Texture of the soils of the Humber catchment (England, UK), which serves as the British case study area within BESTMAP
Im Rahmen der Boden-Dauerbeobachtung werden eine Vielzahl von Daten und Messwerten erhoben und gespeichert. Dazu gehören unter anderem - Lage der Boden-Dauerbeobachtungsfläche - Informationen zum Bodenaufbau einschließlich chemischer und bodenphysikalischer Parameter - Nutzung und Bewirtschaftungsdaten - Zusammensetzung der Bodenflora und -fauna - Vorkommen von Flechten im Umfeld
Bodenbezogene Informationen im Sinne bodenkundlicher Daten werden im Fachinformationssystem Boden (FISBo) als Bestandteil des weitere geowissenschaftliche Bereiche umfassenden Bodeninformationssystemes (BODIS) erfasst und verfügbar gemacht. Das Fachinformationssystem Boden lässt sich in den Datenbereich und den Methodenbereich gliedern. Im Datenbereich werden die Sachdaten (Ausprägungen der einzelnen Phänomene und deren Geometrien) verwaltet; der Methodenbereich umfasst Methoden zur Wissensstrukturierung (Schlüssel, Regeln etc.), zur Datenbehandlung (Erfassung, Verwaltung etc.) sowie zur Datenbe- und -auswertung auf analoger sowie auf digitaler Verfahrensebene. Der Datenbereich kann in die großen Gruppen der Sachdaten und der raumbezogenen Daten (Geometrien) aufgeteilt werden. Sachdaten werden mit Hilfe eines relationalen Datenbanksystemes verwaltet. Ein wesentliches Element bodenkundlicher Arbeit ist die Speicherung und Verfügbarmachung von Profildaten. Diese Daten stammen aus Profilbeschreibungen auf der Basis von Aufgrabungen oder mit dem Bohrstock entnommener Proben und sind neben den Labordaten die wichtigste Informationsquelle bodenkundlichen Arbeitens. Die Profilbeschreibungen setzen sich aus Titel- und Horizontdaten zusammen.
Der Boden bildet das zentrale Teilstück im biologischen Kreislauf des Waldes. Auf Veränderungen in diesem komplizierten System muss daher besonderes Augenmerk gerichtet werden. Aus diesem Grund beauftragte der Minister für Umwelt, Raumordnung und Landwirtschaft im Jahr 1989 die Landesanstalt für Ökologie, Bodenordnung und Forstplanung, LÖLF (jetzt: Landesanstalt für Ökologie, Bodenordnung und Forsten/Landesamt für Agrarordnung, LÖBF/LAfAO) sowie das Geologische Landesamt NRW, GLA NRW (jetzt: Geologischer Dienst NRW - Landesbetrieb, GD NRW), landesweit den aktuellen bodenchemischen Zustand unserer Waldböden zu untersuchen. Diese Bodenzustandserhebung im Wald (BZE) soll unter anderem - den aktuellen bodenchemischen Zustand unserer Waldböden erfassen und bewerten - Zusammenhänge zwischen dem Bodenzustand und den Waldschäden aufklären - eine bessere Übertragbarkeit der Ergebnisse aus der Waldschadensforschung auf größere Waldflächen gewährleisten - Gefahren aufzeigen, die sich aus dem aktuellen Bodenzustand für die derzeitigen Waldbestände und die nächste Waldgeneration ergeben - Informationen zur Planung und Durchführung von Maßnahmen zur Erhaltung und Verbesserung des Bodenzustands liefern - Informationen zur Einschätzung von Risiken für die Qualität von Grund- und Quellwasser zur Verfügung stellen. Die Geländearbeiten zur BZE nahm das Geologische Landesamt NRW in den Jahren 1989 bis 1992 vor. Um den Zusammenhängen zwischen Bodenchemismus und Waldschäden auf die Spur zu kommen, wurden die Böden an Standorten untersucht, an denen jährlich auch die Waldschäden beurteilt werden. Die Probennahme erfolgte im 4 x 4-km-Raster, das heißt, die waldbestandene Fläche im Landesgebiet wurde in ein Quadratraster mit je 4 km Seitenlänge aufgeteilt. In jedem Rasterquadrat wurde eine Untersuchungsparzelle ausgewählt. An den 498 Untersuchungsflächen wurden jeweils - die Böden exakt kartiert - Bodenaufgrabungen angelegt - die Bodenmerkmale und -eigenschaften detailliert beschrieben - Proben aus sieben bis zehn Tiefenstufen für chemische und physikalische Analysen entnommen. Insgesamt fielen rund 3.800 Bodenproben (Flächenmischproben) zur Analyse an; weitere 590 Proben sind für radiologische Untersuchungen vorgesehen. Das geochemische Labor des Geologischen Dienstes NRW hat inzwischen die Analytik für ein 8 x 8-km-Raster der bundesweiten BZE abgeschlossen. Auch die Ergebnisse für das erheblich dichtere 4 x 4-km-Raster wurden Mitte 1995 vorgelegt. Moderne Messverfahren, die mit den Laboratorien der anderen Bundesländer abgestimmt sind, gewährleisten exakte und bundesweit vergleichbare Ergebnisse.
