Die BK50 stellt die Ergebnisse der bodenkundlichen Landesaufnahme für den Maßstab 1:50.000 dar. Zu den abgegrenzten Bodengesellschaften (Leit- und Begleitbodenformen) werden Bodentyp und Substrattyp benannt. Die detaillierte Horizontabfolge der Leitbodenformen wird mit charakteristischen Bodenparametern beschrieben wie z.B.: Horizontsymbolen, Substraten, Bodenarten, Grobbodenanteilen, Carbonatstufen, Humusstufen und bodenhydrologischen Kennwerten.
Beschreibung des INSPIRE Download Service (predefined Atom): Naturschutzgebiete im Saarland: Bei dieser Schutzgebietskategorie handelt es sich um Gebiete, in denen ein besonderer Schutz von Natur und Landschaft in ihrer Ganzheit oder in einzelnen Teilen erforderlich ist. Schutzgebiete dieser Kategorie sind die am strengsten geschützten Gebiete. Insbesondere werden die wild lebenden Pflanzen oder Tiere, Biotope oder bestimmte Lebensgemeinschaften zu ihrem Erhalt, ihrer Entwicklung, aufgrund ihres seltenen Vorkommens oder auch aus wissenschaftlichen Gründen unter den gesetzlichen Schutz gestellt. Aktuell sind 121 Naturschutzgebiete unter Schutz gestellt. Für welche Gebiete welche Erfassungsschärfe vorliegt, kann aus dem Attribut-Feld „Erfassungsmaßstab“ abgelesen werden. Die Bestandskarte der Naturschutzgebiete im Saarland gibt Auskunft über die aktuell ausgewiesenen Naturschutzgebiete. Sachdaten/Attributinformationen: KENNUNG : Kennung OSIRIS; KENNUNG_ALT: alte Kennung (Meldung an BfN); NAME: Name des Schutzgebietes; ANZAHL_FL : Anzahl Flächen; FLAECHE_HA : Fläche in ha (offiziell) EINSPEICHERUNGSDATUM: Einspeicherungsdatum in OSIRIS; PROJEKT : Projektursprung; AMTSBLATT: Amtsblatt; AUSWEISUNG: ; UNTERLAGEN: Verordnung über das Naturschutzgebiet; GEOGENAU: Geometrische Genauigkeit; OBJBEM: Datum; ERFASSUNG: Maßstab; BEMERKUNG: Datum; ISPAPSCH : INSPIRE Application Schema; GBNR: Gebietsnummer (= KENNUNG); IN_KRAFT: In Kraft; AUSSER_KRAFT :Außer Kraft; IN_KRAFT_SEIT: In Kraft seit; INSDATE: Übernahmedatum ins GDZ; KERNZBSPH: Kernzone Biosphäre; NATURWZ: Naturwaldzelle; RECHTSGR: Link zur Verordnung;SCHUTZZIEL: Schutzzweck;VSG;FFH; Betrachtungsobjekt im GDZ; Export der MultiFeatureklasse (setzt sich zusammen aus flächenhaften Featureklasse GDZ2010.A_ngnschg und der Businesstabelle mit den Sachdaten (GDZ2010.ngnschg)) in die Filegeodatabase . - Der/die Link(s) für das Herunterladen der Datensätze wird/werden dynamisch aus GetFeature Anfragen an einen WFS 1.1.0+ generiert
Naturschutzgebiete im Saarland: Bei dieser Schutzgebietskategorie handelt es sich um Gebiete, in denen ein besonderer Schutz von Natur und Landschaft in ihrer Ganzheit oder in einzelnen Teilen erforderlich ist. Schutzgebiete dieser Kategorie sind die am strengsten geschützten Gebiete. Insbesondere werden die wild lebenden Pflanzen oder Tiere, Biotope oder bestimmte Lebensgemeinschaften zu ihrem Erhalt, ihrer Entwicklung, aufgrund ihres seltenen Vorkommens oder auch aus wissenschaftlichen Gründen unter den gesetzlichen Schutz gestellt. Aktuell sind 121 Naturschutzgebiete unter Schutz gestellt. Für welche Gebiete welche Erfassungsschärfe vorliegt, kann aus dem Attribut-Feld „Erfassungsmaßstab“ abgelesen werden. Die Bestandskarte der Naturschutzgebiete im Saarland gibt Auskunft über die aktuell ausgewiesenen Naturschutzgebiete. Sachdaten/Attributinformationen: KENNUNG : Kennung OSIRIS; KENNUNG_ALT: alte Kennung (Meldung an BfN); NAME: Name des Schutzgebietes; ANZAHL_FL : Anzahl Flächen; FLAECHE_HA : Fläche in ha (offiziell) EINSPEICHERUNGSDATUM: Einspeicherungsdatum in OSIRIS; PROJEKT : Projektursprung; AMTSBLATT: Amtsblatt; AUSWEISUNG: ; UNTERLAGEN: Verordnung über das Naturschutzgebiet; GEOGENAU: Geometrische Genauigkeit; OBJBEM: Datum; ERFASSUNG: Maßstab; BEMERKUNG: Datum; ISPAPSCH : INSPIRE Application Schema; GBNR: Gebietsnummer (= KENNUNG); IN_KRAFT: In Kraft; AUSSER_KRAFT :Außer Kraft; IN_KRAFT_SEIT: In Kraft seit; INSDATE: Übernahmedatum ins GDZ; KERNZBSPH: Kernzone Biosphäre; NATURWZ: Naturwaldzelle; RECHTSGR: Link zur Verordnung;SCHUTZZIEL: Schutzzweck;VSG;FFH; Betrachtungsobjekt im GDZ; Export der MultiFeatureklasse (setzt sich zusammen aus flächenhaften Featureklasse GDZ2010.A_ngnschg und der Businesstabelle mit den Sachdaten (GDZ2010.ngnschg)) in die Filegeodatabase .
