API src

Found 247 results.

Related terms

Linking micro-aggregation to the sequestration of organic pollutants in soils

Das Projekt "Linking micro-aggregation to the sequestration of organic pollutants in soils" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: Rheinische Friedrich-Wilhelms-Universität Bonn, Institut für Nutzpflanzenwissenschaften und Ressourcenschutz (INRES), Bereich Bodenwissenschaften, Allgemeine Bodenkunde und Bodenökologie.Physicochemical and steric properties of organic chemicals on the one hand and physicochemical surface properties and structural properties of the sorbent on the other hand determine sorptive interactions at biogeochemical interfaces. In order to gain a mechanistic understanding of these interactions we want to combine macroscopic, micro-calorimetric, and spectroscopic methods. We hypothesise that sorption and distribution of a polar organic chemical at biogeochemical interfaces is either determined by the molecules hydrophobic R-groups (?R-determined?) or its functional groups (?F-determined?). To test our hypothesis we will study sorption of bisphenol A and fenhexamid (R-determined chemicals), and bentazon and naproxen (F-determined chemicals) in pure systems of minerals (kaolinite, illite, gibbsite, and quartz), in model substances for biofilms (polygalacturonic acid and dextran), in combined systems of mineral phases with organic layers, and in topsoils and subsoils. Interpretation and modelling of sorption isotherms and sorption kinetics derived from batch experiments together with results from diffusion experiments with polysugars of variable crosslinking will provide macroscopic insight into sorptive interactions. Information regarding the thermodynamics of sorption will by derived from micro-calorimetry. Spectroscopic (ATR FTIR, NMR) measurements deliver information on molecular interactions and structure.

Transport und Verbleib von Mikroplastik in Süßwassersedimenten

Das Projekt "Transport und Verbleib von Mikroplastik in Süßwassersedimenten" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: Rheinisch-Westfälische Technische Hochschule Aachen University, Fachgruppe für Geowissenschaften und Geographie, Lehrstuhl für Ingenieurgeologie und Hydrogeologie.Mikroplastik (MP, Plastikteile kleiner als 5 mm) werden als neu aufkommende Schadstoffe betrachtet und neuste Studien belegen die potentielle Gefahr von MP für die menschliche Gesundheit und die Umwelt. Die Forschung hat sich bisher mehrheitlich auf die Untersuchung von MP in der marinen Umgebung konzentriert. Allerdings konnte MP auch vermehrt Süßwasser und -sedimenten weltweit nachgewiesen werden. Als Primärpartikel oder Sekundärprodukte aus dem Abbau von Makroplastik kann MP entweder direkt toxisch wirken oder als Überträger von sorbierten Schadstoffen fungieren. Neuste Studien belegen außerdem, dass MP in die menschliche Nahrungskette eindringen kann. Weiterhin können die dem MP beigefügten endokrinen Disruptoren wie Bisphenol A (BPA) and Nonylphenol (NP) während der Transportprozesse an das Süßwasser abgegeben werden. Dabei können Flussbettsedimente potentielle Hotspots für die Akkumulation von MP und deren Additive darstellen.Das Hauptziel dieses Projektes ist, die Akkumulation und den Transport von MP in Süßwasser und -sedimenten näher zu untersuchen. Dabei soll den folgenden beiden grundsätzlichen Fragen nachgegangen werden:(i) Welche Prozesse kontrollieren Transport und Akkumulation von MP verschiedener Größe, Dichte und Zusammensetzung und wie bilden sich sogenannte Mikroplastik-Hotspots in der hyporheischen Zone?(ii) Wie können Transport und Akkumulation von MP sowie die Freisetzung von Additiven wie BPA und NP unter variablen Umweltbedingungen beschrieben und vorhergesagt werden? Zwei Arbeitspakete (WP) sollen helfen, diese Fragen zu beantworten:WP1 befasst sich mit den Auswirkungen der grundlegenden Eigenschaften von MP wie Größe, Form, Zusammensetzung, Dichte, Auftrieb auf deren Transport und untersucht systematisch, wie verschiedene Arten von MP in der hyporheischen Zone (hier Flussbettsedimente) unter diversen hydrodynamischen und morphologischen Bedingungen akkumulieren. Dafür sollen Versuche in künstlichen Abflusskanälen (artificial flumes) durchgeführt werden. In diesen Versuchen werden repräsentative hydrodynamische und morphologische Bedingungen geschaffen, um eine Spannbreite an primären und sekundären MP zu testen, ihr Transportverhalten zu beschrieben und die Freisetzung von Additiven näher zu untersuchen. MP wird mit verschiedensten Methoden charakterisiert, z.B. mit single particle ICP-MS zur Bestimmung der Größe oder FT-IR zur Bestimmung des vorherrschenden Polymers. Während der Flume-Experimente werden die Eigenschaften der Sedimente, des Porenwassers und der Biofilme, sowie die Konzentration an BPA und NP gemessen und später analysiert, um die Reaktivität der Akkumulationshotspots zu bestimmen.WP2 beinhaltet die Entwicklung und Anwendung eines Models, um MP-Transport sowie die Freisetzung von Additiven in der hyporheischen Zone vorherzusagen. Da Modelle, die momentan im Bereich Stofftransport verwendet werden nicht für MP ausgelegt sind, soll die Lattice-Boltzmann Methode als neuer Modellansatz verfolgt werden.

