Überschreitung der Belastungsgrenzen für Eutrophierung Nährstoffeinträge (vor allem Stickstoff) aus der Luft belasten Land-Ökosysteme und gefährden die biologische Vielfalt. Zur Bewertung dieser Belastung stellt man ökosystemspezifische Belastungsgrenzen (Critical Loads) den aktuellen Stoffeinträgen aus der Luft gegenüber. Trotz rückläufiger Stickstoffbelastungen in Deutschland besteht weiterhin Handlungsbedarf – vor allem bei den Ammoniak-Emissionen. Situation in Deutschland Im Jahr 2019 (letzte verfügbare Daten) wurden die ökologischen Belastungsgrenzen für Eutrophierung durch Stickstoff in Deutschland auf 69 % der Flächen empfindlicher Ökosysteme überschritten (siehe Karte „Überschreitung des Critical Load für Eutrophierung durch die Stickstoffeinträge im Jahr 2019“). Die zur Flächenstatistik dieser Überschreitung herangezogenen Ökosystemtypen stammen aus dem CORINE-Landbedeckungsdatensatz von 2012 und bilden vor allem Waldökosysteme ab (ca. 96 %). Besonders drastisch sind die Überschreitungen in Teilen Nordwestdeutschlands. Aufgrund der dort ansässigen Landwirtschaft und intensiv betriebenen Tierhaltung ist der Stickstoffeintrag dort besonders hoch. So sind etwa zwei Drittel der Stickstoffeinträge auf Ammoniakemissionen zurückzuführen. Im Rahmen eines UBA -Vorhabens zur Modellierung der Stickstoffdeposition (PINETI-4, Abschlussbericht in prep.) konnte die Entwicklung der Belastung methodisch konsistent für eine lange Zeitreihe (2000 bis 2019) rückgerechnet werden. Die nationalen Zeitreihendaten zeigen, dass der Anteil der Flächen in Deutschland, auf denen die ökologischen Belastungsgrenzen überschritten wurden, von 84 % im Jahr 2000 auf 69 % im Jahr 2019 zurückging (siehe Abb. „Anteil der Fläche empfindlicher Land-Ökosysteme mit Überschreitung der Belastungsgrenzen für Eutrophierung“). Die Abnahme der Belastungen spiegelt größtenteils den Rückgang der Emissionen durch Luftreinhaltemaßnahmen wider. Karte: Überschreitung des Critical Load für Eutrophierung durch Stickstoffeinträge im Jahr 2019 Quelle: Kranenburg et al. (2024) Flächenanteil empfindlicher Land-Ökosysteme mit Überschreitung der Belastungsgrenzen Eutrophierung Quelle: Kranenburg et al. (2024) Diagramm als PDF Diagramm als Excel mit Daten Handlungsbedarf trotz sinkender Stickstoffeinträge Auch in den nächsten Jahren ist wegen der bisher nur unwesentlich abnehmenden Ammoniak-Emissionen – vornehmlich aus der Tierhaltung – mit einer weiträumigen Eutrophierung naturnaher Ökosysteme zu rechnen. Bei der Minderung von diffusen Stickstoffemissionen in die Luft besteht daher erheblicher Handlungsbedarf. Was sind ökologische Belastungsgrenzen für Eutrophierung? Zur Bewertung der Stoffeinträge werden ökologische Belastungsgrenzen ( Critical Loads ) ermittelt. Nach heutigem Stand des Wissens ist bei deren Einhaltung nicht mit schädlichen Wirkungen auf Struktur und Funktion eines Ökosystems zu rechnen. Ökologische Belastungsgrenzen sind somit ein Maß für die Empfindlichkeit eines Ökosystems und erlauben eine räumlich differenzierte Gegenüberstellung der Belastbarkeit eines Ökosystems mit aktuellen atmosphärischen Stoffeinträgen. Das dadurch angezeigte Risiko bedeutet nicht, dass in dem betrachteten Jahr tatsächlich schädliche chemische Kennwerte erreicht oder biologische Wirkungen sichtbar sind. Es kann Jahrzehnte dauern, bis Ökosysteme auf Überschreitungen der ökologischen Belastungsgrenzen reagieren. Im Rückschluss ist auch die Erholung des Ökosystems auf vorindustrielles Niveau sehr langwierig, wenn nicht sogar eine irreversible Schädigung des Ökosystems vorliegt. Beide Prozesse sind abhängig von Stoffeintragsraten, meteorologischen und anderen Randbedingungen sowie von chemischen Ökosystemeigenschaften. Daher sind absolute Schadprognosen mittels der Überschreitungen der ökologischen Belastungsgrenzen prinzipiell nicht möglich. Stickstoffdepositionen – ein Treiber des Biodiversitätsverlusts Ein übermäßiger atmosphärischer Eintrag ( Deposition ) von Nährstoffen (vor allem Stickstoff) und deren Anreicherung in Land-Ökosystemen kann auf lange Sicht Ökosysteme stark beeinträchtigen. So kann es zu chronischen Schäden der Ökosystemfunktionen (wie der Primärproduktivität und des Stickstoffkreislaufs) kommen. Auch Veränderungen des Pflanzenwachstums und der Artenzusammensetzung zugunsten stickstoffliebender Arten ( Eutrophierung ) können hervorrufen werden. Außerdem wird die Anfälligkeit vieler Pflanzen gegenüber Frost, Dürre und Schädlingsbefall erhöht. Atmosphärische Einträge führen zu einer weiträumigen Angleichung der Stickstoffkonzentrationen im Boden auf einem nährstoffreichen Niveau. Die derzeit hohen Stickstoffeinträge in natürliche und naturnahe Land-Ökosysteme sind eine Folge menschlicher Aktivitäten, wie Landwirtschaft oder Verbrennungsprozesse. Diese sind mit hohen Emissionen von chemisch und biologisch wirksamen (reaktiven) Stickstoffverbindungen in die Luft verbunden. Aus der Atmosphäre werden diese Stickstoffverbindungen über Regen, Schnee, Nebel, Raureif, Gase und trockene Partikel wieder in Land-Ökosysteme eingetragen. Die resultierende Überdüngung ist eine der Hauptursachen für den Rückgang der Biodiversität . Fast die Hälfte der in der Roten Liste für Deutschland aufgeführten Farn- und Blütenpflanzen sind durch Stickstoffeinträge gefährdet. Ziele und Maßnahmen zur Verringerung der Stickstoffeinträge Ein langfristiges Ziel der Europäischen Union (EU) und der Genfer Luftreinhaltekonvention ( UNECE Convention on Long-Range Transboundary Air Pollution, CLRTAP) ist die dauerhafte und vollständige Unterschreitung der ökologischen Belastungsgrenzen für Eutrophierung . International wurden deshalb in der sog. neuen NEC-Richtlinie ( Richtlinie (EU) 2016/2284 vom 14.12.2016) für alle Mitgliedstaaten weitere Minderungen der Emission von reaktiven Stickstoffverbindungen (NH x , Stickstoffoxide (NO x )) vereinbart, die bis 2030 erreicht werden müssen. Für Deutschland ergeben sich folgende nationale Emissionsminderungsverpflichtungen für Stickstoff für das Jahr 2030 und darüber hinaus im Vergleich zum Basisjahr 2005: Ammoniak (NH 3 ): minus 29 % Stickstoffoxide (NO x ): minus 65 % (siehe auch „Emissionen von Luftschadstoffen“ ). Konkrete nationale Maßnahmen, die zum Erreichen der oben genannten Minderungsverpflichtungen geeignet sind, werden derzeit in einem Nationalen Luftreinhalteprogramm zusammengestellt. Maßnahmen zur Begrenzung der negativen Auswirkungen des reaktiven Stickstoffs, zu denen auch die Eutrophierung von Ökosystemen zählt, sind in der Veröffentlichung des Umweltbundesamtes "Reaktiver Stickstoff in Deutschland" enthalten. Auch das Bundesministerium für Umwelt, Naturschutz und Reaktorsicherheit ( BMU ) verfolgt den Ansatz einer nationalen Stickstoffminderungsstrategie . Weitere Informationen bietet auch das Sondergutachten des SRU „Stickstoff: Lösungen für ein drängendes Umweltproblem“ . Hintergrundwissen zur Modellierung von atmosphärischen Stoffeinträgen bietet der Bericht zum Forschungsvorhaben „PINETI-4: Modelling and assessment of acidifying and eutrophying atmospheric deposition to terrestrial ecosystems“.