In assessing the effects of plant protection products (PPP) on organisms in soil it is crucial to predict accurately the environmental concentration (PECsoil) which organisms are exposed to. The PECsoil is depending on the spatial and temporal distribution of the PPP, arising from characteristics of the chemical (e.g. Kow, water solubility, degradability) and from soil parameters (e.g. pH value, TOC, texture). The potential effects of PPP on soil organisms depend -besides the concentration of the chemical in the soil matrix- on the spatial and temporal distribution of the animals, i.e., their exposure as well as their specific sensitivity to the chemical. A new approach for deriving environmental concentrations in soil is currently under discussion, taking the preferred soil depth of the organisms into account. We conducted two different outdoor studies in Terrestrial Model Ecosystems (TMEs) to monitor (1) the movement of pesticides in soil over time and (2) the exposure and effects on soil organisms during the same time. Additionally, an indoor TME study was conducted to measure the fate of the radiolabelled pesticides and the formation of non-extractable resi-dues in soil. In study [1] (outdoor) and [2] (indoor) Lindane (log Kow > 3) and Imidacloprid (log Kow < 1) were applied, two pesticides with different physico-chemical properties. In study [3] (outdoor), we investigated the effects of Carbendazim, a pesticide which is known as to be toxic for earthworms at certain concentrations. The effect analysis was conducted by means of different multivariate and univariate statistical methods. The synergistic conclusions based on the project results are proposed as recommendations for risk assessment concerning exposure and risk of soil organisms exposed to PPP under realistic conditions. Quelle: Forschungsbericht
Feldbeschreibungen von Bodenaufbau und Bodenmerkmalen sowie Ergebnisse bodenchemischer und bodenphysikalischer Laboruntersuchungen. Die Daten stellen die Auswertungsbasis für Fachaufgaben dar, wie die Erstellung von Bodenkarten, Bewertungen von Bodenfunktionen und Standorteigenschaften, und liegen in analoger sowie tlw. in digitaler Form vor.