In den Gewächshäusern und Gärten botanischer Anlagen werden Pflanzen aus aller Welt gehegt und gepflegt. Die Einrichtungen sind Orte der Umweltbildung und der Forschung zur biologischen Vielfalt. Als lebendige Archive tragen sie wesentlich dazu bei, Artenvielfalt und genetische Vielfalt zu erhalten. In Berlin gibt es gleich drei solcher Anlagen: den Botanischen Garten und das Botanische Museum der Freien Universität Berlin, den Botanischen Volkspark Blankenfelde-Pankow und das Späth-Arboretum der Humboldt-Universität. Das Späth-Arboretum ist auch am Projekt „Urbanität und Vielfalt“ beteiligt, in dem seltene Wildpflanzen vermehrt und wieder in Berlin ausgepflanzt werden. Die Einrichtung im Süden Berlins gehört mit rund 20.000 Pflanzenarten, fast vier Millionen getrockneter Herbarbelege, einer DNA-Bank und einer Saatgutbank für Wildpflanzen zu den weltweit wichtigsten Sammlungs- und Forschungsstätten für Pflanzen, Pilze und Algen. Auf dem 43 Hektar großen Gelände finden sich 15 Gewächshäuser, eine pflanzengeografische Anlage, die die Pflanzenwelten verschiedener Erdteile nachbildet, und ein Arboretum. Eine Botanikschule unterstützt – als Kooperationseinrichtung der Senatsverwaltung für Bildung, Jugend und Familie –Berlins Schulen bei den Themen Botanik, Umweltbildung und nachhaltige Entwicklung. Die Schule bildet Lehrkräfte, Erzieherinnen und Erzieher weiter, entwickelt Unterrichtsmaterialien und bietet Schulklassen die Möglichkeit, anschaulich vor Ort zu lernen. Der Botanische Garten Berlin bildet dabei eine Schnittstelle zwischen Wissenschaft und Gesellschaft: Die Forschung, die hier in Zusammenarbeit mit Institutionen weltweit geleistet wird, liefert Wissensgrundlagen, um die Biosphäre zu schützen und nachhaltig zu nutzen. Eins dieser internationalen Projekte ist „World Flora Online“, das 2020 erstmals alle 350.000 Landpflanzenarten der Welt in einer Online-Datenbank dokumentiert hat – ein Meilenstein der globalen Biodiversitätsforschung. Das Botanische Museum wird derzeit neu konzipiert. 2023 soll es Besucherinnen und Besuchern wieder offenstehen. Botanischer Garten und Botanisches Museum Berlin Die heute denkmalgeschützte Anlage in Pankow entstand 1949 als städtischer Schulgarten auf einem ehemaligen Rieselfeld am Stadtrand. Ihre Gestaltung orientiert sich am Raster dieser Rieselfelder. Nahe des Eingangs liegen, eingefasst von vielen Stauden, Schaugewächshäuser und ein Arboretum seltener Baumarten aus Asien und Osteuropa. Die anschließenden Parzellen spiegeln die eiszeitlich geprägte Kulturlandschaft mit Äckern und Alleen wider. Die weitgehend naturbelassene Niederung um den Zingerteich bildet ein Tor zur offenen Landschaft. Auf zwei Rieselfeldparzellen werden neue Formen urbaner Landwirtschaft praktiziert, die Umweltbildung und nachhaltige Entwicklung fördern: Die eine ist einer der vier Standorte des Bauerngartens. Hobbygärtnerinnen und -gärtner können auf kreisförmigen Beeten unter Anleitung Gemüse ziehen – zertifiziert mit dem Bioland- und dem europäischen Bio-Siegel. Auf der zweiten Parzelle macht ein Weltacker anschaulich, wieviel Anbaufläche heute nötig ist, um einen Menschen zu versorgen. Botanischer Volkspark Blankenfelde-Pankow Das Arboretum wurde 1879 als Schau- und Versuchsgarten der privaten Baumschule Ludwig Späth eröffnet. Ab 1961 entwickelte die Humboldt-Universität die Anlage zum botanischen Garten weiter, der heute rund 4.000 Arten beherbergt. Neben einer großen Sammlung an Gehölzen finden sich ein Steingarten, ein Teich mit Mooranlage, ein Gewächshaus und eine systematische Abteilung, in der die Pflanzen nach ihrer natürlichen Verwandtschaft sortiert sind. Forschungsschwerpunkte sind die Vielfalt und Evolution der Pflanzen mit Schwerpunkten auf Farnpflanzen und „Schmarotzerpflanzen“, also Arten, die ihren Wasser- und Nährstoffbedarf decken, indem sie Wurzeln oder Sprosse anderer Pflanzen anzapfen. Späth-Arboretum der Humboldt-Universität zu Berlin Besuchen Sie Berlins botanische Anlagen! Lernen Sie im Botanischen Garten und Botanischen Museum Berlin aktuelle Bürgerwissenschaftsprojekte kennen, helfen Sie beim Entziffern alter Herbaretiketten oder nehmen Sie eins der vielen weiteren Angebote wahr!
