API src

Found 70 results.

Related terms

Fachgespräch Wirkmechanismen elektrischer, magnetischer und elektromagnetischer Felder auf biologische Systeme – Von der Molekulardynamik-Simulation bis zum Experiment

Fachgespräch Wirkmechanismen elektrischer, magnetischer und elektromagnetischer Felder auf biologische Systeme – Von der Molekulardynamik-Simulation bis zum Experiment Vom 23. bis 25. Mai 2022 fand in München ein vom BfS organisiertes internationales Fachgespräch zu Wirkmechanismen elektrischer und magnetischer Felder ( z.B. der Stromversorgung) und elektromagnetischer Felder ( z.B. des Mobilfunks) auf Zellen, Organe und andere biologische Systeme, statt. Internationale Expert*innen aus den Fachgebieten Dosimetrie , Biologie und theoretische Biophysik präsentierten den aktuellen Stand der Forschung im Bereich der Wechselwirkungen von elektrischen, magnetischen und elektromagnetischen Feldern mit Biosystemen. Ausgehend von großen Gewebestrukturen wie der Haut über einzelne Zellen bis hin zu Proteinen und Quanteneffekten wurden Wirkmechanismen dargestellt und interdisziplinär diskutiert. Die beobachteten Effektstärken, insbesondere von Magnetfeldern, sind sehr klein im Vergleich zu thermischen Effekten, die uns täglich umgeben. Es ist weitere Forschung notwendig, um die Wirkung von elektromagnetischen Feldern auf komplexe biologische Prozesse besser zu verstehen. Worum geht es? In den meisten Ländern der Welt ist die Bevölkerung mittlerweile nahezu ununterbrochen exponiert gegenüber vom Menschen verursachten elektromagnetischen Feldern. Nach wie vor wird erforscht, ob schwache Magnetfelder (unterhalb der Grenzwerte) biologische Effekte auslösen können, die möglicherweise von gesundheitlicher Relevanz sind. Ein erster Schritt zu einem Verständnis gesundheitlicher Wirkungen ist die Identifikation der physikalischen Wechselwirkungen von elektrischen, magnetischen und elektromagnetischen Feldern ( EMF ) mit Teilen des menschlichen oder tierischen Körpers. Diese können sehr unterschiedliche Größen haben: von Gewebestrukturen wie etwa der Haut über einzelne Zellen bis zu Proteinen und schließlich den Eigendrehimpulsen ( sog. Spins) von ungepaarten Elektronen in Molekülen (Radikale). Im Rahmen des Fachgesprächs diskutierten international anerkannte Expert*innen aus Dosimetrie , Biologie und theoretischer Biophysik den aktuellen Stand der Forschung und offene Fragestellungen. Wie ist die Ausgangssituation? Seit Jahrzehnten werden Studien initiiert, die einen Zusammenhang von schwachen magnetischen Feldern (unterhalb bestehender internationaler Grenzwertempfehlungen) und möglichen gesundheitsrelevanten Wirkungen untersuchen. Vereinzelt gibt es in epidemiologischen oder experimentellen Studien Hinweise darauf. Mechanismen zur Erklärung solcher Wirkungen sind bisher nicht nachgewiesen. Seit Jahren werden verschiedene biophysikalische Effekte erforscht. Einige davon stehen momentan im Fokus, weil es neue Erkenntnisse gibt. Dazu zählen unter anderem der Radikalpaar-Mechanismus (bei diesem ändern äußere Magnetfelder chemische Reaktionen, bei denen Moleküle mit ungepaarten Elektronen beteiligt sind), die Protein-Fehlfaltung (die Entwicklung von großen Molekülen in einen stabilen Zustand, der nicht dem natürlichen Zustand entspricht) oder die Reaktion neuronaler Netzwerke (in Netzwerken zusammenhängende Nervenzellen) auf äußere Felder. Welche Ziele verfolgte das Fachgespräch? Das Fachgespräch diente als Austausch zwischen Expert*innen aus Fachgebieten, die das volle Spektrum vom Molekül bis zum Menschen abdecken. Neben dem aktuellen Stand der Forschung waren die Identifikation offener Fragen und die interdisziplinäre Diskussion zentrale Anliegen des Fachgesprächs. Folgende Punkte fanden dabei besondere Beachtung: Was sind die derzeit am meisten diskutierten und