Algenbasierte, warmumformbare Naturfaser-Matrix-Halbzeuge mit duromerem Eigenschaftsprofil, Teilvorhaben 2: Epoxidierung und Härterentwicklung

Das Projekt "Algenbasierte, warmumformbare Naturfaser-Matrix-Halbzeuge mit duromerem Eigenschaftsprofil, Teilvorhaben 2: Epoxidierung und Härterentwicklung" wird/wurde gefördert durch: Bundesministerium für Ernährung und Landwirtschaft. Es wird/wurde ausgeführt durch: HOBUM Oleochemicals GmbH.Epoxidharze finden vielfältige Anwendung in der industriellen Fertigung, und a. als duromere Matrixharze für FVK. Bisphenol A stellt dabei die Hauptchemikalie der Epoxidharzchemie dar; sie ist allerdings noch nicht biobasiert zugänglich. Zudem wurde die Verbindung als besonders besorgniserregend mit reproduktionstoxischen und endokrin schädigenden Eigenschaften eingestuft. Ein Verbot für Herstellung, Inverkehrbringen und Verwenden ist daher langfristig sehr wahrscheinlich und damit auch die Suche nach Bisphenol A-Substituten für die Reaktivharzindustrie alternativlos. Tannine (Polyphenole) sind in vielerlei Hinsicht gute Bisphenol A-Alternativen. Sie kommen in Landpflanzen, aber auch in Makroalgen vor, deren Feedstock-Potenzial in diesem Zusammenhang allerdings bei weitem nicht ausgeschöpft ist. AlgoForm setzt sich daher die Entwicklung eines duromeren Epoxidharzes auf Basis algenbasierter Phlorotannine zum Ziel. Das Harz soll ferner zur Herstellung faserverstärkter Kunststoffe im Resin Transfer Moulding zum Einsatz kommen, das Faserhalbzeug dabei auf Flachs beruhen. Die Matrix soll durch Wahl geeigneter Härter und Katalysatoren zusätzlich chemisch so gestaltet sein, dass sie nach Aushärtung als Vitrimer vorliegt, also als Duromer, welches in der Hitze aufgrund labiler kovalenter Bindungen trotzdem umgeformt werden kann. Auf diese Weise werden 'duromere Organobleche' zugänglich, die nicht nur eine ^der Herstellung nachgelagerte Umformung in die Endkontur erlauben, sondern der Prepregverarbeitung vergleichbare Möglichkeiten der FVK-Erzeugung: Da Vitrimere mit sich selbst wieder chemische Bindungen knüpfen können, kann das Schichten und das Ausrichten der FVK-Platten bzgl. einer konkreten Lasteinleitung ohne Zeitdruck bei Raumtemperatur erfolgen; die Konsolidierung findet dann erst unter Wärme und Druck statt. Dies ermöglicht in Summe die hochflexible Produktion hochperformanter Multimaterialsysteme aus nachhaltigen Rohstoffen.

Algenbasierte, warmumformbare Naturfaser-Matrix-Halbzeuge mit duromerem Eigenschaftsprofil, Teilvorhaben 1: Rohstofferzeugung und Untersuchung der Materialeigenschaften