Berechnung der Strahlenbelastung für die Bevölkerung Die Strahlenbelastung für die Bevölkerung in der Umgebung jeder kerntechnischen Anlage wird anhand der vom Betreiber bilanzierten Aktivitätsableitungen berechnet. Die Berechnungen beziehen sich auf eine repräsentative (fiktive) Person, die sich hinsichtlich ihrer Aufenthalts- und Verzehrgewohnheiten so verhält, dass daraus eine höhere Strahlenbelastung resultiert. Extreme Lebensgewohnheiten werden dabei nicht berücksichtigt. Die Berichterstattung über die aus den Aktivitätsableitungen mit der Fortluft und dem Abwasser ermittelte Exposition für die Bevölkerung ist eine gesetzliche Pflicht. Sie wird im Parlamentsbericht und im Jahresbericht "Umweltradioaktivität und Strahlenbelastung" des Bundesumweltministeriums dokumentiert. Für eine (fiktive) repräsentative Person wird die Strahlenbelastung in der Umgebung jeder kerntechnischen Anlage berechnet. Anhand der vom Betreiber bilanzierten Ableitungen wird die Strahlenbelastung in der Umgebung jeder kerntechnischen Anlage für eine repräsentative Person berechnet. Diese repräsentative Person ist eine fiktive Person, aus deren Aufenthalts- und Verzehrgewohnheiten eine höhere Strahlenbelastung resultiert (konservative Annahmen). Bis 2020 wurde die Strahlenbelastung der Bevölkerung statt für eine repräsentative Person für eine Referenzperson berechnet. Die Referenzperson ist ebenfalls eine fiktive Person, die sich hinsichtlich ihrer Lebensgewohnheiten so verhält, dass daraus eine außergewöhnlich hohe Strahlenbelastung resultiert. Bei der Referenzperson sind extreme Lebenssituationen nicht ausgeschlossen. Die berechnete Strahlenbelastung liegt bei der Referenzperson in der Regel höher als bei der repräsentativen Person. Berechnung der Strahlenbelastung mit Hilfe von Computersimulation Für die Berechnung kommen rechnergestützte Ausbreitungsmodelle zum Einsatz, die den Transport von Radionukliden aus einer kerntechnischen Anlage in die verschiedenen Bereiche der Umwelt beschreiben. Modellierung des Radionuklidtransfers von der Ableitung radioaktiver Stoffe aus dem Fortluftkamin über die Biosphäre zum Menschen. Aus den so berechneten Konzentrationen von radioaktiven Stoffen in den verschiedenen Umweltmedien wird die Strahlenbelastung der repräsentativen Person etwas konservativ, d. h. tendenziell zu hoch, abgeschätzt ( z. B. mit dem Dosismodell DARTM ). Die berechnete Exposition darf nach der Strahlenschutzverordnung höchstens 300 Mikrosievert für die effektive Dosis im Kalenderjahr betragen. Der Hauptanteil an der Exposition wird im Normalbetrieb durch das Radionuklid Kohlenstoff-14 hervorgerufen (siehe Abbildung): Dosisanteile von mit der Fortluft abgeleiteten radioaktiven Stoffen beim Betrieb von Kernkraftwerken Dosisrelevant ist hierbei vor allem die Aufnahme von Kohlenstoff-14 in Form von Kohlenstoffdioxid durch die Nahrung ( Ingestion ). Aktivitätsableitungen mit der Fortluft Insgesamt ergibt sich aus den Aktivitätsableitungen mit der Fortluft eine Exposition von weniger als 1 Mikrosievert im Kalenderjahr für Kleinkinder weniger als 1 Mikrosievert im Kalenderjahr für Erwachsene. Diese Werte liegen im betrachteten Zeitraum 1990 bis 2023 bei deutlich weniger als einem Prozent der natürlichen Strahlenbelastung der Bevölkerung (siehe Abbildung): Berechnete Effektivdosis für Erwachsene und Kleinkinder durch Ableitungen mit der Fortluft im Jahr 2023. Aktivitätsableitungen mit dem Abwasser Mit dem Abwasser aus kerntechnischen Anlagen werden jährlich etwa 100 Terabecquerel Tritium ( 3 H) und 1 Gigabecquerel sonstige Spalt- und Aktivierungsprodukte abgeleitet. Die abgeleitete Aktivitätsmenge von Alphastrahlern beträgt etwa 1 Megabecquerel . (T era =10 12 , G iga =10 9 , M ega =10 6 ). Aktivitätsableitungen mit dem Abwasser aus KKW im Jahr 2023 Die konservativ berechnete Exposition durch Abwasser beträgt in Folge dessen weniger als 6 Mikrosievert im Kalenderjahr für Kleinkinder weniger als 2.3 Mikrosievert im Kalenderjahr für Erwachsene und somit unter einem Prozent des gesetzlichen Grenzwertes. Exposition in der Umgebung von KKW durch Aktivitätsableitungen mit dem Abwasser 2023 Berichterstattung ist gesetzlicher Auftrag Die aus den Aktivitätsableitungen mit der Fortluft und dem Abwasser ermittelte Exposition der Bevölkerung wird im Parlamentsbericht und im Jahresbericht "Umweltradioaktivität und Strahlenbelastung" des Bundesumweltministeriums dokumentiert: Stand: 21.02.2025