Böden sind Naturkörper, hochwertige Landschaftsbestandteile und Lebensgrundlage für Mensch, Tier und Pflanze. Gesunde Böden liefern Nahrungsmittel und nachwachsende Rohstoffe, sie speichern einen Teil des Niederschlagswassers und schützen durch ihr Filtervermögen gegenüber Schadstoffen das Grund- und Oberflächnewasser. Zahlreiche Mitarbeiter des Geologischen Dienst NRW (GD NRW) erkunden, erfassen und klassifizieren seit Jahren die Böden des Landes NRW. Sie arbeiten nach einheitlichen Richtlinien auf Grundlage der neuesten bodenkundlichen Erkenntnisse und werten alle Sachinformationen objektiv aus. Die Böden werden bis in 2 m Tiefe bzw. bis zur Obergrenze des Festgesteins untersucht und in analogen wie digitalen Karten unterschiedlichen Maßstabs zu Bodeneinheiten zusammengefasst dargestellt. Die Kartenlegende enthält für jede Bodeneinheit Angeben über die Bodenartenschichtung (z. B. toniger Schluff über kiesigem Sand), die Bodentypen (z. B. Braunerde, Podsol oder Gley) und das geologische Ausgangsgestein (z. B. Mergelstein, Oberkriede). Bei großmaßstäbigen Karten (1 : 5 000) wird jede ausgegrenzte Bodenfläche individuell beschrieben, gleichartige Böden werden in der Legende zu einer Einheit zusammengefasst. Bodenkarten bilden nicht nur eine unentbehrliche Unterlage für land- und forstwirtschaftliche Planungen, sie sind auch eine wichtige Grundlage für eine nachhaltige Bodennutzung und Raumplanung sowie für den Boden-, Natur- und Grundwasserschutz. Folgende Bodenkarten sind für NRW in analoger Form vorhanden: - Bodenkarten von NRW 1 : 5 000 - Bodenkarten von NRW 1 : 25 000 - Bodenkarten von NRW 1 : 50 000 - Bodenübersichtskarten 1 : 200 000 Der GD NRW bietet für NRW bodenkundliche Karten nicht nur in gedruckter Form an, sondern auch als moderne, digitale Informationssysteme. Diese digitalen Karten liegen vorwiegend im Shape-Format vor und funktionieren durch angebundene Fachdatenbanken als leistungsfähige Auskunftssysteme: - Informationssystem Bodenkarte von NRW 1 : 5 000 - Informationssystem Bodenkarte von NRW 1 : 50 000 Weiterhin liegen mit speziellen Schwerpunktthemen folgende CD-ROM vor: - Erosions- und Verschlämmungsgefährdung in NRW - Mechanische Belastbarkeit der Böden in NRW - Auskunftssystem BK50 - Karte der schutzwürdigen Böden - Böden am Niederrhein
Im Rahmen des Forschungsprojektes wurden 1.300 ha potenzielle Moorflächen in 76 Moorgebieten untersucht. Dazu wurden 974 Geländepunkte aufgenommen, wobei an 792 Punkten durch Grabschurf und/oder Bohrungen bodenkundliche Ansprachen durchgeführt wurden. Die Geländedaten wurden in einer bodenkundlichen Access-Datenbank erfasst, die vom Landesamt für Geologie und Rohstoffe Brandenburg (LBGR) zur Verfügung gestellt wurde. Mit der Kartierung wurden geschätzt mindestens 90 % der Moorböden Berlins erfasst. Um die gespeicherte C-Menge in den Berliner Moorböden zu erfassen, war es wichtig, genaue Informationen zum jeweiligen Bodenaufbau der einzelnen Moorbodenflächen zu erhalten. Dazu wurden alle Moorflächen abgebohrt und boden- und substratsystematisch beschrieben. Die Daten zur Trockenrohdichte und zu den C-Gehalten wurden an repräsentativen Moorbodenhorizonten in Berlin ermittelt. Dazu wurden über 500 Torf- und Muddehorizonte beprobt und im Labor analysiert. Außerdem wurden Daten zu Trockenrohdichten teilweise mit Altdaten ergänzt.