nicht geklärten biophysikalischen Wirkmechanismen, die gesundheitsrelevant sein könnten? Welche theoretischen und experimentellen Methoden werden derzeit für deren Erforschung verwendet? Welche Rolle spielt das Rechnen mit Supercomputern in der Erforschung der Wirkmechanismen? An dem hybrid abgehaltenen Fachgespräch nahmen über 50 Expert*innen (davon 22 in Präsenz) aus sieben Ländern (Deutschland, Österreich, Frankreich, Großbritannien, Finnland, Italien und Japan) teil. Welche Ergebnisse lieferte das Fachgespräch? Aufgrund der sich auf verschiedenen Größenbereichen (Organe, einzelne Zellen, Proteine) abspielenden Effekte werden die Ergebnisse in drei Themenkomplexen zusammenfasst: Effekte auf atomarer oder subatomarer Ebene (Quanteneffekte), Wirkungen auf Proteinfaltung und Wirkungen auf Körpergewebe. Effekte auf atomarer oder subatomarer Ebene (Quanteneffekte) Den Radikalpaar-Mechanismus versteht die Forschung inzwischen relativ gut, verglichen mit anderen möglichen nicht-thermischen Wechselwirkungseffekten von Magnetfeldern und biologischen Systemen. Das liegt vor allem an Studien zum Orientierungssinn verschiedener Tierarten. Die in Radikalpaaren auftretenden Wechselbeziehungen (Fluktuationen) zwischen Spin-Systemen bewegen sich hin und her zwischen zwei charakteristischen Zuständen: dem Singlett-Zustand und dem Triplett-Zustand. Ein externes Magnetfeld , wie z.B. das Erdmagnetfeld, kann die auftretenden Fluktuationsraten und damit chemische Reaktionen beeinflussen, deren Endprodukte vom Spin-Zustand der beteiligten Radikale abhängen. In der Untersuchung des Radikalpaar-Mechanismus bieten kombinierte Quantenmechanik- und Molekulardynamik-Simulationen einen - im Experiment unzugänglichen - Einblick in die Abläufe der beteiligten Reaktionen, weshalb man vom "rechnergestützten Mikroskop" spricht. Bisher simulierte Systeme zeigen sehr kurze Radikal-Lebensdauern, welche die bei Zugvögeln beobachtete Empfindlichkeit gegenüber Magnetfeldern nicht vollständig erklären können. Die bei Tieren bekannten Radikalpaar-Reaktionen benötigen Licht und entsprechende Lichtrezeptoren, die der Mensch nicht besitzt. Bisher sind im Menschen somit keine chemischen Prozesse bekannt, bei denen der Radikalpaar-Mechanismus eine Rolle spielen könnte. Es wird allerdings weiter dazu geforscht. Wirkung auf Proteinfaltung Generell ist die Wirkung von schwachen EMF auf große Moleküle wie Eiweiße äußerst gering im Vergleich zur üblichen Molekülbewegung bei Raumtemperatur (Brownsche Molekularbewegung). Das Einbinden von Magnetfeldern in Simulationsstudien bedarf weiterer Forschung. Eine offene Frage ist, wie Magnetfelder molekulare Transportprozesse beeinflussen und ob Teile von Molekülen andere Moleküle binden können. Eine große Schwierigkeit stellt nach wie vor dar, dass Simulationen auf Atomebene nur kleinste Sekundenbruchteile berechnen können, aber biologische Prozesse Sekunden dauern. Wirkung auf Körpergewebe Um ermitteln zu können, wie groß EMF sind, die in biologischem Gewebe erzeugt werden, wird insbesondere bei niedrigen EMF -Frequenzen (unterhalb von 1 MHz ) auf computergestützte Verfahren zurückgegriffen. Dafür ist eine Verbesserung der Datenlage hinsichtlich der dielektrischen Eigenschaften von Geweben erforderlich. Mittels bildgebender Verfahren, wie z.B. der Magnetresonanztomographie, ist es möglich, sehr detaillierte Körpermodelle zu erstellen, mit denen z.B. Schwellenströme zur Erzeugung von Phosphenen (flackernde Lichterscheinungen am Blickfeldrand bei hohen Feldstärken) sehr realistisch simuliert werden können. Eine offene Frage besteht hinsichtlich der mikroskopischen Größenskala, bis zu der man noch von Leitfähigkeit und Permeabilität als makroskopischen Größen sprechen kann: Ist es das Mitochondrium (Kraftwerk der Zelle) oder doch die ganze Zelle? Stand: 19.02.2025