Bodenkennwerte sind Eingangsinformationen für eine Vielzahl für Bearbeitungen bodenbezogener Aufgaben. Den Bodenkennwerten liegt eine Ableitung nach dem sächsischen Bodenbewertungsinstrument zugrunde. Der fachliche Standard entspricht der Bodenkundlichen Kartieranleitung, 6. Auflage (aktuell nur Teil C veröffentlicht). Die Kennwerte werden für einen Eingang in bodenschutzfachliche Bewertungen empfohlen. Sie werden sukzessiv erweitert und über das LfULG Internet veröffentlicht. Kennwerte Stand 10/2021: nutzbare Feldkapazität (nFK), nutzbare Feldkapazität im effektivem Wurzelraum (nFKWe), effektiver Wurzelraum (We), potentieller Wurzelraum (Wp), potentielle Kationenaustauschkapazität (KAKpot), Luftkapazität (LK)
Der vom Menschen ausgelöste globale Klimawandel ist eine in der Fachwelt anerkannte Tatsache. Die ersten Folgen des Klimawandels sind in Sachsen-Anhalt bereits spürbar. Die Auswirkungen des Klimawandels wird man in Sachsen-Anhalt in den kommenden Jahrzehnten vermehrt zu spüren bekommen. Der Themenkomplex Klimawandel lässt sich generell in zwei Bereiche aufteilen: Die Klimaanalyse umfasst alle Auswertungen von Klimadaten in der Vergangenheit. Im Themenbereich Klimaprojektion werden mögliche Klimaentwicklungen in der Zukunft auf der Grundlage von Klimamodellrechnungen betrachtet. Bei der Klimaanalyse ist es wichtig, von heute beginnend in der Geschichte zurückzuschauen, um die Klimageschichte des Planeten bewerten zu können. Nur so können aktuelle und künftige Entwicklungen in die Klimageschichte eingeordnet und Extremereignisse bewertet werden. Unterschied zwischen Wetter, Witterung und Klima Wetter: Als Wetter wird der physikalische Zustand der Atmosphäre zu einem bestimmten Zeitpunkt oder in einem auch kürzeren Zeitraum an einem bestimmten Ort oder in einem Gebiet bezeichnet, wie er durch die meteorologischen Elemente und ihr Zusammenwirken gekennzeichnet ist. Witterung: Als Witterung wird der allgemeine, durchschnittliche oder auch vorherrschende Charakter des Wetterablaufs eines bestimmten Zeitraums (von einigen Tagen bis zu ganzen Jahreszeiten) bezeichnet. Klima: Das Klima ist definiert als die Zusammenfassung der Wettererscheinungen, die den mittleren Zustand der Atmosphäre an einem bestimmten Ort oder in einem mehr oder weniger großen Gebiet charakterisieren. Hierbei wird ein Zeitraum von mindestens 30 Jahren zugrunde gelegt. Die Weltorganisation für Meteorologie (World Meteorological Organisation - WMO) empfiehlt den Zeitraum 1961 bis 1990 als Klimareferenzperiode zur langfristigen Betrachtung der Entwicklungen des Klimawandels. Klimawandel: Als Klimawandel werden die langfristigen Veränderungen dieses mittleren Zustandes der Atmosphäre (Klima) bezeichnet. Dabei ist es unerheblich, ob die Veränderungen natürlichen Ursprungs sind oder nicht. Das Klima unterliegt verschiedenen Einflüssen wie bspw. der Sonnenaktivität und den Erdbahnparametern, sowie Vulkanausbrüchen oder der Plattentektonik aber auch dem Einfluss des Menschen. Dabei kann festgehalten werden: Die durch den Menschen hervorgerufene Klimaerwärmung seit Beginn der Industrialisierung ist wissenschaftlicher Konsens. Der Treibhauseffekt Der Treibhauseffekt ist ein auch ohne den Menschen vorkommendes Phänomen: Die Erdoberfläche strahlt langwellige Wärmestrahlung ab. Diese langwellige, nach oben gerichtete Strahlung wird durch Bestandteile der Atmosphäre, die Treibhausgase, absorbiert (aufgenommen) und wieder emittiert (abgegeben). Diese Strahlungsemission geschieht dabei in alle Richtungen, sodass die eigentlich nach oben gerichtete langwellige (also Wärme-)Strahlung zum Teil in der Atmosphäre gehalten wird. Diese erwärmt sich somit. Treibhausgase kommen natürlicher Weise in der Atmosphäre vor. Natürlich in der Atmosphäre vorkommende Treibhausgase sind bspw. Kohlenstoffdioxid (CO 2 ), Methan (CH 4 ), Lachgas (N 2 O) und Wasserdampf (H 2 O). Im Fall des Wasserdampfes verdeutlicht ein einfaches Beispiel den Effekt: In einer sternenklaren Nacht kühlt die Atmosphäre wesentlich schneller aus als bei bedeckten Verhältnissen. Die Erdatmosphäre schützt die Erde somit vor dem Auskühlen: im Gleichgewicht des Strahlungshaushalts ohne Atmosphäre läge die mittlere Erdoberflächentemperatur bei -18 °C. Ausgehend von einer globalen Mitteltemperatur von rund 15 °C wäre es ohne den Treibhauseffekt auf der Erde somit um ca. 33 Kelvin kälter. Die Konzentrationen der Treibhause CO 2 , CH 4 und N 2 O steigen seit Jahrzehnten durch den menschlichen Ausstoß an. In den letzten 60 Jahren hat die CO 2 -Konzentration um 25% zugenommen. Die Konzentration von Methan hat sich mehr als verdoppelt. Dabei