Das Projekt "Algenbasierte, warmumformbare Naturfaser-Matrix-Halbzeuge mit duromerem Eigenschaftsprofil, Teilvorhaben 1: Rohstofferzeugung und Untersuchung der Materialeigenschaften" wird/wurde gefördert durch: Bundesministerium für Ernährung und Landwirtschaft. Es wird/wurde ausgeführt durch: Universität Kassel, Institut für Produktionstechnik und Logistik, Fachgebiet Trennende und Fügende Fertigungsverfahren.Epoxidharze finden vielfältige Anwendung in der industriellen Fertigung, und a. als duromere Matrixharze für FVK. Bisphenol A stellt dabei die Hauptchemikalie der Epoxidharzchemie dar; sie ist allerdings noch nicht biobasiert zugänglich. Zudem wurde die Verbindung als besonders besorgniserregend mit reproduktionstoxischen und endokrin schädigenden Eigenschaften eingestuft. Ein Verbot für Herstellung, Inverkehrbringen und Verwenden ist daher langfristig sehr wahrscheinlich und damit auch die Suche nach Bisphenol A-Substituten für die Reaktivharzindustrie alternativlos. Tannine (Polyphenole) sind in vielerlei Hinsicht gute Bisphenol A-Alternativen. Sie kommen in Landpflanzen, aber auch in Makroalgen vor, deren Feedstock-Potenzial in diesem Zusammenhang allerdings bei weitem nicht ausgeschöpft ist. AlgoForm setzt sich daher die Entwicklung eines duromeren Epoxidharzes auf Basis algenbasierter Phlorotannine zum Ziel. Das Harz soll ferner zur Herstellung faserverstärkter Kunststoffe im Resin Transfer Moulding zum Einsatz kommen, das Faserhalbzeug dabei auf Flachs beruhen. Die Matrix soll durch Wahl geeigneter Härter und Katalysatoren zusätzlich chemisch so gestaltet sein, dass sie nach Aushärtung als Vitrimer vorliegt, also als Duromer, welches in der Hitze aufgrund labiler kovalenter Bindungen trotzdem umgeformt werden kann. Auf diese Weise werden 'duromere Organobleche' zugänglich, die nicht nur eine ^der Herstellung nachgelagerte Umformung in die Endkontur erlauben, sondern der Prepregverarbeitung vergleichbare Möglichkeiten der FVK-Erzeugung: Da Vitrimere mit sich selbst wieder chemische Bindungen knüpfen können, kann das Schichten und das Ausrichten der FVK-Platten bzgl. einer konkreten Lasteinleitung ohne Zeitdruck bei Raumtemperatur erfolgen; die Konsolidierung findet dann erst unter Wärme und Druck statt. Dies ermöglicht in Summe die hochflexible Produktion hochperformanter Multimaterialsysteme aus nachhaltigen Rohstoffen.

Algenbasierte, warmumformbare Naturfaser-Matrix-Halbzeuge mit duromerem Eigenschaftsprofil

Das Projekt "Algenbasierte, warmumformbare Naturfaser-Matrix-Halbzeuge mit duromerem Eigenschaftsprofil" wird/wurde ausgeführt durch: Universität Kassel, Institut für Produktionstechnik und Logistik, Fachgebiet Trennende und Fügende Fertigungsverfahren.Epoxidharze finden vielfältige Anwendung in der industriellen Fertigung, und a. als duromere Matrixharze für FVK. Bisphenol A stellt dabei die Hauptchemikalie der Epoxidharzchemie dar; sie ist allerdings noch nicht biobasiert zugänglich. Zudem wurde die Verbindung als besonders besorgniserregend mit reproduktionstoxischen und endokrin schädigenden Eigenschaften eingestuft. Ein Verbot für Herstellung, Inverkehrbringen und Verwenden ist daher langfristig sehr wahrscheinlich und damit auch die Suche nach Bisphenol A-Substituten für die Reaktivharzindustrie alternativlos. Tannine (Polyphenole) sind in vielerlei Hinsicht gute Bisphenol A-Alternativen. Sie kommen in Landpflanzen, aber auch in Makroalgen vor, deren Feedstock-Potenzial in diesem Zusammenhang allerdings bei weitem nicht ausgeschöpft ist. AlgoForm setzt sich daher die Entwicklung eines duromeren Epoxidharzes auf Basis algenbasierter Phlorotannine zum Ziel. Das Harz soll ferner zur Herstellung faserverstärkter Kunststoffe im Resin Transfer Moulding zum Einsatz kommen, das Faserhalbzeug dabei auf Flachs beruhen. Die Matrix soll durch Wahl geeigneter Härter und Katalysatoren zusätzlich chemisch so gestaltet sein, dass sie nach Aushärtung als Vitrimer vorliegt, also als Duromer, welches in der Hitze aufgrund labiler kovalenter Bindungen trotzdem umgeformt werden kann. Auf diese Weise werden 'duromere Organobleche' zugänglich, die nicht nur eine ^der Herstellung nachgelagerte Umformung in die Endkontur erlauben, sondern der Prepregverarbeitung vergleichbare Möglichkeiten der FVK-Erzeugung: Da Vitrimere mit sich selbst wieder chemische Bindungen knüpfen können, kann das Schichten und das Ausrichten der FVK-Platten bzgl. einer konkreten Lasteinleitung ohne Zeitdruck bei Raumtemperatur erfolgen; die Konsolidierung findet dann erst unter Wärme und Druck statt. Dies ermöglicht in Summe die hochflexible Produktion hochperformanter Multimaterialsysteme aus nachhaltigen Rohstoffen.

KMU-innovativ: Computergestütztes Design von Strömungs- und Adsorptionsvorgängen in Bioreaktoren

Das Projekt "KMU-innovativ: Computergestütztes Design von Strömungs- und Adsorptionsvorgängen in Bioreaktoren" wird/wurde gefördert durch: Bundesministerium für Forschung, Technologie und Raumfahrt. Es wird/wurde ausgeführt durch: TinniT Technologies GmbH.