Zukunftstag 3. April 2025 Anfang 03.04.2025 08:30 Uhr Ende 03.04.2025 16:30 Uhr Das Kompetenzzentrum Elektromagnetische Felder des Bundesamtes für Strahlenschutz in Cottbus lädt zum Zukunftstag ein. Lerne die Welt der elektrischen, magnetischen und elektromagnetischen Felder kennen. Es erwarten dich spannende Untersuchungen und Demonstrationen. Komm ins Gespräch mit Biolog*innen, Physiker*innen oder Kommunikationswissenschaftler*innen und erfahre, woran sie forschen und wie sie über Wissenschaft berichten. Erfahre mehr über Ausbildungsberufe im Bundesamt für Strahlenschutz sowie Tätigkeiten von beispielsweise Elektroingenieur*innen oder IT -Fachinformatiker*innen. Der Strahlung auf der Spur – Stromleitungen, Smartphones und Co. Jeder Mensch ist im Alltag Strahlung unterschiedlicher Art ausgesetzt: Dazu zählt die Strahlung der Sonne, die als Licht und Wärme die Erde erreicht, aber auch die Strahlung , die unser Handy sendet und empfängt. Die meisten Strahlungsarten können wir allerdings mit unseren Sinnesorganen nicht wahrnehmen. Dennoch können wir sie messen und dadurch erforschen. Im Kompetenzzentrum Elektromagnetische Felder des Bundesamtes für Strahlenschutz in Cottbus befassen wir uns u.a. mit der Frage, wie sich elektromagnetische Felder auf Mensch und Umwelt auswirken und ob es einen besonderen Schutzbedarf gibt. Zentrale Fragen dabei sind: Beeinflussen Felder von Stromleitungen oder Mobilfunk die Gesundheit? Gibt es Folgen für Tiere und Pflanzen? Komm ins Gespräch mit Biolog*innen, Physiker*innen oder Kommunikationswissenschaftler*innen, um zu erfahren, woran sie forschen und wie sie über Wissenschaft berichten. Erfahre mehr über Ausbildungsberufe im Bundesamt für Strahlenschutz sowie Tätigkeiten von beispielsweise Elektroingenieur*innen oder IT -Fachinformatiker*innen. Du kannst am Zukunftstag des KEMF entweder am Vormittag von 8:30 bis 12:00 Uhr oder am Nachmittag von 13:00 bis 16:30 Uhr teilnehmen. Was erwartet dich? Lerne die Welt der elektrischen, magnetischen und elektromagnetischen Felder kennen Beobachtungen, Demonstrationen und Untersuchungen Ausstellung „Entdeckungstour Strahlenschutz bei elektromagnetischen Feldern“ Online-Laborbesuch sowie Live-Messungen vor Ort Finde Antworten auf alltägliche Fragen zu elektromagnetischen Feldern Gespräche zu den biologischen Wirkungen auf Mensch und Umwelt mit unseren Expert*innen Vorstellung deiner Karrieremöglichkeiten bei uns, Tipps zum Bewerbungsverfahren Anmerkungen und Berufsbilder Im Bundesamt für Strahlenschutz ( BfS ) arbeiten über 600 Beschäftigte an insgesamt sieben Standorten. Die anspruchsvollen Aufgaben im BfS erfordern dabei ein Zusammenspiel verschiedenster Fachrichtungen. Das BfS bietet ein breites Spektrum an Entwicklungs- und Karrieremöglichkeiten. So bieten wir Schülerpraktika und auch "Pflichtpraktika" für Student*innen an. Außerdem bilden wir derzeit am Standort München Biologielaborant*innen und am Standort Salzgitter sowie Berlin Fachinformatiker*innen (Systemintegration) aus. Haben wir dein Interesse geweckt? Dann schau vorbei, wir freuen uns auf deinen Besuch. für Gruppen geeignet barrierefreies Angebot für Jungen und Mädchen ab der Jahrgangsstufe 7 verfügbar Adresse Bundesamt für Strahlenschutz ( BfS ) Kompetenzzentrum Elektromagnetische Felder (KEMF) Dienststelle Cottbus Karl-Liebknecht-Straße 33 03046 Cottbus Deutschland Kontakt Ansprechpartner Telefon: +49 151 23219384 E-Mail mkornek@bfs.de Stand: 28.02.2025
Fachgespräch Wirkmechanismen elektrischer, magnetischer und elektromagnetischer Felder auf biologische Systeme – Von der Molekulardynamik-Simulation bis zum Experiment Vom 23. bis 25. Mai 2022 fand in München ein vom BfS organisiertes internationales Fachgespräch zu Wirkmechanismen elektrischer und magnetischer Felder ( z.B. der Stromversorgung) und elektromagnetischer Felder ( z.B. des Mobilfunks) auf Zellen, Organe und andere biologische Systeme, statt. Internationale Expert*innen aus den Fachgebieten Dosimetrie , Biologie und theoretische Biophysik präsentierten den aktuellen Stand der Forschung im Bereich der Wechselwirkungen von elektrischen, magnetischen und elektromagnetischen Feldern mit Biosystemen. Ausgehend von großen Gewebestrukturen wie der Haut über einzelne Zellen bis hin zu Proteinen und Quanteneffekten wurden Wirkmechanismen dargestellt und interdisziplinär diskutiert. Die beobachteten Effektstärken, insbesondere von Magnetfeldern, sind sehr klein im Vergleich zu thermischen Effekten, die uns täglich umgeben. Es ist weitere Forschung notwendig, um die Wirkung von elektromagnetischen Feldern auf komplexe biologische Prozesse besser zu verstehen. Worum geht es? In den meisten Ländern der Welt ist die Bevölkerung mittlerweile nahezu ununterbrochen exponiert gegenüber vom Menschen verursachten elektromagnetischen Feldern. Nach wie vor wird erforscht, ob schwache Magnetfelder (unterhalb der Grenzwerte) biologische Effekte auslösen können, die möglicherweise von gesundheitlicher Relevanz sind. Ein erster Schritt zu einem Verständnis gesundheitlicher Wirkungen ist die Identifikation der physikalischen Wechselwirkungen von elektrischen, magnetischen und elektromagnetischen Feldern ( EMF ) mit Teilen des menschlichen oder tierischen Körpers. Diese können sehr unterschiedliche Größen haben: von Gewebestrukturen wie etwa der Haut über einzelne Zellen bis zu Proteinen und schließlich