gilt zu beachten, dass Methan eine deutlich stärkere Treibhauswirkung hat als CO 2 . Die Atmosphäre ist ein komplexes System. So hängen die verschiedenen physikalischen Größen und Vorgänge wie bspw. Temperatur, Verdunstung sowie Niederschlag/Wasserkreislauf miteinander zusammen. Verändert sich eine Variable (im Falle des Klimawandels die Temperatur), verändern sich auch die anderen Prozesse und Zustände der Atmosphäre. Weiterhin hängen die verschiedenen Komponenten des Klimasystems (Atmosphäre, Hydrosphäre, Kryosphäre, Biosphäre, Lithosphäre/ Pedosphäre) miteinander zusammen. Um nur einige der prominentesten Beispiele zu nennen: Die Temperaturerhöhung der Atmosphäre hat bspw. Auswirkungen auf den Meeresspiegel der Ozeane (Hydrosphäre; z. B. Abschmelzen der Gletscher (Kryosphäre) sowie Dichteabnahme und damit Ausdehnung des Meerwassers) oder den Säuregehalt des Ozeans. Dies wiederum führt zu Beeinflussung des Ökosystems Meer (Biosphäre; bspw. Absterben von Korallenriffen). Weiterhin ist hiervon auch direkt der Lebensraum des Menschen betroffen: Besonders Inselstaaten sind vom Meeresspiegelanstieg bedroht. Zudem bricht mit den absterbenden Korallenriffen ein bedeutsamer Küstenschutz weg. Die globale Lufttemperatur hat seit 1850 um 1,1 K zugenommen. 2023 war global das erste Jahre, dass mehr als 1,5 K wärmer war als vorindustriell (Quelle: https://climate.copernicus.eu/global-climate-highlights-2023 ). Aber auch die Meerestemperaturen steigen an und puffern so einen Teil der Erwärmung der Atmosphäre zunächst ab. Der Anstieg der Temperaturen führt aber sowohl ober, als auch unterhalb der Wasseroberfläche zu Veränderungen von Gletschern, Eisschilden, Strömungen, Flora, Fauna und vielem mehr. Besonders empfindliche Systeme drohen irreversibel geschädigt zu werden, mit Folgen für den ganzen Planeten. Die Rede ist von sogenannten Kipppunkten im Klimasystem der Erde. Die Schnelligkeit der Erwärmung und der damit einhergehenden Veränderungen stellt eine besondere Herausforderung dar. Aus diesen Gründen ist sowohl die Anpassung an bereits stattgefundene oder nicht mehr vermeidbare Klimaveränderungen zwingend nötig, als auch der Schutz des Klimas insgesamt, um noch weiterreichende Veränderungen zu verhindern. Der Klimawandel wirkt sich auch auf regionaler Ebene aus. So steigt bspw. schon heute die Hitzebelastung in mitteldeutschen Sommern. Weiterhin können sich die Niederschlagsverhältnisse innerhalb des Jahres verschieben bzw. durch stabile Wetterlagen kann es immer häufiger zu länger anhaltenden Witterungsverhältnissen kommen, die unter Umständen zu Dürre oder Hochwassergefahr führen. Das Mittel der Temperaturverteilung verschiebt sich in Richtung warm bei zunehmender Bandbreite mit den Hitzeextremen. Globale Klimamodelle sind komplexe physikalische Modelle, die das Klimasystem der Erde anhand physikalisch-numerischer Gleichungen computergestützt und zeitabhängig beschreiben. Kalibrierte Modelle ermöglichen unter definierten Annahmen über die zukünftige Treibhauskonzentrationsentwicklung die Simulation möglicher zukünftiger Klimaentwicklungen (siehe Klimaszenarien). Modelle und ihre Eigenschaften Man nutzt zur Berechnung des zukünftigen Klimas globale Zirkulationsmodelle (General Circulation Model bzw. Global Climate Model - GCMs). Globale Modelle stellen ein unverzichtbares Instrumentarium für voraussichtliche Veränderungen der Häufigkeit und Dauer von charakteristischen Großwetterlagen dar und besitzen eine horizontale Auflösung von ca. 200 km x 200 km Gitterabstand (IPCC). Zeitliche Entwicklung der Modelle Die Entwicklung der globalen Zirkulationsmodelle ist wesentlich an die Entwicklung der Computerkapazitäten gebunden. Erst die Fortschritte in der Rechenleistung großer Computeranlagen haben es ermöglicht, dass sich die Komplexität der Modelle, die Länge der Simulation und die räumliche Auflösung steigern ließen. Die ersten Modellrechnungen wurden mit reinen Atmosphärenmodellen durchgeführt, die aus Wettermodellen abgeleitet wurden. Seit den 1960er Jahren wurden Atmosphären- und Ozeanmodelle miteinander gekoppelt, zunächst mit einer sehr rudimentären Dynamik. In den folgenden Jahren wurden Modelle der Atmosphäre und des Ozeans getrennt weiterentwickelt. Seit den 1990er Jahren wurden immer mehr Komponenten des Klimasystems miteinbezogen und die Modelle wurden immer komplexer. So wurden Anfang der 1990er Jahre Modellrechnungen durchgeführt, die auch die Wirkung der in der Summe abkühlend wirkenden Aerosole berücksichtigten. Außerdem wurden Modelle für den