Teilprojekt C

Das Projekt "Teilprojekt C" wird vom Umweltbundesamt gefördert und von Karlsruher Institut für Technologie (KIT), Institut für funktionelle Grenzflächen (IFG), Abteilung Bioprozesstechnik und Biosysteme (BEBS) durchgeführt. Wir werden einen automatisierten Gegenstrom-Fluss-Reaktor für die enzymatische Glykansynthese als genuine biohybride Plattformtechnologie entwickeln. Dazu werden Mikrogel-immobilisierte Enzymkaskaden in einen neuen Typ eines kontinuierlich betriebenen und kompartimentierten biokatalytischen Flussreaktor integriert, in dem die Substrat- und Produktflüsse in Gegenstrom Richtungen geleitet werden. Die Herausforderungen in der enzymatischen Glykansynthese gelten generell auch für die Produktion von Feinchemikalien mit Enzymkaskaden gelten. Unsere Lösungen beinhalten skalierbare Konzepte für die Immobilisierung von Enzymen - speziell Glykosyltransferasen, die maßgeschneiderte Kompartimentierung von immobilisierten Enzymkaskaden (IEK) in Kombination mit in situ Entfernung der Produkte sowie das Design eines automatisierten kontinuierlichen Flussreaktors mit hohen Raum-Zeit-Ausbeuten für die laufenden Synthesen. Für die automatisierte enzymatische Glykansynthese verfolgen wir folgende Zielsetzungen: i) Synthese von funktionellen Mikrogelen und Immobilisierung von Glykosyltransferasen in diesen Mikrogelen und deren Kombination zu Kaskaden; ii) Design und Konstruktion eines Membran-basierten Reaktorsystems mit integrierten Produktisolierung durch multiple entgegen gerichtete Substrat - und Produktströme; iii) Automatisierung und in-silico Simulation der Mikrogel Enzymkaskaden für die Optimierung von Prozessbedingungen; iii) Für die Optimierung und Prozessvalidierung wird eine schnelle at-line Glykananalyse entwickelt und System-integrierte physikalische und Simulationsbasierte virtuelle Sensoren angewendet. Zusammenfassend wird unser Projekt zur Förderpolitik beitragen, indem eine neuartige Biohybridtechnologie mit Mikrogel-immobilisierten Enzymkaskaden als Reaktionskompartimente und deren Integration in einen automatisierten und kompartimentierten Gegenstrom Flussreaktor zur Synthese von Glykanen entwickelt wird.