den Eigendrehimpulsen ( sog. Spins) von ungepaarten Elektronen in Molekülen (Radikale). Im Rahmen des Fachgesprächs diskutierten international anerkannte Expert*innen aus Dosimetrie , Biologie und theoretischer Biophysik den aktuellen Stand der Forschung und offene Fragestellungen. Wie ist die Ausgangssituation? Seit Jahrzehnten werden Studien initiiert, die einen Zusammenhang von schwachen magnetischen Feldern (unterhalb bestehender internationaler Grenzwertempfehlungen) und möglichen gesundheitsrelevanten Wirkungen untersuchen. Vereinzelt gibt es in epidemiologischen oder experimentellen Studien Hinweise darauf. Mechanismen zur Erklärung solcher Wirkungen sind bisher nicht nachgewiesen. Seit Jahren werden verschiedene biophysikalische Effekte erforscht. Einige davon stehen momentan im Fokus, weil es neue Erkenntnisse gibt. Dazu zählen unter anderem der Radikalpaar-Mechanismus (bei diesem ändern äußere Magnetfelder chemische Reaktionen, bei denen Moleküle mit ungepaarten Elektronen beteiligt sind), die Protein-Fehlfaltung (die Entwicklung von großen Molekülen in einen stabilen Zustand, der nicht dem natürlichen Zustand entspricht) oder die Reaktion neuronaler Netzwerke (in Netzwerken zusammenhängende Nervenzellen) auf äußere Felder. Welche Ziele verfolgte das Fachgespräch? Das Fachgespräch diente als Austausch zwischen Expert*innen aus Fachgebieten, die das volle Spektrum vom Molekül bis zum Menschen abdecken. Neben dem aktuellen Stand der Forschung waren die Identifikation offener Fragen und die interdisziplinäre Diskussion zentrale Anliegen des Fachgesprächs. Folgende Punkte fanden dabei besondere Beachtung: Was sind die derzeit am meisten diskutierten und nicht geklärten biophysikalischen Wirkmechanismen, die gesundheitsrelevant sein könnten? Welche theoretischen und experimentellen Methoden werden derzeit für deren Erforschung verwendet? Welche Rolle spielt das Rechnen mit Supercomputern in der Erforschung der Wirkmechanismen? An dem hybrid abgehaltenen Fachgespräch nahmen über 50 Expert*innen (davon 22 in Präsenz) aus sieben Ländern (Deutschland, Österreich, Frankreich, Großbritannien, Finnland, Italien und Japan) teil. Welche Ergebnisse lieferte das Fachgespräch? Aufgrund der sich auf verschiedenen Größenbereichen (Organe, einzelne Zellen, Proteine) abspielenden Effekte werden die Ergebnisse in drei Themenkomplexen zusammenfasst: Effekte auf atomarer oder subatomarer Ebene (Quanteneffekte), Wirkungen auf Proteinfaltung und Wirkungen auf Körpergewebe. Effekte auf atomarer oder subatomarer Ebene (Quanteneffekte) Den Radikalpaar-Mechanismus versteht die Forschung inzwischen relativ gut, verglichen mit anderen möglichen nicht-thermischen Wechselwirkungseffekten von Magnetfeldern und biologischen Systemen. Das liegt vor allem an Studien zum Orientierungssinn verschiedener Tierarten. Die in Radikalpaaren auftretenden Wechselbeziehungen (Fluktuationen) zwischen Spin-Systemen bewegen sich hin und her zwischen zwei charakteristischen Zuständen: dem Singlett-Zustand und dem Triplett-Zustand. Ein externes Magnetfeld , wie z.B. das Erdmagnetfeld, kann die auftretenden Fluktuationsraten und damit chemische Reaktionen beeinflussen, deren Endprodukte vom Spin-Zustand der beteiligten Radikale abhängen. In der Untersuchung des Radikalpaar-Mechanismus bieten kombinierte Quantenmechanik- und Molekulardynamik-Simulationen einen - im Experiment unzugänglichen - Einblick in die Abläufe der beteiligten Reaktionen, weshalb man vom "rechnergestützten Mikroskop" spricht. Bisher simulierte Systeme zeigen sehr kurze Radikal-Lebensdauern, welche die bei Zugvögeln beobachtete Empfindlichkeit gegenüber Magnetfeldern nicht vollständig erklären können. Die bei Tieren bekannten Radikalpaar-Reaktionen benötigen Licht und entsprechende Lichtrezeptoren, die der Mensch nicht besitzt. Bisher sind im Menschen somit keine chemischen Prozesse bekannt, bei denen der Radikalpaar-Mechanismus eine Rolle spielen könnte. Es wird allerdings weiter dazu geforscht. Wirkung auf Proteinfaltung Generell ist die Wirkung von schwachen EMF auf große Moleküle wie Eiweiße äußerst gering im Vergleich zur üblichen Molekülbewegung bei Raumtemperatur (Brownsche Molekularbewegung). Das Einbinden von Magnetfeldern in Simulationsstudien bedarf weiterer Forschung. Eine offene Frage ist, wie Magnetfelder molekulare Transportprozesse beeinflussen und ob Teile von Molekülen andere Moleküle binden können. Eine große Schwierigkeit stellt nach wie vor dar, dass Simulationen auf Atomebene nur kleinste Sekundenbruchteile berechnen können, aber biologische Prozesse Sekunden dauern. Wirkung auf Körpergewebe Um ermitteln zu können, wie groß EMF sind, die in biologischem Gewebe erzeugt werden, wird insbesondere bei niedrigen EMF -Frequenzen (unterhalb von 1 MHz ) auf computergestützte Verfahren zurückgegriffen. Dafür ist eine Verbesserung der Datenlage hinsichtlich der dielektrischen Eigenschaften von Geweben erforderlich. Mittels bildgebender Verfahren, wie z.B. der Magnetresonanztomographie, ist es möglich, sehr detaillierte Körpermodelle zu erstellen, mit denen z.B. Schwellenströme zur Erzeugung von Phosphenen (flackernde Lichterscheinungen am Blickfeldrand bei hohen Feldstärken) sehr realistisch simuliert werden können. Eine offene Frage besteht hinsichtlich der mikroskopischen Größenskala, bis zu der man noch von Leitfähigkeit und Permeabilität als makroskopischen Größen sprechen kann: Ist es das Mitochondrium (Kraftwerk der Zelle) oder doch die ganze Zelle? Stand: 19.02.2025