ozeanischen und terrestrischen Kohlenstoffkreislauf entwickelt und in gekoppelten Simulationen für den Bericht des Weltklimarates IPCC von 2007 genutzt. Eine dynamische Vegetation und die Chemie der Atmosphäre sind weitere Bausteine der Modellentwicklung. Das Resultat sind sogenannte Erdsystemmodelle. In jüngster Zeit sind verbesserte biogeochemische Kreisläufe und dynamische Eisschilde, die mit Klimaänderungen in Wechselwirkung stehen, hinzugekommen. Das langfristige Ziel ist es, dass möglichst alle Komponenten des Klimasystems einschließlich ihrer Rückkopplungen und der externen Störungen simuliert werden können. Um Aussagen über das zukünftige Klima treffen zu können, werden Globale Klimamodelle in Verbindung mit Szenarien genutzt. Diese Klimaszenarien beinhalten Annahmen über die zukünftige Entwicklung von Treibhausgasen und ggf. die Gesellschaft. Sie stellen eine sogenannte Randbedingung von Klimamodellrechnungen für die Zukunft (= Klimaprojektionen) dar. Der 5. IPCC-Bericht verwendete Szenarien mit repräsentativen Konzentrationspfaden (RCP), die den möglichen zukünftigen Verlauf der absoluten Treibhausgaskonzentration in der Atmosphäre beschreiben. Im neueren 6. IPCC-Bericht fanden gemeinsame sozioökonomische Entwicklungspfade (Shared Socioeconomic Pathways, SSP) Anwendungen, die stärker den möglichen künftigen Einfluss der gesellschaftlichen und ökonomischen Entwicklung der Menschheit als Ausgangspunkt für den Ausstoß von Treibhausgasen betrachten. Die unterschiedlichen RCP Szenarien sind in der Abbildung dargestellt. Der Zahlenwert hinter dem RCP entspricht dem zusätzlichen Strahlungsantrieb. Der anthropogene Strahlungsantrieb ist hierbei ein Maß für den Einfluss, den ein einzelner Faktor auf die Veränderung des Strahlungshaushalts der Atmosphäre und damit auf den Klimawandel hat. Er wird in Watt pro Quadratmeter angegeben. Ein positiver Strahlungsantrieb, z.B. durch die zunehmende Konzentration langlebiger Treibhausgase, führt zu einer Erwärmung der bodennahen Luftschicht. Ein negativer, z.B. durch die Zunahme von Aerosolen, hingegen bewirkt eine Abkühlung ( weitere Informationen ). Bei RCP2.6 würden also 2,6 W/m² mehr in der Atmosphäre verbleiben. Das Szenario des RCP2.6 ist dabei das Szenario mit konsequentem globalem Klimaschutz, dass das Ziel von 1,5 K Erwärmung bis 2100 einhalten könnte. Mit moderatem Klimaschutz rechnet das Szenario RCP4.5, hier würde man global rund 2 K Erwärmung bis 2100 erreichen. Das RCP6.0 ist das Szenario mit wenig globalem Klimaschutz. Hierbei würde sich die Erwärmung bis 2100 auf etwa 3 K belaufen. Ohne Klimaschutz (RCP8.5) würde die Treibhausgaskonzentration in der Atmosphäre weiter ungebremst zunehmen. Die globale Temperatur würde bis 2100 um mehr als 4 K zunehmen mit entsprechend verheerenden Folgen für unseren Planeten. Die neuere Szenarienfamilie des 6. IPCC Berichts teilt sich recht ähnlich zu der Szenarienfamilie der RCPs auf, auch wenn sich diese im Detail unterscheiden. So wurden zunächst Narrative der sozioökonomischen Entwicklung aufgespannt, welche von „Nachhaltigkeit“ bis „Fossile Entwicklung“ reichen. Für diese verschiedenen Narrative (SSP1 bis SSP5) können verschiedene Strahlungsantriebe eintreten. Nach dem nachhaltigen Szenario mit konsequentem globalem Klimaschutz (SSP1-2.6) kann das 2-Grad-Ziel erreicht werden. Das Szenario SSP2-4.5 mit moderatem Klimaschutz geht von einer Erwärmung von knapp 3 K bis Ende des Jahrhunderts aus. Im Falle des SSP3-7.0 wird von einer Zunahme von Konflikten auf der Erde ausgegangen, die globalen Klimaschutz deutlich erschweren. Demnach würde die globale Temperatur um etwa 4 K ggü. dem vorindustriellen Wert ansteigen. Im SSP5-8.5 gelingt es der Menschheit nicht, Klimaschutz bis zum Ende des Jahrhunderts global umzusetzen. Dies führt zu einer Erwärmung von etwa 5 K. Die Szenarien zeigen, dass konsequenter globaler Klimaschutz bis hinunter auf die Ebene der Bundesländer in Deutschland alternativlos ist, wenn man tiefgreifende Veränderungen vermeiden will. Weiterhin stellen die Szenarien und Klimaprojektionen die Basis für die zu entwickelnden Maßnahmenkonzepte zur Anpassung an den zu erwartenden Klimawandel dar. Letzte Aktualisierung: 18.09.2024
