene Treibhausgas nach CO2, ist die häufigste reduzierte organische Verbindung in der Atmosphäre und spielt eine zentrale Rolle in der Atmosphärenchemie. Das globale atmosphärische Methanbudget wird von vielen natürlichen und anthropogenen terrestrischen und aquatischen Quellen bestimmt. Bis vor kurzem wurden alle biologischen Methanquellen der Tätigkeit von Mikroben zugeschrieben, die unter Sauerstoffausschluss (anaerob) beim Abbau von organischem Material CH4 produzieren wie z.B. in Feuchtgebieten, im Verdauungstrakt von Termiten und bei Wiederkäuern, und beim Abbau menschlicher und landwirtschaftliche Abfälle. Allerdings zeigen neuere Studien, dass die terrestrische Vegetation, Pilze und Säugetiere auch CH4 produzieren, und das ohne die Hilfe von Mikroben (Archaeen) und unter aeroben Bedingungen. Die Ozeane werden als Quellen von atmosphärischen CH4 betrachtet, obwohl der Betrag der Gesamtnettoemissionen sehr unsicher ist und die Quellen bisher nur unzureichend beschrieben sind. Um die Quelle des CH4 in den sauerstoffreichen oberen Wasserschichten zu erklären, wurde bisher meist vorgeschlagen, dass die CH4-Bildung in anoxischen Mikroumgebungen abläuft. In der Vergangenheit wurden aber auch schon andere Quellen genannt, wie die direkte in-situ-Bildung von CH4 in Algen. Allerdings steht ein direkter Nachweis einer CH4-Bildung aus Algen in Laborexperimenten mit axenischen Algenkulturen bisher noch aus, weshalb die direkte CH4-Bildung in Algen bisher nicht als ernsthafte Erklärung für die erhöhten Methankonzentrationen in den oberen Wasserschichten herangezogen wurde. Das Gesamtziel des Forschungsvorhabens ist der Nachweis (proof of principle) und die Quantifizierung der CH4-Bildung durch verschiedene Arten von Meeresalgen wie Kalkalgen (z.B. Emiliania huxleyi). Potentielle Vorläufersubstanzen, wie z. B. Methyl Sulfide und Methyl Sulfoxide, die im Metabolismus der Algen eine wichtige Rolle spielen, sollen mittels stabiler Isotopen-Techniken identifiziert werden. Verschiedene Umweltfaktoren wie z.B. Temperatur, Sauerstoffgehalt und Nährstoffverfügbarkeit werden im Hinblick auf ihren Einfluss auf die Methanbildung in marinen Algen untersucht. Zusätzlich werden verschiedene mikrobiologische Tests durchgeführt um die Beteiligung von Archaeen an der CH4-Bildung zu ermitteln (ein- oder auszuschließen). Ein interdisziplinärer biogeochemischer Ansatz (u.a. Kooperation mit mehreren Forschungsinstitutionen) ist erforderlich um die Ziele des Projekts zu realisieren. Die Ergebnisse sollen dazu beitragen unser Verständnis bezüglich des biogeochemischen Kreislaufs von CH4 in den Meeren zu verbessern und einen besseren Ansatz zur Lösung des so genannten 'ozeanisches Methan Paradox' zu liefern.

Leitantrag; Vorhaben: Integrierte Bewertung von Auswirkungen der Ozeanversauerung auf marine Ökosysteme (WP: 0.1; 0.2; 0.3; 1.5; 1.7; 1.8; 2.1; 2.2; 2.3; 2.4; 3.2; 3.4)