Radon-Biobank soll Wissen über Wirkung von Radon erweitern Gemeinsame Pressemitteilung des Bundesamtes für Strahlenschutz und der Universitätsmedizin Göttingen Ausgabejahr 2025 Datum 07.01.2025 Sammlung von Bioproben für eine Radon Biobank Das radioaktive Gas Radon ist eine der Hauptursachen von Lungenkrebs. Doch welche zugrundeliegenden biologischen Wirkungen hat es, etwa auf das blutbildende System? Um Forschung zu dieser Frage zu ermöglichen, bauen das Bundesamt für Strahlenschutz ( BfS ) und die Universitätsmedizin Göttingen (UMG) eine Radon-Biobank auf. Die UMG sammelt Bioproben wie Blut und Speichel von Personen, die einer bekannten Radon - Aktivität ausgesetzt waren. Die Biobank selbst wird beim BfS angesiedelt sein. Das dreijährige Projekt läuft seit November 2023 und wird mit knapp 700.000 Euro aus dem Ressortforschungsplan des Bundesministeriums für Umwelt, Naturschutz, nukleare Sicherheit und Verbraucherschutz ( BMUV ) finanziert. Radon ist ein radioaktives Gas, das im Boden entsteht. Von dort aus kann es zum Beispiel durch Risse im Fundament oder durch undichte Kabel- und Rohrdurchführungen in Gebäude eindringen und sich in der Raumluft anreichern. Dass Radon das Lungenkrebs- Risiko erhöht, ist aus epidemiologischen Studien wissenschaftlich gut belegt. Weit weniger gut erforscht sind zugrundeliegende biologische Wirkungen von Radon . In den wenigen bisherigen biologischen Studien am Menschen wurde vor allem biologisches Material von Männern untersucht. Alter und Geschlecht in der Radon -Forschung berücksichtigen Automatische mikroskopische Analyse von DNA-Schadensmarkern Die Radon -Biobank nimmt nun die gesamte Bevölkerung in den Blick. Sie ermöglicht spätere Projekte, die die biologischen Wirkmechanismen von Radon erforschen. Dabei soll auch der Einfluss von Alter und Geschlecht untersucht werden. Die in der Zukunft gewonnenen Erkenntnisse sollen zu einem verbesserten Schutz vor Radon beitragen. Eine vergleichbare Radon -Biobank gibt es bisher weder in Deutschland noch im Ausland. Nach Abschluss des Projektes soll die Radon -Biobank Daten und Bioproben von etwa 600 Personen aus zirka 200 Haushalten enthalten, darunter auch Proben von Kindern. Hierfür hat das BfS damit begonnen, Teilnehmer*innen einer früheren Studie zu kontaktieren, in deren Wohnungen Radon -Messungen durchgeführt wurden. Um eine Probennahme gebeten werden Haushalte mit höheren Radon -Werten (über 300 Becquerel pro Kubikmeter Raumluft) sowie Haushalte mit sehr niedrigen Radon -Werten (unter 40 Becquerel pro Kubikmeter Raumluft). Mehr als 100 Haushalte haben bereits zugesagt. UMG sammelt Bioproben, BfS lagert und analysiert Geplante Bioproben und Analysen Ein Studienteam unter der Leitung von Rami El Shafie, Stellvertreter des Direktors der Klinik für Strahlentherapie und Radioonkologie der Universitätsmedizin Göttingen (UMG), und Sara Nußbeck, Leiterin der Zentralen Biobank der UMG, startete im November 2024 die Sammlung von Daten und Bioproben. Das speziell qualifizierte Team sucht die Studienteilnehmer*innen zu Hause auf und entnimmt Blut, Speichel und abgehustetes Sekret aus den Bronchien, auch Sputum genannt, sowie Abstriche aus Mund und Nase. Neben den Bioproben werden mit einem Fragebogen Daten zur Gesundheit und zum Lebensstil erhoben. Daten und Bioproben gehen im Anschluss an den BfS -Standort München (Neuherberg), wo sie im Fachgebiet Strahlenbiologie aufbereitet, gelagert, verwaltet und analysiert werden. Die Proben- und Datensammlung ist auf Anfrage und nach positiver Begutachtung auch für andere Forscher*innen aus europäischen Ländern, für die entweder die Datenschutz-Grundverordnung ( DSGVO ) oder ein Angemessenheitsbeschluss der Europäischen Kommission gilt, verfügbar. Rückschlüsse auf die Personen, die die Bioproben und Daten gespendet haben, sind dabei nicht möglich. Die Studie ist im Deutschen Register Klinischer Studien (DRKS) und im WHO Register für klinische Studien offiziell registriert. Stand: 07.01.2025
Überschreitung der Belastungsgrenzen für Versauerung Die versauernden Schwefel- und Stickstoffeinträge aus der Luft in Land-Ökosysteme haben in den letzten Jahren stark abgenommen. Zur Bewertung dieser Belastung stellt man ökosystemspezifische Belastungsgrenzen (Critical Loads) den aktuellen Stoffeinträgen aus der Luft gegenüber. Ammoniumstickstoffeinträge aus der Landwirtschaft sind mittlerweile die Hauptursache für Versauerung. Situation in Deutschland 2019 Der Anteil der Flächen, auf denen die kritischen Eintragsraten für Versauerung deutlich bis sehr deutlich überschritten wurden, nahm zwischen 2005 und 2019 von 58 auf 26 % ab. Die Abnahme der Belastungen spiegelt den Rückgang der Emissionen in Folge von Luftreinhaltemaßnahmen wider (siehe Abb. „Flächenanteile mit Überschreitung der Belastungsgrenzen für Versauerung“). Besonders Einträge versauernder Schwefelverbindungen haben deutlich abgenommen. Für versauernde Stickstoffeinträge ist eine so deutliche Abnahme hingegen nicht zu verzeichnen. Sie sind hauptverantwortlich für die andauernden Überschreitungen der ökologischen Belastungsgrenzen ( Critical Loads ) für Versauerung in Deutschland (siehe Karte „Überschreitung des Critical Load für Versauerung durch Schwefel- und