Umweltbelastungen der Landwirtschaft Die Landwirtschaft ist Deutschlands größte Flächennutzerin. Gleichzeitig ist sie ein wichtiges Standbein unserer Volkswirtschaft. Sie sichert die Ernährung und produziert nachwachsende Rohstoffe. Darüber hinaus spielt sie eine wesentliche Rolle für den Erhalt und die Entwicklung der Kulturlandschaft. Doch mit der zunehmenden Intensivierung sind vielfältige Umweltbelastungen verbunden. Landwirtschaft in Deutschland Rund die Hälfte der Fläche Deutschlands, das sind insgesamt 16,6 Millionen Hektar, wurden 2023 landwirtschaftlich genutzt. Über zwei Drittel (71 Prozent) der landwirtschaftlich genutzten Fläche wird ackerbaulich und knapp ein Drittel (28 Prozent) als Dauergrünland bewirtschaftet. Hinzu kommen Dauerkulturen und sonstige landwirtschaftliche Nutzflächen (1 Prozent). Auf knapp 60 Prozent der Landwirtschaftsflächen werden Futtermittel für die Tierhaltung angebaut. Auf den Anbau nachwachsender Rohstoffe für die Erzeugung von Biogas (vor allem Mais) und Biokraftstoffe (vor allem Raps), sowie zur stofflichen Verwertung entfallen weitere knapp 16 Prozent der landwirtschaftlich genutzten Flächen. Die verbleibenden Flächen dienen der Lebensmittelproduktion. Obwohl Land- und Forstwirtschaft und Fischerei zusammen nur etwa 1 Prozent der Bruttowertschöpfung in Deutschland erbringen und der Anteil der Beschäftigten bei lediglich 1,2 Prozent liegt, hat die Landwirtschaft wegen ihrer engen Vernetzung mit anderen Wirtschaftsbereichen nach wie vor eine beachtliche volkswirtschaftliche Bedeutung. Zu den 876.000 Beschäftigten (Familienarbeitskräfte, ständige Arbeitskräfte und Saisonarbeitskräfte) in den rund 255.000 landwirtschaftlichen Betrieben, kommen weitere Arbeitskräfte in den vor- und nachgelagerten Bereichen. Im so genannten Agribusiness waren 2022 rund 4,6 Millionen Arbeitnehmer und Arbeitnehmerinnen direkt oder indirekt mit der Herstellung, Verwendung und Weiterverarbeitung landwirtschaftlicher Produkte beschäftigt. Jeder zehnte Arbeitsplatz steht mit der Landwirtschaft in Verbindung. Insbesondere in ländlichen Gebieten sind die Landwirtschaft und ihre angrenzenden, verarbeitenden Bereiche wie Gastronomie, Handwerk und Einzelhandel bedeutende Arbeitgeber und entscheidend für die Erhaltung und nachhaltige Entwicklung des ländlichen Raums. 2022 erwirtschafteten deutsche Landwirtinnen und Landwirte einen Produktionswert von 79,5 Milliarden Euro. Diese enormen Mengen und Summen wurden nicht immer erzeugt. Noch zu Beginn des 20. Jahrhunderts erzeugte ein Landwirt/eine Landwirtin Lebensmittel für die Versorgung von vier Personen, 1950 konnten bereits zehn Menschen und heute sogar rund 140 Personen von den Erträgen versorgt werden. Grund für diese Produktivitätssteigerung sind technische Fortschritte und der Einsatz von hochleistungsstarken Maschinen, Präzisionstechniken, Dünge- und Pflanzenschutzmitteln sowie Fortschritte in der Züchtung. Dabei geht diese Intensivierung nicht spurlos an der Umwelt und ihren Kompartimenten (Boden, Wasser, Luft und Biosphäre) vorbei. Intensivierung hinterlässt Spuren Der Landwirtschaft kommt für den Schutz der Umweltmedien eine hohe Bedeutung und große Verantwortung zu. Schützende Fabrikmauern und abgeschlossene Räume sind nicht vorhanden. Die Landwirtschaft arbeitet in offenen Systemen. Der Einsatz von Maschinen zur Bodenbearbeitung und Ernte sowie die Ausbringung von Pflanzenschutz- oder Düngemitteln findet in der Landschaft statt und beeinflusst den Boden, das Wasser, die Luft und die in der Agrarlandschaft lebenden Tiere und Pflanzen (allgemein Biodiversität ). Die auf Ertragssteigerung ausgerichtete Intensivlandwirtschaft hinterlässt nicht nur eintönige, ausgeräumte Agrarlandschaften. Der Einsatz von schweren Maschinen und die intensive Bodenbearbeitung kann Bodenverdichtungen, eine steigende Gefahr für Wasser- und Winderosionen und einen Verlust der Bodenfruchtbarkeit verursachen. Für Nitratbelastungen des Grundwassers und die Nährstoffüberversorgung ( Eutrophierung ) von Flüssen, Seen und Meeren ist vor allem die intensive Stickstoffdüngung (organisch und mineralisch) verantwortlich. Ausgebrachte Pflanzenschutzmittel und in den Düngemitteln enthaltene Schwermetalle, Schadstoffe und Rückstände von Arzneimitteln aus der Intensivtierhaltung stellen weitere potenzielle Gefahren für terrestrische und aquatische Ökosysteme dar. Weitere Folgen sind der Verlust der Artenvielfalt und der mit Landnutzungsänderungen (vor allem Grünlandumbruch, Moornutzung und Rodung von Wäldern), der Ausbringung von Düngemitteln, der Bodenbearbeitung und Tierhaltung verbundene Ausstoß klimawirksamer Treibhausgase. Im Jahr 2022 betrug der Anteil der Landwirtschaft an den gesamten Treibhausgasemissionen Deutschlands 7,4 Prozent (ohne landwirtschaftliche Landnutzung und Landnutzungsänderungen, ohne Emissionen aus Mineraldüngerproduktion).