Das Projekt "Leitantrag; Vorhaben: Integrierte Bewertung von Auswirkungen der Ozeanversauerung auf marine Ökosysteme (WP: 0.1; 0.2; 0.3; 1.5; 1.7; 1.8; 2.1; 2.2; 2.3; 2.4; 3.2; 3.4)" wird vom Umweltbundesamt gefördert und von Helmholtz-Zentrum für Ozeanforschung Kiel (GEOMAR), Forschungsbereich 2: Marine Biogeochemie, Forschungseinheit biologische Ozeanographie durchgeführt. Ziele: Die Ozeanversauerung ist in den letzten zehn Jahren zu einem der am schnellsten wachsenden Forschungsgebiete in den marinen Wissenschaften geworden, das zu den drei wichtigsten Forschungsfeldern der internationalen Meeresforschung zählt. Als eines der größten Forschungsprogramme über Ozeanversauerung war das deutsche Verbundprojekt BIOACID an dieser Entwicklung entscheidend beteiligt (vgl. BIOACID, BIOACID II). In den zurückliegenden Jahren hat die vom BMBF geförderte Forschung dazu beigetragen, den Einfluss von Ozeanversauerung auf marine Organismen und deren Habitate zu quantifizieren, die zugrunde liegenden Mechanismen aufzuklären, das Potential zur evolutionären Anpassung abzuschätzen und zu klären, wie die beobachteten Effekte durch andere Umweltveränderungen modifiziert werden. In internationaler Kooperation hat BIOACID damit die Grundlage für eine umfassende Evaluierung der potentiellen Konsequenzen der Ozeanversauerung für marine Ökosysteme und Ökosystemleistungen und mögliche Rückkopplungen zum Klimasystem geschaffen. Hierauf aufbauend wird das Verbundprojekt 'BIOACID-Synthese' eine integrierende Bewertung und übergreifende Synthese der bisherigen national und international erlangten Erkenntnisse über die zu erwartenden Auswirkungen der Ozeanversauerung zusammentragen, mögliche Schwellenwerte identifizieren, sozioökonomische Konsequenzen evaluieren und Handlungsoptionen erarbeiten. Die Verbreitung und anschauliche Erklärung des aktuellen Wissens- und Forschungsstandes an einen breiten Empfängerkreis, der sich von der Wissenschaft, über Interessenvertreter und Entscheidungsträger bis hin zur allgemeinen Öffentlichkeit erstrecken wird, soll den öffentlichen Diskurs über gesellschaftliche Anpassungen und Handlungsoptionen zum globalen Wandel und entsprechende Transformationsprozesse weiter anregen.

Minirhizotron: Phenology And Root TraitS (Mr.PARTS)

Das Projekt "Minirhizotron: Phenology And Root TraitS (Mr.PARTS)" wird vom Umweltbundesamt gefördert und von Max-Planck-Institut für Biogeochemie durchgeführt.

Sub project: Core Project 9 'Soil' Linking biodiversity and land use to soil functions

Das Projekt "Sub project: Core Project 9 'Soil' Linking biodiversity and land use to soil functions" wird vom Umweltbundesamt gefördert und von Max-Planck-Institut für Biogeochemie durchgeführt. Böden sind als Standort für Pflanzen und Lebensraum für eine Vielzahl von Mikroorganismen ein integraler Bestandteil von Ökosystemen. Das Kernprojekt Boden stellt grundlegende Daten über Bodeneigenschaften und Bodenfunktionen bereit. Wir organisieren zudem koordinierte Bodenprobenahmen auf den Experimentier-Flächen (EP) und beteiligen uns an der Synthese in den Biodiversitäts Exploratorien (BE). Im Vordergrund steht dabei die Fragestellung, wie sich Landnutzung und Biodiversität auf den Eintrag, die Speicherung und die Stabilität von Kohlenstoff und Nährstoffen im Boden auswirken. In der vergangenen Projektphase der BE haben wir 2017 die koordinierte Bodenprobenahme auf allen EP wiederholt und grundlegende Bodenparameter für weitere Projekte zur Verfügung gestellt. Wir haben zudem das Monitoring des Streufalls auf allen Waldflächen fortgesetzt. Wir konnten zeigen, dass der Streufall in den ungenutzten Wäldern größer als in genutzten Wäldern war, wozu insbesondere die größere Menge an Zweigen, Ästen und Früchten im ungenutzten Wald beitrug. Die Umsatzzeiten von Kohlenstoff in der organischen Auflage zeigen, dass diese sowohl durch den Standort (z.B. pH Wert, Nährstoffverfügbarkeit) als auch durch die Qualität der Streu beeinflusst werden. Der Abbau von organischer Substanz wurde auf allen Experimentier-Flächen in situ durch Messung der Bodenatmung bestimmt. Durch die Trockenheit im Sommer 2018 waren die gemessenen Bodenatmungsraten gering. Trotzdem konnten im Wald Effekte der Untersuchungsregion, der Landnutzung und der Hauptbaumart nachgewiesen werden. Die Nährstoffauswaschung wurde mit Austauscherharzen im Jahr 2018/19 kumulativ bestimmt, so dass die Analyse noch nicht abgeschlossen ist. In der kommenden Projektphase werden wir das Bodenmonitoring auf allen EP fortsetzen. In enger Kooperation mit anderen Projekten werden wir eine weitere Bodenprobenahme auf allen 300 EP organisieren. Diese Probenahme wird dann auch die neu etablierten Wald- und Grünlandexperimente einschließen. Auf allen Flächen werden wir grundlegende Bodeneigenschaften und Indikatoren für die Bodenqualität bestimmen, auch um die Vergleichbarkeit der neuen Versuchsflächen mit den bisherigen Untersuchungsflächen (den Kontrollflächen) sicherzustellen. Wir werden das Bodenprobenarchiv sowie das Streufall-Monitoring in den BE fortführen. Da die zentrale Frage des Waldexperiments ist, inwiefern ein Lückenschlag durch geänderte Resourcenverfügbarkeit die Biodiversität beeinflusst, werden wir in den neu etablierten Lücken sowohl den Streueintrag, als auch die Nährstoffverfügbarkeit im Boden bestimmen. Wir werden überprüfen, ob diese Änderungen in der Nährstoffverfügbarkeit durch den Abbau von organischer Bodensubstanz bedingt werden. Dazu werden wir die Bodenatmung, Enzymaktivitäten, den Streuabbau und die Aktivität der Bodenfauna bestimmen. Zusätzlich zu unseren bisherigen Synthese-Aktivitäten werden wir dann zur gemeinsamen Bewertung des Waldexperimentes beitragen.