Stickstoffeinträge im Jahr 2019“). Bis Mitte der 1990er Jahre waren die Einträge versauernder Stoffe und die Überschreitungen der ökologischen Belastungsgrenzen in verursachernahen Waldgebieten Thüringens und Sachsens am höchsten. Inzwischen werden die Extremwerte im norddeutschen Tiefland auf empfindlichen Böden als Folge hoher Einträge von Ammoniumstickstoff aus landwirtschaftlichen Quellen, vor allem aus der Intensivtierhaltung, erreicht. In diesen Regionen werden auch die ökologischen Belastungsgrenzen für Eutrophierung am stärksten überschritten. Im Rahmen eines UBA -Vorhabens zur Modellierung der Stickstoffablagerung (PINETI-4, Abschlussbericht in prep.) konnte die Entwicklung der Belastung methodisch konsistent für eine lange Zeitreihe (2000-2019) rückgerechnet werden. Flächenanteile mit Überschreitung der Belastungsgrenzen für Versauerung Quelle: Kranenburg et al. (2024) Diagramm als PDF Diagramm als Excel mit Daten Karte: Überschreitung des Critical Load für Versauerung durch Schwefel- und Stickstoffeinträge ... Quelle: Kranenburg et al. (2024) Was sind ökologische Belastungsgrenzen für Versauerung? Ökologische Belastungsgrenzen ( Critical Loads ) für Versauerung sind kritische Belastungsraten für luftgetragene Stickstoff- und Schwefeleinträge. Nach heutigem Stand des Wissens ist bei deren Einhaltung nicht mit schädlichen Wirkungen auf Struktur und Funktion eines Ökosystems zu rechnen. Betrachtet werden meist empfindliche Ökosysteme wie Wälder, Heiden, Moore und angrenzende Systeme (zum Beispiel Oberflächengewässer und Grundwasser). Ökologische Belastungsgrenzen sind somit ein Maß für die Empfindlichkeit eines Ökosystems und erlauben eine räumlich differenzierte Gegenüberstellung der Belastbarkeit eines Ökosystems mit aktuellen Luftschadstoffeinträgen. Das dadurch angezeigte Risiko bedeutet nicht, dass in dem betrachteten Jahr tatsächlich schädliche chemische Kennwerte erreicht oder biologische Wirkungen sichtbar sind. Es kann Jahrzehnte dauern, bis Ökosysteme auf Überschreitungen der ökologischen Belastungsgrenzen reagieren. Dies ist abhängig von Stoffeintragsraten, meteorologischen und anderen Randbedingungen sowie (bio)chemischen Ökosystemeigenschaften. Folgen der Versauerung Die Einträge versauernd wirkender Schwefel- und Stickstoffverbindungen aus der Luft führen bei Überschreitung der Pufferkapazität des Bodens zu einer Auswaschung basischer Kationen (Calcium, Magnesium, Kalium und Natrium) und zu Nährstoffungleichgewichten. Hierdurch verändern sie neben anderen chemischen Parametern auch die Nährstoffverfügbarkeit im Boden. Zusätzlich werden Bodenorganismen und die Bodenstruktur negativ beeinflusst. Ein lange anhaltender Säurestress führt über unausgewogene Ernährung zur Minderung der Vitalität von Pflanzen. Dies kann unter anderem zu einer Verschiebung der Artenzusammensetzung oder zu eingeschränkten Abwehrkräften gegenüber sekundären Stressfaktoren (zum Beispiel Dürre , Frost, Herbivorie) führen. Viele Ökosystemfunktionen können dann nur noch eingeschränkt erfüllt werden. Die atmosphärischen Einträge führen weiterhin zu einer weiträumigen Angleichung der Bodenverhältnisse auf einem ungünstigen, versauerten Niveau. Die Versauerung der Böden kann wiederum die Artenzusammensetzung von Pflanzengesellschaften verändern: Auf neutrale Bodenverhältnisse angewiesene Pflanzenarten und Pflanzengesellschaften werden von im sauren Milieu konkurrenzstärkeren Arten und Gesellschaften verdrängt. Da viele Tierarten auf bestimmte Pflanzenarten spezialisiert sind, wird durch die Versauerung auch die Fauna beeinflusst: indirekt (über Verschiebung der Pflanzenartenzusammensetzung) und direkt (durch das geänderte Milieu; beispielsweise können Regenwürmer in versauerten Böden mit pH unter 4 nicht mehr existieren). Strategien zur Emissionsminderung Der möglichst umfassende und langfristige Schutz der Ökosysteme vor Versauerung ist weiterhin ein wichtiges politisches Ziel. International wurden deshalb in der sogenannten neuen NEC-Richtlinie ( Richtlinie (EU) 2016/2284 vom 14.12.2016) für alle Mitgliedstaaten weitere Minderungsverpflichtungen der Emission von Schwefel- und Stickstoff (SO 2 , NH x , NO x ) vereinbart, die bis 2030 erreicht werden müssen. Für Deutschland ergeben sich folgende nationale Reduktionsziele für das Jahr 2030 und darüber hinaus im Vergleich zum Basisjahr 2005: • Ammoniak (NH 3 ): minus 29 % • Stickstoffoxide (NO x ): minus 65 % • Schwefeldioxid (SO 2 ): minus 58 % (siehe auch „Emissionen von Luftschadstoffen“ ). Konkrete nationale Maßnahmen, zur Erreichung der oben genannten Ziele werden derzeit in einem Nationalen Luftreinhalteprogramm zusammengestellt. Maßnahmen zur Minderung der negativen Auswirkungen von reaktivem Stickstoff, zu denen auch die Versauerung von Ökosystemen zählt, sind in der Veröffentlichung des Umweltbundesamtes "Stickstoff - Element mit Wirkung" enthalten. Auch das Bundesministerium für Umwelt, Naturschutz und Reaktorsicherheit ( BMU ) verfolgt den Ansatz einer nationalen Stickstoffminderungsstrategie . Weitere Informationen bietet auch das Sondergutachten des SRU "Stickstoff: Lösungen für ein drängendes Umweltproblem" . Hintergrundwissen zur Modellierung von atmosphärischen Stoffeinträgen bietet der Bericht zum Forschungsvorhaben „PINETI-4: Modelling and assessment of acidifying and eutrophying atmospheric deposition to terrestrial ecosystems“.