Teilprojekt B

Das Projekt "Teilprojekt B" wird vom Umweltbundesamt gefördert und von Helmholtz-Zentrum Dresden-Roßendorf e.V., Institut für Ressourcenökologie durchgeführt. Das Verbundprojekt FENABIUM II zielt auf das grundlegende Verständnis der Wechselwirkungen zwischen f-Elementen mit bekannten und in biologischen Systemen häufig vorkommenden Strukturmotiven. Derartige Wechselwirkungen sind von großer Bedeutung für die Einschätzung einer Verbreitung dieser Elemente in Geo- und Biosystemen, insbesondere nach einer unbeabsichtigten Freisetzung. Im Hinblick auf die erhöhten Gesundheitsrisiken infolge ihrer radioaktiven Strahlung und Schwermetalltoxizität ist dabei insbesondere ein Eintrag von Actinoiden (An) in die Nahrungskette von besonderer Relevanz. Im hier konzipierten Verbundprojekt werden entsprechende bioinspirierte Modellverbindungen aufgebaut und die gebildeten f Elementkomplexe strukturell charakterisiert, um ein grundlegendes Verständnis der vorherrschenden Wechselwirkungen zu erlangen. Studien an Modellliganden sollen auf ausgewählte Aminosäuren übertragen werden, um einen grundlegenden Transfer der Erkenntnisse in biologische Gesamtsysteme zu erlauben. Die hierzu im Mittelpunkt stehende Biomolekülklasse werden Caseine sein, die aus quantitativer Sicht wichtigste Gruppe von Milchproteinen. Die in Caseinen zahlreich vorkommenden Phosphoserinreste sind potenzielle Bindungsstellen für eine Koordination von Metallionen. Ein weiterer wesentlicher Aspekt des Verbundprojektes ist die Ausbildung und Förderung des wissenschaftlichen Nachwuchses. Neben der Ausbildung der direkt an FENABIUM II beteiligten Doktorand:innen sind weiterführende Maßnahmen wie zwei Summer Schools und eine Wissensvermittlung in Form eines Radioökologie Open Online Moduls (ROOM) vorgesehen. Ferner ist eine Intensivierung der Kooperation mit Dr. Michel Meyer, Prof. David Mills, Dr. Takayuki Kumada und Prof. Vincenzo Fogliano in Form von Forschungsaufenthalten von Doktorand:innen vorgesehen.

Teilprojekt A

Das Projekt "Teilprojekt A" wird vom Umweltbundesamt gefördert und von Technische Universität Dresden, Fachrichtung Chemie und Lebensmittelchemie, Professur für Anorganische Molekülchemie durchgeführt. Das Verbundprojekt FENABIUM II zielt auf das grundlegende Verständnis der Wechselwirkungen zwischen f-Elementen mit bekannten und in biologischen Systemen häufig vorkommenden Strukturmotiven. Derartige Wechselwirkungen sind von großer Bedeutung für die Einschätzung einer Verbreitung dieser Elemente in Geo- und Biosystemen, insbesondere nach einer unbeabsichtigten Freisetzung. Im Hinblick auf die potenziellen Gesundheitsrisiken infolge ihrer radioaktiven Strahlung und Schwermetalltoxizität ist dabei insbesondere ein Eintrag von Actinoiden (An) in die Nahrungskette von besonderer Relevanz. Im hier konzipierten Verbundprojekt werden entsprechende bioinspirierte Modellverbindungen aufgebaut, die gebildeten f-Elementkomplexe strukturell charakterisiert und deren thermodynamische Kenngrößen bestimmt, um ein grundlegendes Verständnis der vorherrschenden Wechselwirkungen zu erlangen. Studien an ausgewählten Aminosäuren und Peptidsequenzen sowie an lebensmittelrelevanten Proteinen werden, parallel zu den gewonnenen Erkenntnissen an den Modellliganden, einen grundlegenden Transfer der Erkenntnisse in biologische Gesamtsysteme erlauben. Die hierzu im Mittelpunkt stehende Biomolekülklasse stellen Caseine dar, die aus quantitativer Sicht wichtigste Gruppe von Milchproteinen. Die in Caseinen zahlreich vorkommenden Phosphoserinreste sind potenzielle Bindungsstellen für eine Koordination von Metallionen. Darüber hinaus wird die im biologischen System Milch ablaufende Assoziation der individuellen Caseine zu sogenannten Caseinmicellen und deren Einfluss auf das Bindungsverhalten gegenüber f-Elementen untersucht. Einen weiteren Schwerpunkt des Verbundprojektes bildet die Ausbildung und Förderung des wissenschaftlichen Nachwuchses.