Altpapier

Die Papierindustrie setzte im Jahr 1990 knapp 49 Prozent Altpapier ein, 2015 74 Prozent und im Jahr 2023 rund 83 Prozent. Diese Steigerung senkte den Holz-, Wasser- und Primärenergieverbrauch pro Tonne Papier. Das Mehr an Papierkonsum relativierte jedoch den Effizienzgewinn. Zudem gefährden Verunreinigungen aus Druckfarben, Kleb- und Papierhilfsstoffen inzwischen das Altpapierrecycling. Vom Papier zum Altpapier Im Jahr 2023 wurden rechnerisch in Deutschland 175,6 Kilogramm (kg) Pappe, Papier und Karton pro Kopf verbraucht. Diese Zahl bezieht neben dem Verbrauch in den privaten Haushalten auch den gesamten Verbrauch an Papier in Wirtschaft, Medien und Verwaltungen mit ein. In privaten Haushalten beträgt die jährlich verbrauchte Papiermenge ca. 105 kg pro Kopf ( INTECUS GmbH ). Dies entspricht einem rechnerischen Gesamtverbrauch von 14,9 Millionen Tonnen (Mio. t). Im gleichen Jahr haben private und kommunale Entsorger 12,7 Mio. t Altpapier gesammelt. Dies ergibt eine Altpapierrücklaufquote von 85 % (siehe Tab. „Papiererzeugung, Papierverbrauch und Altpapierverbrauch“). Die deutsche Papierindustrie Die deutsche Papierindustrie stellte im Jahr 2023 rund 18,6 Mio. t Papier, Pappe und Kartonagen her. Sie setzte dafür rund 15,5 Mio. t Altpapier ein. Die Altpapiereinsatzquote – also der Altpapieranteil an der gesamten inländischen Papierproduktion – lag damit bei rund 83 %. Diese Quote stieg seit dem Jahr 2000 um 23 Prozentpunkte (siehe Tab. „Altpapiereinsatzquoten in Prozent“). Der deutschen Papierindustrie gelang es auf diese Weise, ihre spezifischen Umweltbelastungen zu verringern. Die hohe Altpapiereinsatzquote von 83 % lässt sich kaum noch erhöhen. Dennoch ist es technisch etwa möglich, mehr Altpapier bei der Herstellung von Zeitschriften-, Büro- und Administrationspapieren und vor allem bei der Herstellung von Hygienepapieren zu nutzen. Eine Nachfragesteigerung seitens Verbraucherinnen und Verbraucher würde dies befördern. Der Altpapiereinsatz bei der Herstellung von Hygienepapieren fällt erneut auf nunmehr 40 %. Dies liegt an der Abnahme weißer Altpapiere im Markt durch den Rückgang der graphischen Papiere, bedingt durch die fortschreitende Digitalisierung, bei gleichzeitiger Zunahme von Verpackungspapieren. Der Rohstoff Altpapier ist knapp. Der Einsatz von Altpapier ist vorteilhaft, da Fasern aus Hygienepapieren nach der Nutzung nicht für ein weiteres Recycling zur Verfügung stehen. Bei der Herstellung von Zeitungsdruck- und Wellpappenrohpapieren wurde im Jahr 2023 statistisch gesehen mehr als 100 % Altpapier eingesetzt. Der Grund ist, dass bei der Aufbereitung von Altpapier Sortierreste und alle Verunreinigungen, welche die Qualität des Neupapiers beeinträchtigen, abgeschieden werden. Dabei gehen auch in geringem Umfang Papierfasern verloren, deshalb wird in der Produktion bis zu 20 % mehr Rohstoff, der aber auch papierfremde Bestandteile enthält, eingesetzt. Die Altpapierverwertungsquote, also der Altpapierverbrauch im Verhältnis zum gesamten Papierverbrauch, lag 2023 bei über 100 % (siehe Abb. „Altpapierverwertungsquoten“). Es wurde mehr Altpapier für die Herstellung von Recyclingpapier verbraucht als Papier in Deutschland verbraucht wurde. Das liegt daran, dass mehr Papier für den Export produziert wurde und weniger im Inland verbraucht wurde. Tab: Altpapiereinsatzquoten in Prozent Quelle: DIE PAPIERINDUSTRIE e. V. Diagramm als PDF Diagramm als Excel mit Daten Altpapierverwertungsquote Quelle: DIE PAPIERINDUSTRIE e. V. Diagramm als PDF Diagramm als Excel mit Daten Energieeffiziente Papierherstellung Papier, Pappe und Kartonagen wurden im Jahr 2023 energieeffizienter hergestellt als im Jahr 1990. Der mittlere Energieeinsatz bezogen auf eine Tonne erzeugtes Papier sank in diesem Zeitraum von 3,413 auf 2,789 Megawattstunden (MWh). Diese Effizienzsteigerung wurde durch die erhöhte Produktion im selben Zeitraum überkompensiert. So stellte die deutsche Papierindustrie im Jahr 2023 rund 32 % mehr Papier, Pappe und Kartonagen her als im Jahr 1990. Die Emissionen an fossilem Kohlendioxid pro Tonne Papier konnten trotzdem seit 1990 um etwa ein Drittel gesenkt werden. Sie liegen jetzt bei 526 kg Kohlendioxid pro Tonne produzierten Papiers. Das liegt vor allem am zunehmenden Einsatz von alternativen Brennstoffen und dem steigenden Anteil an erneuerbaren Strom im deutschen Strommix. Die Papierbranche bemüht sich einerseits, den Energieverbrauch weiter zu senken. Gleichzeitig investieren viele Unternehmen in zusätzliche Prozessstufen, um aus dem Rohstoff Altpapier Papiere mit höheren Weißgraden und glatterer Oberfläche herzustellen. Dafür benötigen sie mehr Energie, da mehr Fasern aussortiert und diese stärker gereinigt und gebleicht werden. Der Gesamtenergieeinsatz stieg daher