Schutzmaßnahmen bei Laseranwendungen Optische Strahlung von Lasern und konventionellen Lichtquellen unterscheiden sich nicht grundsätzlich in ihren biologischen Wirkungen. Durch die starke Bündelung der Laserstrahlung können jedoch so hohe Intensitäten (Bestrahlungsstärken beziehungsweise Bestrahlungen) erreicht werden, dass damit spezielle Gewebereaktionen hervorgerufen werden können (siehe Biologische Wirkungen ). Bei der Anwendung von Laserstrahlung sind daher besondere Schutz- und Vorsichtsmaßnahmen erforderlich. Generell gilt für den sicheren Umgang mit Laserquellen Laserstrahl nicht auf andere Personen richten. Laserstrahl nicht auf reflektierende Oberflächen richten Nicht in den direkten oder reflektierten Strahl blicken. Wenn der Laserstrahl ins Auge trifft, Augen bewusst schließen und abwenden. Keine optischen Instrumente ( z.B. Lupe, Fernglas) zur Beobachtung der Laserquelle verwenden. Der Laserstrahl wird durch derartige Instrumente zusätzlich fokussiert. Gebrauchsanweisung beachten. Niemals die Laserquelle manipulieren. Lasergeräte werden vom Hersteller entsprechend ihrem Gefährdungspotenzial in verschiedene Klassen eingeteilt. Die Klassifizierung ist in der Regel so gewählt, dass mit zunehmender Klassenzahl die gesundheitliche Gefährdung steigt und umfangreichere Schutzmaßnahmen erforderlich sind. Maßgebend für die Klasseneinteilung ist die DIN-Norm EN 60825-1. Eine hilfreiche Handlungsanleitung für die Gefährdungsbeurteilung und Festlegung von Schutzmaßnahmen bieten die Technische Regel Laserstrahlung und die DGUV-Information 203-036 (BGI 5007) "Lasereinrichtungen für Show- und Projektionszwecke". Für die allgemeine Bevölkerung sind Schutzmaßnahmen vor allem bei der Anwendung von Lasern in Diskotheken und bei Veranstaltungen, sowie beim Gebrauch von Laserpointern von Bedeutung (siehe Anwendungen von Laserstrahlung in Alltag und Technik ). Für den privaten Gebrauch dürfen Laser und Laserprodukte nur in den Verkehr gebracht werden, wenn sie den Laserklassen 1, 2 oder einer eingeschränkten 3R entsprechen und als Verbraucher-Laser-Produkte gekennzeichnet sind. Laserklassen und ihre Gefährdung sowie typische Anwendungen Laserklasse Gefährdung beziehungsweise Schutzmöglichkeit Typische Anwendung 1 Bei bestimmungsgemäßem Gebrauch sicher. Ein direkter Blick in den Laserstrahl ist dennoch zu vermeiden. Laserpointer, Scanner-Kasse, CD- und DVD-Laufwerke Achtung: Wenn sich der Laser in einem geschlossenen Gehäuse befindet, kann im Gerät eine Laserstrahlungsquelle mit einer höheren Laserklasse verbaut sein. Daher gilt die Zuordnung zur Laserklasse 1 nur für das ungeöffnete Gerät als Gesamtheit. 1M Bei Einsatz von optisch sammelnden Instrumenten für das Auge gefährlich (sonst wie Klasse 1). Laserdrucker 1C* Vermeidung der Augengefährdung durch Kontaktschutz. Bei Verlust des Hautkontakts wird die zugängliche Strahlung gestoppt oder auf ein Niveau unterhalb von Klasse 1 reduziert. Ausschließlich für Anwendungen an der Haut im direkten Kontakt. Beispiel: Haarentfernungslaser Achtung: Verbaut sind in der Regel Laser der Klassen 3B und 4. 2 Der direkte Blick in den Strahl muss vermieden werden. Bei längerer Betrachtung (über 0,25 Sekunden hinaus) kann es zu Netzhautschäden kommen. Laserpointer, Ziel- und Richtlaser, zum Beispiel zur Landvermessung oder in Wasserwaagen 2M Bei Einsatz von optisch sammelnden Instrumenten für das Auge gefährlich (sonst wie Klasse 2). Lasertaschenlampen und Projektionslaser (zum Beispiel in Diskotheken) 3A Diese Laserklasse ist mit der Novellierung der DIN EN 60825-1 seit 2001 nicht mehr gültig. Es existieren jedoch immer noch Produkte, die mit dieser Laserklasse gekennzeichnet sind. Anmerkung: Lasereinrichtungen, die nur im sichtbaren Wellenlängenbereich emittieren, können wie Klasse 2M behandelt werden. Lasereinrichtungen, die nur im UV oder infraroten Bereich emittieren, können wie Klasse 1M behandelt werden. 3R Gefährlich für das Auge. Show- und Projektionslaser, Materialbearbeitungslaser, Laser in Medizin und Kosmetik 3B Gefährlich für das Auge und im oberen Leistungsbereich auch gefährlich für die Haut. 4 Immer gefährlich für das Auge und die Haut. Gilt auch für den reflektierten Strahl. Materialbearbeitungslaser, Show- und Projektionslaser, Laser in Medizin und Kosmetik, Laser in Wissenschaft und Forschung *Gerätespezifische Norm: IEC 60335-2-113; für Deutschland bisher Norm-Entwurf DIN EN 60335-2-113:2015-05; VDE 0700-113:2015-05 Für die Einhaltung der Schutzmaßnahmen ist die Person, die die Lasereinrichtung betreibt, verantwortlich. Sie hat unter anderem dafür Sorge zu tragen, dass die Lasergeräte korrekt klassifiziert und entsprechend gekennzeichnet sind. Beim Betrieb von Lasereinrichtungen der Klasse 3R und höher müssen für diese Lasereinrichtungen sachkundige Personen als Laserschutzbeauftragte nach Arbeitsschutzverordnung zu künstlicher optischer Strahlung ( OStrV ) bestellt werden. Weitere Informationen geben die Bundesanstalt für Arbeitsschutz und Arbeitsmedizin ( BAuA ) sowie Berufsgenossenschaften. Lasergeräte, die unter die Verordnung zum Schutz vor schädlichen Wirkungen nichtionisierender Strahlung bei der Anwendung am Menschen ( NiSV ) fallen, müssen gem. § 3 (3) NiSV bei der zuständigen Landesbehörde angezeigt werden. Berufsgenossenschaft informiert Betreiber*innen von Diskotheken und Ausrichter*innen von Außenveranstaltungen über den sachgemäßen Einsatz von Lasersystemen Um