Mobilisierung von Eisen in Vulkanasche während des Transports in Eruptionssäulen

Das Projekt "Mobilisierung von Eisen in Vulkanasche während des Transports in Eruptionssäulen" wird vom Umweltbundesamt gefördert und von Karlsruher Institut für Technologie (KIT), Institut für Meteorologie und Klimaforschung, Department Troposphärenforschung durchgeführt. Vulkanische Asche wurde vor kurzem als eines potenziellen Düngemittel für Ozeanoberfläche identifiziert worden. Jedoch werden die Prozesse, die Umwandlung von unlöslichen zu löslichen Eisen ermöglichen Fe-Verbindungen in der Asche wenig verstanden bisher. Diese Studie untersucht die vulkanische Wolke Kontrollen auf Asche Eisenlöslichkeit. Ich kombiniere Vulkanausbruch Spalte Modellierung mit hohen, mittleren und niedrigen Temperaturen chemische Reaktionen in Eruption Wolken, um besser einschränken Vulkanasche Eisen Mobilisierung unter Berücksichtigung der Wechselwirkung verschiedener Arten in einem Fest-Flüssig-Gas-System. Zuerst benutze ich ATHAM die Plum Dynamik und Mikrophysik lösen. Zweitens, entwickle ich eine Chemie und Thermodynamik Code, der die Umgebungsbedingungen (in-plume Temperatur, Druck, Feuchtigkeit usw.) bekommt von den ATHAM Ausgänge und simuliert die gas-ash/aerosol Interaktionen mit speziellem Fokus auf Eisen-Chemie. Dieses Modell basiert auf einer Reihe von gekoppelten Massenbilanzgleichungen für verschiedene Arten der Eruptionssäule. Begriffe, die in diesen Gleichungen basieren auf physikalisch-chemischen Wechselwirkungen von gasförmigen, flüssigen und festen Arten parametriert. Einige der wichtigsten Prozesse in dieser Studie nicht berücksichtigt sind: Gas-Scavenging durch Asche, Wasser und Eis, Auflösung von Asche in der flüssigen Phase und Eisen wässrigen Chemie. Eine Reihe von Laborexperimenten auf Asche wird auch als die Ergebnisse der Modellierung gegen echte Ascheproben und Beobachtung zu bewerten. Schließlich schlage ich die günstige vulkanischen Einstellung und in-plume Prozesse für Asche Eisen Mobilisierung.

Untersuchungen zu den Wechselwirkungen von f-Elementen mit biologisch relevanten Strukturmotiven: Ableitung grundlegender Struktur-Wirkprinzipien für eine Mobilisierung in der Umwelt

Das Projekt "Untersuchungen zu den Wechselwirkungen von f-Elementen mit biologisch relevanten Strukturmotiven: Ableitung grundlegender Struktur-Wirkprinzipien für eine Mobilisierung in der Umwelt" wird vom Umweltbundesamt gefördert und von Technische Universität Dresden, Fachrichtung Chemie und Lebensmittelchemie, Professur für Anorganische Molekülchemie durchgeführt. Das Verbundprojekt FENABIUM II zielt auf das grundlegende Verständnis der Wechselwirkungen zwischen f-Elementen mit bekannten und in biologischen Systemen häufig vorkommenden Strukturmotiven. Derartige Wechselwirkungen sind von großer Bedeutung für die Einschätzung einer Verbreitung dieser Elemente in Geo- und Biosystemen, insbesondere nach einer unbeabsichtigten Freisetzung. Im Hinblick auf die potenziellen Gesundheitsrisiken infolge ihrer radioaktiven Strahlung und Schwermetalltoxizität ist dabei insbesondere ein Eintrag von Actinoiden (An) in die Nahrungskette von besonderer Relevanz. Im hier konzipierten Verbundprojekt werden entsprechende bioinspirierte Modellverbindungen aufgebaut, die gebildeten f-Elementkomplexe strukturell charakterisiert und deren thermodynamische Kenngrößen bestimmt, um ein grundlegendes Verständnis der vorherrschenden Wechselwirkungen zu erlangen. Studien an ausgewählten Aminosäuren und Peptidsequenzen sowie an lebensmittelrelevanten Proteinen werden, parallel zu den gewonnenen Erkenntnissen an den Modellliganden, einen grundlegenden Transfer der Erkenntnisse in biologische Gesamtsysteme erlauben. Die hierzu im Mittelpunkt stehende Biomolekülklasse stellen Caseine dar, die aus quantitativer Sicht wichtigste Gruppe von Milchproteinen. Die in Caseinen zahlreich vorkommenden Phosphoserinreste sind potenzielle Bindungsstellen für eine Koordination von Metallionen. Darüber hinaus wird die im biologischen System Milch ablaufende Assoziation der individuellen Caseine zu sogenannten Caseinmicellen und deren Einfluss auf das Bindungsverhalten gegenüber f-Elementen untersucht. Einen weiteren Schwerpunkt des Verbundprojektes bildet die Ausbildung und Förderung des wissenschaftlichen Nachwuchses.