von 157 Petajoule (PJ) im Jahr 1990 um gut 20 % auf 188 PJ im Jahr 2023 (Leistungsbericht Papier 2024). Tipp zum Weiterlesen: DIE PAPIERINDUSTRIE e. V., Leistungsbericht PAPIER 2024. Der Bericht kann beim Verband DIE PAPIERINDUSTRIE e. V. unter https://www.papierindustrie.de/papierindustrie/statistik bestellt werden Grafische Papiere Die grafischen Papiere sind nach den Verpackungspapieren das mengenmäßig wichtigste Papiersegment. Darunter fallen alle Papiere, die für Zeitungen, Zeitschriften, Schreib- oder Kopierpapiere verwendet werden. Für diese grafischen Papiere hat das Umweltbundesamt 2020 in einer Ökobilanz erneut überprüfen lassen, welche Umweltwirkungen während des gesamten Lebensweges der Papiere entstehen und welche Umweltentlastungspotenziale der Einsatz von Altpapieren im Produktionsprozess bietet. Demnach besitzt Recyclingpapier deutliche ökologische Vorteile gegenüber Frischfaserpapieren (Primärfaserpapieren). Der Holzverbrauch verringert sich und steht für langlebigere Nutzungen zur Verfügung. Recyclingpapier muss nicht so intensiv gebleicht werden, wie es bei der Herstellung von Frischfaserpapier der Fall ist. Für die Gewinnung von Recyclingpapier wird damit nur die Hälfte an Energie benötigt und zwischen einem Siebtel bis zu einem Drittel der Wassermenge, die bei Frischfaserpapier eingesetzt wird. Auch die ⁠ Treibhausgas ⁠-Emissionen sind bei Recyclingpapieren auf dem deutschen Markt durchschnittlich 15 % geringer als bei Frischfaserpapieren, auch wenn integrierte Zellstoff- und Papierfabriken aus Frischfaser bessere Treibhausgasbilanzen aufweisen können. Die Wälder werden durch die Verwendung von Recyclingpapier geschont und damit Verlust an ⁠ Biodiversität ⁠ durch intensive Forst- und Plantagenwirtschaft und deren soziale und ökologische Folgen weltweit verringert. Ein höheres Altpapierrecycling ist für praktisch alle betrachteten Wirkungskategorien günstiger zu bewerten: Dies betrifft die Knappheit fossiler Energieträger, Treibhauspotenzial, Sommersmog, Versauerungspotenzial und Überdüngung von Böden und Gewässern. Das heißt konkret: Wer beim Kauf von einem Paket Papier mit 500 Blatt, das etwa 2,5 Kilogramm (kg) wiegt, zu Recyclingqualität greift, spart 5,5 kg Holz. Mit den 7,5 Kilowattstunden Energie, die man bei Kauf eines Paketes Recyclingkopierpapier zusätzlich spart, kann man 525 Tassen Kaffee kochen. Der Wald wird geschont. Tipp zum Weiterlesen: Broschüre „Papier. Wald und Klima schützen“ Mögliche Schadstoffanreicherung im Papier Das Schließen von globalen Stoffkreisläufen und die hohe Zahl an Recyclingzyklen kann jedoch auch einen negativen Aspekt haben: So treten immer wieder erhöhte Gehalte unerwünschter Stoffe in den Altpapierkreisläufen auf. Es handelt sich dabei um Chemikalien, die an Papierfasern gut haften und wasserlöslich sind. Beispiele hierfür sind bestimmte Mineralölbestandteile in Druckfarben, per- und polyfluorierte Verbindungen (⁠ PFAS ⁠), Bisphenol S aus Kassenzetteln und gewisse Phthalate aus Klebstoffen. Diese Chemikalien können Altpapier verunreinigen, wenn etwa neue Papierprodukte wie Thermopapier oder neue Druckverfahren mit den dazugehörige Druckfarben, Bindungen, oder Verbundmaterialien entwickelt werden, die nicht auf ihre Auswirkungen auf die Recyclingkreisläufe geprüft werden. Dabei kommt erschwerend hinzu, dass auch Stoffe, die in Deutschland schon seit Jahren nicht mehr eingesetzt werden, wie z.B. Phthalate in Klebstoffen, in anderen Ländern noch im Einsatz sind und hier in Deutschland über den Recyclingkreislauf wieder in das Papier eingetragen werden. Diese Verunreinigungen gefährden den Einsatz von Altpapier etwa als Verpackung für Cerealien, Mehl oder Reis und anderen Lebensmittelkontaktpapieren. Denn sowohl die Bedarfsgegenständeverordnung als auch die Empfehlung „XXXVI. Papiere, Kartons und Pappen für den Lebensmittelkontakt“ des Bundesinstitutes für Risikobewertung geben für den Gehalt an Schadstoffen in Papier, Pappe und Kartons Obergrenzen vor. Einige dieser Verunreinigungen gelangen nicht bei der Papierherstellung in den Kreislauf, sondern wenn etwa Wellpappenhersteller, Drucker und Verpacker Papier nutzen und weiter verarbeiten. Diese Unternehmen sind mitunter nicht ausreichend sensibilisiert oder motiviert, nur Stoffe einzusetzen, die für das Recycling unkritisch sind. Hier gilt es, durch ein vernetztes Denken und Handeln bei allen Beteiligten die erforderliche Sensibilität zu schaffen, damit das erreichte hohe Verwertungsniveau bei Altpapier nicht gefährdet wird und durch die Verwertung von Altpapier auch zukünftig ein wichtiger Beitrag zum ressourceneffizienten Umgang mit Rohstoffen geleistet werden kann. Das Umweltbundesamt setzt sich für eine Vermeidung von Verunreinigungen möglichst an der Quelle ein.