Licht-Shows interessanter zu gestalten, wurden in den letzten Jahren in Diskotheken und bei Außenveranstaltungen vermehrt Lasersysteme eingesetzt. Es gilt allerdings auch hier, dass die besonderen Lichteffekte bei unsachgemäßem Einsatz bei Beschäftigten und Besucher*innen bleibende Gesundheitsschäden hervorrufen können. Die DGUV-Information 203-036 (BGI 5007) "Laser-Einrichtungen für Show oder Projektionszwecke" soll dabei helfen, Anforderungen aus der Muster-Versammlungsstätten-Verordnung zu erfüllen. Weiterhin soll den Verantwortlichen eine Hilfestellung zur Gefährdungsbeurteilung nach dem Arbeitsschutzgesetz sowie der darauf erlassenen Verordnungen gegeben werden. Medizinische und kosmetische Anwendungen von Lasergeräten In der Medizin werden Lasergeräte mittlerweile für viele therapeutische und diagnostische Verfahren erfolgreich eingesetzt. Leichte Handhabe und günstiger Preis haben aber dazu geführt, dass leistungsfähige Laser (bis zur Klasse 4) auch für kosmetische Anwendungen genutzt werden, wie zum Beispiel zur Haarentfernung, zur Falten- und Pigmentbeseitigung oder zur Entfernung von Tätowierungen. Ohne das Wissen um die genaue Wirkung und geeignete Schutzvorkehrungen können Kund*innen so einem hohen gesundheitlichem Gefährdungspotenzial ausgesetzt werden. Strahlenschutzkommission fordert: Laseranwendungen an der menschlichen Haut nur durch ausgebildete Ärzt*innen Die Strahlenschutzkommission zeigt mit der Empfehlung "Gefahren bei Laseranwendung an der menschlichen Haut" die Gefahren für die Personen auf, die sich einer kosmetischen Behandlung von Hautveränderungen mit Lasern unterziehen wollen, und stellt Forderungen auf, um Abhilfe vor Gesundheitsgefahren zu schaffen. Die Hauptforderung besteht darin, gesetzliche Regelungen zu schaffen, die sicherstellen, dass Laseranwendungen an der menschlichen Haut ausschließlich durch speziell dafür ausgebildetes ärztliches Personal erfolgen. Mit Inkrafttreten der Verordnung zum Schutz vor schädlichen Wirkungen nichtionisierender Strahlung bei der Anwendung am Menschen ( NiSV ) wurden zum 31.12.2020 einige Anwendungen, wie z.B. die Tattooentfernung, unter Arztvorbehalt gestellt. Das bedeutet, dass die Entfernung von Tätowierungen mit Lasergeräten nur noch von approbierten Ärzt*innen mit entsprechender Fort- oder Weiterbildung durchgeführt werden darf. Seit dem 31.12.2022 müssen professionelle Anwender*innen auch bei Anwendungen wie der Epilation definierte Anforderungen an die Fachkunde erfüllen. Die Anforderungen an den Erwerb der Fachkunde wurden in einer Gemeinsamen Richtlinie des Bundes und der Länder, mit Ausnahme des Landes Sachsen-Anhalt, festgelegt. Stand: 03.12.2024
Wirkungen auf Zellen der Körperoberfläche bei Expositionen mit Zentimeter- und Millimeterwellen (5G Frequenzen) Perspektivisch werden für 5G auch elektromagnetische Felder mit deutlich höheren Frequenzen über 20 GHz eingesetzt. Die biologischen Wirkungen der elektromagnetischen Felder in diesen Frequenzbereichen sind vergleichsweise weniger gut untersucht, weshalb hier noch Forschungsbedarf besteht. Mögliche Auswirkungen einer Exposition mit Zentimeter- und Millimeterwellen soll anhand einer experimentellen Studie an Zellen untersucht werden. Worum geht es? Zur Übertragung von Sprache und Daten nutzt die 5. Mobilfunkgeneration (5G) aktuell Frequenzen, die bereits bei bisherigen Mobilfunkgenerationen zum Einsatz kamen, die diesen benachbart sind oder die für vergleichbare Nutzungen vergeben sind. Die biologischen Auswirkungen dieser Frequenzbereiche auf den Menschen wurden unter anderem im Deutschen Mobilfunkforschungsprogramm sehr umfangreich untersucht. Perspektivisch werden für 5G auch elektromagnetische Felder mit deutlich höheren Frequenzen über 20 GHz eingesetzt. In diesem Frequenzbereich spricht man auch von Zentimeter- bzw. Millimeterwellen . Die biologischen Wirkungen der elektromagnetischen Felder in diesen Frequenzbereichen sind vergleichsweise weniger gut untersucht, weshalb hier noch Forschungsbedarf besteht. Wie ist die Ausgangssituation? Prinzipiell gilt: Je höher die Frequenz der elektromagnetischen Felder, desto geringer ist deren Eindringtiefe. Elektromagnetische Felder im Zentimeter- bzw. Millimeterwellenbereich weisen demzufolge nur eine sehr geringe Eindringtiefe in biologisches Gewebe auf. Wird der Mensch diesen Feldern ausgesetzt, wird die Energie der Felder also sehr nahe an der Körperoberfläche absorbiert. Aus diesem Grund betreffen mögliche biologische Auswirkungen einer Exposition mit diesen Feldern die Körperoberfläche, d.h. die Haut oder die Augen. Dagegen sind direkte Effekte auf Basis direkter Energieabsorption auf innere Organe nicht zu erwarten. Welche Ziele hat das Forschungsvorhaben des BfS ? Mögliche Auswirkungen einer Exposition mit Zentimeter- und Millimeterwellen soll anhand einer experimentellen Studie an Zellen untersucht werden. Aufgrund der geringen Eindringtiefe werden Effekte auf humane Hautzellen untersucht. Dabei werden die Zellen elektromagnetischen Feldern mit Frequenzen von 27 und 41 GHz ausgesetzt. Beide Frequenzbereiche sind perspektivisch für 5G vorgesehen. Welche Ergebnisse lieferte das Forschungsvorhaben? Es konnten keine Effekte der Exposition bei sowohl 27 GHz als auch 41 GHz beobachtet werden, die über reine Zufallsbefunde hinausgehen. Das Vorhaben lieferte somit keine Hinweise für negative Effekte einer Exposition mit 5G-Frequenzen auf menschliche Hautzellen, auch nicht bei sehr hohen Leistungsflussdichten. Das Vorhaben trug dazu bei, das Wissen zu den Wirkungen von Millimeterwellen auf Hautzellen weiter auszubauen und Unsicherheiten zu verringern. Stand: 20.09.2024