BIOPROTA - Internationales Forum Biosphärenmodellierung Endlagerung Ansprechpartner: Alexander Diener, BfS ( Chairman von BIOPROTA 2018–2022) Status: laufend Kosten: 2.600 Euro Mitgliedsbeitrag pro Jahr Der internationale Verbund BIOPROTA existiert seit 22 Jahren und beschäftigt sich mit der Biosphärenmodellierung von Radionukliden, die aus Endlagern für radioaktive Abfälle in die Umwelt freigesetzt werden. Das BfS ist Gründungsmitglied und nutzt die internationalen Forschungsergebnisse für seine eigene fachliche Arbeit. Hier ist als Beispiel die Erstellung der Berechnungsgrundlage für die Endlagerung hochradioaktiver Abfälle in Deutschland zu nennen. Der Verbund BIOPROTA wird von den teilnehmenden Organisationen finanziert. Der Mitgliedsbeitrag deckt die Kosten für das technische Unterstützungsteam von BIOPROTA für die Organisation und Durchführung des Arbeitsprogramms. Zuletzt hatte der Verbund weltweit 27 Mitglieder aus Behörden, Betreibern von Anlagen für die Endlagerung radioaktiver Abfälle, Beraterfirmen und Universitäten. Zielsetzung Im Rahmen von BIOPROTA werden die neuesten Forschungsergebnisse zur Biosphärenmodellierung bei der Endlagerung ausgetauscht und Fragestellungen in einem internationalen Verbund bearbeitet. Es werden die wichtigsten Themen diskutiert, die aus der langfristigen Freisetzung von Radionukliden aus Endlagern resultierend den Umweltschutz und die menschliche Gesundheit betreffen. Zusätzlich bietet die Möglichkeit, einzelne Themen der Endlagerung gezielt gemeinsam zu untersuchen, einen ressourcenschonenden Erkenntnisgewinn. Da einzelne Länder wie z. B. Schweden, Finnland oder Frankreich in der Endlagerung bereits auf eine größere Erfahrung zurückblicken können, profitieren davon auch die Länder, die mit der Thematik weniger vertraut sind. Ergebnisse Vom Netzwerk BIOPROTA wurde bereits umfangreich Literatur veröffentlicht, die von allen Interessierten über die BIOPROTA-Webseite einsehbar ist. Neben den Berichten über die Jahrestreffen, die jeweils alle Vorträge zusammenfassen, gibt es Berichte zu jedem der Einzelthemen, die für Workshops ausgewählt wurden. Der aktuelle Bericht behandelt den Biosphärentransport des dosisrelevanten Radionuklids C -14 (Thorne et al., 2022). Dieser Bericht enthält neben einem Review über das biochemische Verhalten von C -14 während des Transports in den verschiedenen Kompartimenten der Ökosysteme auch Hilfestellungen für den konzeptionellen Modellansatz bei der rechnergestützten Beschreibung des Transportverhaltens. Der bedeutendste Bericht von BIOPROTA ist der Biosphere Modelling and Assessment Programme Report (BIOMASS; IAEA , 2003). Dieser Ratgeber ist das Standardwerk für die systematische Beschreibung und Modellierung der Biosphäre bei der Endlagerung radioaktiver Abfälle. Von den Teilnehmern von BIOPROTA wurde gemeinsam ein Update des Berichts erstellt, um die neuen Erkenntnisse der letzten zwei Dekaden in den BIOMASS -Bericht einfließen zu lassen (Lindborg et al., 2022). Diese Änderungen betreffen u. a. die Verbesserungen in der methodologischen Beschreibung der Biosphärenmodellierung bei der Endlagerung , den Umgang mit Unsicherheiten bei der Modellierung und die Beschreibung der BIOMASS -Methode anhand realer Standorte. Literatur IAEA (2003). Reference Biospheres for Solid Radioactive Waste Disposal, Report of BIOMASS Theme 1 of the BIOsphere Modelling and ASSessment (BIOMASS) Programme. IAEA -BIOMASS-6, Vienna, 2003. Lindborg, T. et al. (2022). Safety assessments undertaken using the BIOMASS methodology: lessons learnt and methodological enhancements. Journal of Radiological Protection, 42, 020503. Thorne, M., Ikonen, A. and K. Smith (2022). Transport of C -14 in Terrestrial and Freshwater Environments: Final Report. Version 1.0, 7 December 2022. Stand: 25.04.2024
Beinhaltet bodenkundliche Punktdaten des Fachinformationssystems (FIS) Boden. Es handelt sich um bodenkundlich relevante Informationen, die beispielsweise während der Geländearbeit in Schürfgruben oder Pürckhauerbohrungen erhoben werden.
Origin | Count |
---|---|
Bund | 567 |
Land | 43 |
Type | Count |
---|---|
Ereignis | 2 |
Förderprogramm | 490 |
Text | 76 |
Umweltprüfung | 2 |
unbekannt | 36 |
License | Count |
---|---|
geschlossen | 92 |
offen | 510 |
unbekannt | 4 |
Language | Count |
---|---|
Deutsch | 484 |
Englisch | 183 |
Resource type | Count |
---|---|
Archiv | 2 |
Bild | 5 |
Datei | 2 |
Dokument | 18 |
Keine | 412 |
Unbekannt | 1 |
Webdienst | 4 |
Webseite | 182 |
Topic | Count |
---|---|
Boden | 535 |
Lebewesen & Lebensräume | 606 |
Luft | 434 |
Mensch & Umwelt | 606 |
Wasser | 443 |
Weitere | 585 |