HBM Messungen in Proben der UPB - Analysen von aktuell relevanten Stoffen aus der BMU/VCI Kooperation und HBM4EU

Das Projekt "HBM Messungen in Proben der UPB - Analysen von aktuell relevanten Stoffen aus der BMU/VCI Kooperation und HBM4EU" wird/wurde gefördert durch: Bundesministerium für Umwelt, Klimaschutz, Naturschutz und nukleare Sicherheit (BMUKN) / Umweltbundesamt (UBA). Es wird/wurde ausgeführt durch: ABF Analytisch-Biologisches Forschungslabor GmbH.Die europäische Initiative HBM4EU hat zum Ziel, die Datenlage zum Human-Biomonitoring in der EU anzugleichen und die gesundheitlichen Folgen der Schadstoffbelastung besser zu verstehen - durch Zusammenführung bereits vorhandener Daten und Durchführung gemeinsamer Studien. So sollen Informationen zum sicheren Chemikalienmanagement gewonnen werden, um die Gesundheit der Europäer zu schützen. Im Rahmen der BMU/VCI Kooperation zur Förderung des Human Biomonitorings werden Analysemethoden neu entwickelt, um erstmalig Belastungsdaten zu Stoffen generieren zu können, die bisher nicht untersucht werden konnten. Ziel des Vorhabens ist es, die in der Initiative im Jahr 2018 und 2019 als prioritär benannten Stoffe (hier Bisphenol A/S/F, Benzo(a)pyren und Acrylamid) und Methoden, die in der BMU/VCI Kooperation entwickelt worden sind (hier Uvinul A und Diethylhexyladipat), in Humanproben der Umweltprobenbank des Bundes zu messen. Die Ergebnisse sollen Datenlücken für den europäischen Bereich, die in der Initiative HBM4EU benannt wurden, schließen und länderübergreifende Studien und Auswertungen sollen ermöglicht werden. Die Erstanwendung von BMU/VCI Methoden soll einen ersten Überblick über die Belastungssituation in Deutschland ermöglichen. Übergeordnetes Ziel des Vorhabens ist es, einen Beitrag zum Aufbau eines europäischen Systems des Human-Biomonitoring zu leisten, das langfristig der besseren Kontrolle und Unterstützung der Chemikalienregulierung in Europa dient.