Sub project: Seepage of fluid and gas

Das Projekt "Sub project: Seepage of fluid and gas" wird vom Umweltbundesamt gefördert und von Universität Bremen, Zentrum für marine Umweltwissenschaften durchgeführt. Im Juli 2001 wurde an der Universität Bremen das Forschungszentrum 'Ozeanränder' eingerichtet. Im Forschungszentrum arbeiten der Fachbereich Geowissenschaften und andere Fachbereiche der Universität, das MARUM-Zentrum für Marine Umweltwissenschaften, das Alfred-Wegener-Institut für Polar- und Meeresforschung, das Max-Planck-Institut für Marine Mikrobiologie, das Zentrum für Marine Tropenökologie sowie das Forschungsinstitut Senckenberg in Wilhelmshaven mit dem Ziel zusammen, die Ozeanränder, die Nahtstellen zwischen den Ozeanen und den Kontinenten, geowissenschaftlich zu untersuchen. Das Gebiet der Ozeanränder reicht von der Küste über den Schelf und den Kontinentalhang zum Kontinentalfuß. Mehr als 60 Prozent der Weltbevölkerung leben in den angrenzenden Küstenlandstrichen und seit langer Zeit nutzen sie die Küstengewässer intensiv für die Gewinnung von Rohstoffen und Nahrungsmitteln. In jüngerer Zeit haben sich die menschlichen Aktivitäten immer weiter in den Ozean hinaus ausgedehnt, wo die Ozeanränder als mögliche Zentren für die Kohlenwasserstoffexploration, die industrielle Fischerei und andere Nutzungen durch den Menschen zunehmend an Aufmerksamkeit gewonnen haben. Die Arbeiten konzentrieren sich auf vier Forschungsfelder: Paläoumwelt, Biogeochemische Prozesse, Sedimentationsprozesse, Nutzungsfolgenforschung. Dabei reichen die Themenschwerpunkte von Umweltveränderungen im Tertiär bis hin zu den Auswirkungen von aktuellen Küstenbaumaßnahmen, und von mikrobiellen Abbauprozessen im Sediment bis hin zu weiträumigen Sedimentrutschungen am Kontinentalhang. Im Rahmen des Forschungszentrums wurden auch neue Professuren und Junior-Professuren eingerichtet. Neben den Forschungsaktivitäten spielen auch die Bereitstellung von Forschungsinfrastruktur für auswärtige Wissenschaftler, die Doktorandenausbildung und die Öffentlichkeitsarbeit eine wichtige Rolle. Das Forschungszentrum hat im Zuge der beiden Auswahlrunden der Exzellenzinitiative eine Aufstockung zum Exzellenzcluster bewilligt bekommen, das heißt zusätzliche Mittel bis zur Höhe der durchschnittlichen Fördersumme für Exzellenzcluster in Höhe von 6,5 Millionen Euro pro Jahr.

1 2 3 4 570 71 72