Nicht-thermische Beeinflussung von Biosystemen durch Millimeterwellen

Das Projekt "Nicht-thermische Beeinflussung von Biosystemen durch Millimeterwellen" wird vom Umweltbundesamt gefördert und von Max-Planck-Gesellschaft zur Förderung der Wissenschaften, Max-Planck-Institut für Festkörperforschung durchgeführt.

Anwendungspotentiale für Biokohle aus organischen Abfällen in Albanien unter besonderer Berücksichtigung der Wasseraufbereitung

Das Projekt "Anwendungspotentiale für Biokohle aus organischen Abfällen in Albanien unter besonderer Berücksichtigung der Wasseraufbereitung" wird vom Umweltbundesamt gefördert und von Justus-Liebig-Universität Gießen, Institut für Bodenkunde und Bodenerhaltung, Research Centre for BioSystems, Land Use and Nutrition durchgeführt.

Steuerung und Bilanzierung von Kohlenstoffakquisition, Wasserumsatz und Wachstum im Mistel-Wirt-System in Abhängigkeit von Klima, Wasserversorgung und Nährstoffangebot

Das Projekt "Steuerung und Bilanzierung von Kohlenstoffakquisition, Wasserumsatz und Wachstum im Mistel-Wirt-System in Abhängigkeit von Klima, Wasserversorgung und Nährstoffangebot" wird vom Umweltbundesamt gefördert und von Universität Hohenheim, Institut für Botanik, Botanischer Garten durchgeführt. Im ersten Schritt des Vorhabens sollen die Reaktionsmuster des CO2- und H2O Blattgaswechsels von Mistel-Wirt-Paaren bezüglich Mikroklima und Lebensform des Wirts (immer- oder wechselgrün) im Jahreslauf möglichst kontinuierlich untersucht werden, um diese bis heute offen gebliebenen Informationslücke zu schliessen. Dabei soll die Hypothese überprüft werden, derzufolge Misteln vielfach mehr als ihre Wirte transpirieren, um über den Transpirationsstrom Nährstoffe des Wirtes, insbesondere Stickstoff, an sich zu binden. Es sollen hierzu auch Düngungsversuche an getopften Mistel-Wirt-Paaren durchgeführt und dabei besonderes Augenmerk auf die Nettophotosynthese und Wasserumsatz gelegt werden. Weiterhin wird die unterschiedliche Reaktion der beiden pflanzlichen Komponenten auf Wasserstress untersucht. Im fortgeschrittenen Stadium der Untersuchungen ist es das Ziel, über Kronenphotosynthese und deren Bilanzierung die C-Allokationsmuster des Parasiten zu bestimmen. Aufgrund des hohen Mistelbefalls von Forstbeständen und Obstbäumen, insbesondere im Raum Baden-Württemberg, ist diese Grundlagenforschung unmittelbar vor einem angewandten Hintergrund zu sehen.

Evolutionaere Algorithmensteuerung und Optimierung dynamischer und thermodynamischer Prozesse

Das Projekt "Evolutionaere Algorithmensteuerung und Optimierung dynamischer und thermodynamischer Prozesse" wird vom Umweltbundesamt gefördert und von Universität Berlin (Humboldt-Univ.), Institut für Physik, Lehrstuhl für Statistische Physik und Nichtlineare Dynamik durchgeführt. Erarbeitung neuer Strategien zur Optimierung komplexer Systeme;Entropie;Information und Komplexitaetsmasse, Analyse komplexer Zeitserien mit Anwendungen auf biologische, oekologische und meteorologische Systeme, Anwendung von Methoden der optimalen Steuerung auf die Kontrolle und Optimierung komplexer Systeme

1 2 3 4 5 6 7