Exposure to bisphenol A in European women from 2007 to 2014 using human biomonitoring data – The European Joint Programme HBM4EU

Romuald Tagne-Fotso, Margaux Riou, Abdessattar Saoudi, Abdelkrim Zeghnoun, Hanne Frederiksen, Tamar Berman, Parisa Montazeri, Anna-Maria Andersson, Laura Rodriguez-Martin, Agneta Akesson, Marika Berglund, Pierre Biot, Argelia Castaño, Marie-Aline Charles, Emmanuelle Cocco, Elly Den Hond, Marie-Christine Dewolf, Marta Esteban-Lopez, Liese Gilles, Eva Govarts, Cedric Guignard, Arno C. Gutleb, Christina Hartmann, Tina Kold Jensen, Gudrun Koppen, Tina Kosjek, Nathalie Lambrechts, Rosemary McEachan, Amrit K. Sakhi, Janja Snoj Tratnik, Maria Uhl, Jose Urquiza, Marina Vafeiadi, An Van Nieuwenhuyse, Martine Vrijheid, Till Weber, Cécile Zaros, Elena Tarroja-Aulina, Lisbeth E. Knudsen, Adrian Covaci, Robert Barouki, Marike Kolossa-Gehring, Greet Schoeters, Sebastien Denys, Clemence Fillol, Loïc Rambaud Environment International; online : 25. Juli 2024 Bisphenol A (BPA; or 4,4′-isopropylidenediphenol) is an endocrine disrupting chemical. It was widely used in a variety of plastic-based manufactured products for several years. The European Food Safety Authority (EFSA) recently reduced the Tolerable Daily Intake (TDI) for BPA by 20,000 times due to concerns about immune-toxicity. We used human biomonitoring (HBM) data to investigate the general level of BPA exposure from 2007 to 2014 of European women aged 18–73 years (n = 4,226) and its determinants. Fifteen studies from 12 countries (Austria, Belgium, Denmark, France, Germany, Greece, Israel, Luxembourg, Slovenia, Spain, Sweden, and the United Kingdom) were included in the BPA Study protocol developed within the European Joint Programme HBM4EU. Seventy variables related to the BPA exposure were collected through a rigorous post-harmonization process. Linear mixed regression models were used to investigate the determinants of total urine BPA in the combined population. Total BPA was quantified in 85–100 % of women in 14 out of 15 contributing studies. Only the Austrian PBAT study (Western Europe), which had a limit of quantification 2.5 to 25-fold higher than the other studies (LOQ=2.5 µg/L), found total BPA in less than 5 % of the urine samples analyzed. The geometric mean (GM) of total urine BPA ranged from 0.77 to 2.47 µg/L among the contributing studies. The lowest GM of total BPA was observed in France (Western Europe) from the ELFE subset (GM=0.77 µg/L (0.98 µg/g creatinine), n = 1741), and the highest levels were found in Belgium (Western Europe) and Greece (Southern Europe), from DEMOCOPHES (GM=2.47 µg/L (2.26 µg/g creatinine), n = 129) and HELIX-RHEA (GM=2.47 µg/L (2.44 µg/g creatinine), n = 194) subsets, respectively. One hundred percent of women in 14 out of 15 data collections in this study exceeded the health-based human biomonitoring guidance value for the general population (HBM-GVGenPop) of 0.0115 µg total BPA/L urine derived from the updated EFSA’s BPA TDI. Variables related to the measurement of total urine BPA and those related to the main socio-demographic characteristics (age, height, weight, education, smoking status) were collected in almost all studies, while several variables related to BPA exposure factors were not gathered in most of the original studies (consumption of beverages contained in plastic bottles, consumption of canned food or beverages, consumption of food in contact with plastic packaging, use of plastic film or plastic containers for food, having a plastic floor covering in the house, use of thermal paper…). No clear determinants of total urine BPA concentrations among European women were found. A broader range of data planned for collection in the original questionnaires of the contributing studies would have resulted in a more thorough investigation of the determinants of BPA exposure in European women. This study highlights the urgent need for action to further reduce exposure to BPA to protect the population, as is already the case in the European Union. The study also underscores the importance of pre-harmonizing HBM design and data for producing comparable data and interpretable results at a European-wide level, and to increase HBM uptake by regulatory agencies. doi.org/10.1016/j.envint.2024.10891