Studie: Aufbau einer Radon-Biobank Eine wichtige Grundlage des heutigen Wissens über die Wirkung von Radon auf die menschliche Gesundheit sind Studien an Bergarbeitern, die seit den 1960er Jahren durchgeführt werden. Dass Radon beim Menschen Lungenkrebs verursachen kann, ist heute unstrittig. Aber wie sieht es mit weiteren Krankheiten aus? Das Bundesamt für Strahlenschutz ( BfS ) möchte die Auswirkungen auf die Gesundheit der Bevölkerung näher erforschen. Dazu soll eine Bioproben- und Datenbank erstellt werden, deren Proben und Daten auch anderen Forscher*innen zur Verfügung gestellt werden. Gesundheitliche Wirkungen von Radon im Haus Seit Jahren werden die Auswirkungen von Radon auf die Gesundheit untersucht. So konnte schon einiges über die gesundheitlichen Auswirkungen herausgefunden werden. Dass Radon beim Menschen Lungenkrebs verursachen kann, ist heute unstrittig. Die Erkenntnisse zu biologischen Wirkmechanismen beschränken sich allerdings vor allem auf erwachsene Männer. Es gibt kaum Wissen über biologische Wirkungen von Radon im privaten Bereich, insbesondere auf Kinder und Jugendliche oder Frauen. Diese Lücke soll nun geschlossen werden. Aufbau Radon -Biobank: Studie richtet sich an Personen aus Vorgängerstudie In den Jahren 2019/2020 wurden in einer Studie im Auftrag des BfS Radon-Messungen in Wohnungen durchgeführt. Die jetzige darauf aufbauende Studie richtet sich an Personen, die an der ersten Studie teilgenommen hatten und in Wohnungen mit relativ hoher (>300 Becquerel pro Kubikmeter, Bq/m³ ) oder niedriger (<40 Bq/m³ ) Radon -Konzentration leben. Sie werden gebeten, bestimmte Körpermaterialien (sogenannte „Bioproben“) für die Erforschung biologischer Veränderungen durch Radon abzugeben und Fragen zu ihrer Gesundheit und ihren Lebensgewohnheiten zu beantworten. Mit den gesammelten Bioproben und den Daten soll eine Radon -Biobank aufgebaut werden. Dazu wird die Universitätsmedizin Göttingen im Auftrag des BfS die Proben und Daten sammeln und eine Datenbank aufbauen. Die Bioproben und die Datenbank werden beim BfS gelagert und verwaltet werden. Die Bioproben- und Datenbank ist die Grundlage für spätere Projekte, um die biologische Wirkung von Radon und den Einfluss individueller Faktoren wie Alter und Geschlecht weiter zu erforschen. Ziel ist es, die Auswirkungen von Radon -Belastungen im Privathaushalt zu untersuchen. Einzigartiges Projekt Ein Bioproben- und Daten-Kollektiv, wie es mit der Radon -Biobank aufgebaut werden soll, gibt es bisher weder in Deutschland noch im Ausland. Es soll dazu dienen, Analysen durchzuführen, die mit bestehenden Bioproben und Daten nicht durchführbar sind. Die in der Zukunft gewonnenen Erkenntnisse sollen zu einem verbesserten Schutz vor Radon , gerade im Sektor der Privathaushalte, beitragen. Die Studie ist im Deutschen Register Klinischer Studien (DRKS) und im WHO Register für klinische Studien offiziell registriert. Die Radon -Biobank wird von Wissenschaftler*innen des BfS genutzt werden. Darüber hinaus wird das BfS die gewonnenen Daten und Proben auch anderen Wissenschaftler*innen für weitere Forschung zur Verfügung stellen. Stand: 03.09.2024
Messstation Hamburg Messstation Hamburg Betreiber Bundesamt für Strahlenschutz ( BfS ) Deutscher Wetterdienst ( DWD ) Ort Hamburg Höhe 46 Meter über Meeresspiegel Koordinaten 53°32'48" Nord 9°57'58" Ost Messsystem Breitbandradiometer Messintervall 1 Minute Die Messstation in Hamburg ist Teil des bundesweiten solaren UV-Messnetzes Quelle: Haßelbusch/Deutscher Wetterdienst UV -Messung An der Bodenstation wird die am Erdboden einfallende UV -Bestrahlungsstärke, aufgelöst in kleine Wellenbereiche, gemessen. Die Messwerte werden mit der Wichtungskurve für die biologische Wirkung "Sonnenbrand" verrechnet und in Form des weltweit einheitlichen UV-Index ( UVI ) angegeben. Stand: 06.05.2024
The project generated ecotoxicological data needed for the development of a tailored testing strategy to assess the environmental risk of pharmaceuticals (progestins and glucocorticoids). For this purpose, chronic fish tests, among others, were carried out in the laboratory according to a new test protocol currently undergoing OECD validation investigating dienogest and dexamethasone as test substances. The studies provided reliable and valid results with effect thresholds in the lower µg/L or ng/L range. This has closed data gaps for the development of new assessment approaches for a targeted risk assessment of specifically acting pharmaceuticals. Additional investigations on directed gene expression and immunosuppressive effect assays would complement the assessment strategy for progestins and glucocorticoids.
Origin | Count |
---|---|
Bund | 3211 |
Land | 13 |
Type | Count |
---|---|
Förderprogramm | 2153 |
Messwerte | 970 |
Text | 25 |
unbekannt | 73 |
License | Count |
---|---|
geschlossen | 87 |
offen | 3128 |
unbekannt | 6 |
Language | Count |
---|---|
Deutsch | 3045 |
Englisch | 445 |
Resource type | Count |
---|---|
Bild | 1 |
Dokument | 980 |
Keine | 1626 |
Multimedia | 1 |
Webseite | 1589 |
Topic | Count |
---|---|
Boden | 2041 |
Lebewesen & Lebensräume | 3221 |
Luft | 1421 |
Mensch & Umwelt | 3221 |
Wasser | 2475 |
Weitere | 3166 |