LUA gibt Tipps für sicheres Spielzeug unterm Weihnachtsbaum

Wer Kindern an Weihnachten Spielzeug schenkt, möchte ihnen eine Freude machen – und sie nicht in Gefahr bringen. Das Landesuntersuchungsamt (LUA) überprüft Spielzeuge deshalb regelmäßig stichprobenartig im Labor auf mögliche Gesundheitsgefahren. Das Vorgehen der Experten können sich auch Verbraucherinnen und Verbraucher beim Einkauf zunutze machen, denn einige Probleme lassen sich bereits im Geschäft mit bloßem Auge und einer guten Nase erkennen. Bisher wurden im Jahr 2023 beim Landesuntersuchungsamt (LUA) 163 Spielzeugproben untersucht, 30 davon wurden beanstandet. Acht Proben fielen wegen chemischer Parameter auf, und 25 Proben waren nicht sachgerecht gekennzeichnet. Bei einigen Proben waren sowohl Zusammensetzung als auch Kennzeichnung mangelhaft. Beim Eingang einer Spielzeugprobe im Labor spielt, trotz modernster Analysengeräte -  die Sensorik nach wie vor eine entscheidende Rolle. Die Fachleute des LUA können bereits anhand des Aussehens und des Geruchs eines Spielzeugs entscheiden, auf welche Schadstoffe untersucht werden sollte. Wichtig: Daran können sich auch Verbraucherinnen und Verbraucher orientieren. Schlecht verarbeitete Produkte mit scharfen Kanten oder auch stark chemisch riechende Produkte sollten im Laden stehen bleiben. Viele Substanzen können allerdings ausschließlich in der Laboranalyse sicher nachgewiesen werden. Insbesondere Kleinkinder unter 36 Monaten neigen dazu ihr Spielzeug in den Mund zunehmen, um daran zu lutschen oder knabbern, dadurch können – bei entsprechend kleinen Abmessungen- Teile verschluckt oder sogar eingeatmet werden, oder es könne sich bedenkliche Stoffe aus dem Spielzeug lösen und vom Kind aufgenommen werden. Zu den gesundheitlich bedenklichen Stoffen, die im Labor analysiert werden können, zählen gefährliche Weichmacher, krebserregende und erbgutverändernde polyzyklische aromatische Kohlenwasserstoffe (PAK), hautreizendes Formaldehyd, nicht zugelassene Lösungsmittel (z.B. Benzol), nicht zugelassene Farbstoffe, giftige oder Allergie auslösende Schwermetalle (wie z.B. Blei, Cadmium und Nickel) und das hormonell wirksame Bisphenol A. Luftballons aus Kautschuk werden außerdem regelmäßig auf krebserregende N-Nitrosamine sowie N-nitrosierbare Stoffe untersucht, Fingermalfarben auf verbotene Farbstoffe und nicht zugelassene Konservierungsstoffe. Alleine in diesem Jahr wurden in drei verschiedenen Proben Fingermalfarbe verbotene und Allergie auslösende Konservierungsstoffe nachgewiesen. In weiteren vier Proben waren Farbstoffe enthalten, die auch in kosmetischen Mitteln nicht zugelassen sind. Gerade in Spielzeugen für eine besonders empfindliche Verbrauchergruppe sollten überhaupt keine dieser nicht zugelassenen Stoffe zu finden sein. Erstmalig wurden in diesem Jahr Spielzeugproben aus Papier und Pappe auf die Chlorpropanole 1,3-Dichlor-2-propanol (1,3-DCP) und 3-Monochlor-1,2-propandiol (3-MCPD) analysiert. Das krebserregende 1,3-DCP sowie das im Tierversuch nachgewiesen nierentoxisch wirkende 3-MCPD können durch die Hydrolyse von Epichlorhydrin entstehen, welches beispielsweise als Ausgangsstoff von Nassverfestigungsmitteln oder Leimstoffen für die Papierherstellung eingesetzt wird. Zwei Proben waren auffällig. Da es für diese Verbindungen derzeit aber keine gesetzlichen Grenzwerte für Spielzeuge gibt, konnten diese Proben nicht aus dem Handel genommen werden. Grundsätzlich werden alle amtlich entnommenen Proben auch auf ihre korrekte Kennzeichnung geprüft. Häufig fallen hier Proben z.B. durch das Fehlen der Herstellerangabe und/oder Angaben zur Identifikation auf dem Spielzeug selbst auf. Aber auch Warnhinweise werden nicht immer korrekt angegeben oder fehlen ganz. GS-Siegel garantiert unabhängige Prüfung Siegel ist nicht gleich Siegel. Verbraucher sollten beim Kauf von Spielzeug auf das GS-Zeichen für „Geprüfte Sicherheit“ vertrauen. Es stellt sicher, dass die Ware von unabhängigen Dritten getestet wurde. Vergeben wird es von anerkannten Stellen, die immer namentlich auf dem Siegel genannt sind, wie beispielsweise von den Technischen Überwachungsvereinen (TÜV). Insgesamt weniger aussagekräftig ist dagegen das gesetzlich vorgeschriebene europäische CE-Zeichen. Die Hersteller vergeben dieses Zeichen in der Regel selbst und bestätigen damit lediglich, dass gewisse Mindestanforderungen zum freien Warenverkehr innerhalb der EU eingehalten werden. Das CE-Zeichen garantiert aber keine unabhängige Prüfung und ist kein verlässliches Qualitätszeichen beim Spielzeugeinkauf. Hier finden Sie weitere Tipps zum Thema sicheres Spielzeug .

1 2 3 4 523 24 25