Das Projekt "B 5.1: Fate of agrochemicals in integrated farming systems in Son-La province, Northern Vietnam" wird vom Umweltbundesamt gefördert und von Universität Hohenheim, Institut für Bodenkunde und Standortslehre, Fachgebiet Biogeophysik durchgeführt. In Son La province, Northern Vietnam, many irrigated farming systems include ponds in which small-scale farmers raise fish to produce additional food and income. The main field crops in this area are paddy rice and maize. Often, irrigation water is first used in paddy fields, before it flows to the fishponds. Because farmers regularly apply considerable amounts of agrochemicals, mainly insecticides, to field crops fish production suffers. Moreover, agrochemicals may enter the human food chain. Subproject B5.1 will study the fate of agrochemicals applied in two subcatchments near Yen Chau, Son La province. Investigations will be carried out in close collaboration with A1.3, B4.1, C4.1, D5.2, and G1.2. In the two subcatchments, fishponds have been investigated by D5.1 since 2003. We will carry out a survey of the subcatchments with special emphasis on the water distribution systems (fields, ponds, canals, brooks). The data will be linked to the GIS (Geographical Information System) set up by B4.1. In one subcatchment, B5.1 will install a weather station as well as five TDR (time do-main reflectometry) probes and tensiometers. Water flow through the system will be recorded by means of water meters and V-shaped (Thompson) weirs equipped with automatic pressure sensors. Soil and water samples from selected fields sites, pond inflows, and ponds will be regularly screened for agrochemicals using the procedure developed by B2.1 (Ciglasch et al., 2005; see below). Soil and sediment characteristics that determine water regime and soil-agrochemical interaction, e.g. texture, organic carbon content, hydraulic conductivity, partitioning coefficients, and half-life times will be measured in laboratory and field experiments in cooperation with B4.1. In preparation for the next phase, discharge will be assessed and agrochemical concentrations monitored in the main catchment.
Das Projekt "Bau und Erprobung einer FRAK-Anlage fuer Bodensanierung" wird vom Umweltbundesamt gefördert und von Hegemann Engineering durchgeführt. Objective: A FRAK installation for facilitating the clean-up of heavy soils is to be designed and built. The aggregate consists of a series of pipes mounted on a hydraulic excavator; the pipes are equipped with venting holes at their ends and can be pushed into the ground. By high-pressure air blasts from the vents will change the entire pore structure of the soil, opening consolidated soil structures in particular. Similar installations have been tested to improve agricultural soil structure; the main difference is the heavy-duty layout of the installation. General Information: In-situ treatment of polluted soil is frequently prevented by the soil structure: if the soil contains much clay or has been compressed by heavy loads, neither water nor air will penetrate the dense layer, save along a few channels that are correspondingly washed out, forming channels to guide water and air through the soil layer without much affecting the layer itself. To extend the range of soils to be treatable, the FRAK process has been conceived, which works by applying gas shocks to the dense soil and thus changing the entire pore structure of the soil. The Commission of the European Communities has, within the frame of the ACE 89 demonstration programme, granted financial assistance to the development of a FRAK apparatus that is able to work under the condition of industrial grounds, i.e., stones and other obstacles occurring from time to time, and of not impairing industrial use of the ground; the site selected for demonstration was a railway station polluted with oil. The construction was carried out by the Bremen-based DETLEF HEGEMANN ENGINEERING GmbH who made a very flexible apparatus, operating vertically as well as in inclined mode, the four venting pipes being each separately adjustable for optimal re-shuffling of the entire soil. Commission assistance was restricted to the period of 1-10-90 through 30-4-92, during which time the FRAK apparatus was constructed and tested in operation. First results show that the FRAK apparatus performs according to expectations in rugged industrial environment, increasing the water flow rate through the treated soil by a factor of 5. Every blast will reshuffle up to 60 m2 of soil. The working depth extending up to 4 m, up to 240 m3 of soil may be treated by this apparatus in every drilling step; up to 25 drilling steps may be made per hour. Thus, with Commission assistance, a major break-through has been achieved to make polluted soils of low permeability accessible to in-situ treatment. This will be particularly important for the application of biological treatment systems whose performance usually suffer from bad aeration of the soil to be treated. FRAK will help to condition this kind of soil for biological in-situ treatment...
Origin | Count |
---|---|
Bund | 58 |
Land | 98 |
Wissenschaft | 1 |
Type | Count |
---|---|
Förderprogramm | 52 |
Text | 23 |
unbekannt | 79 |
License | Count |
---|---|
closed | 96 |
open | 52 |
unknown | 6 |
Language | Count |
---|---|
Deutsch | 151 |
Englisch | 26 |
Resource type | Count |
---|---|
Archiv | 1 |
Bild | 2 |
Dokument | 2 |
Keine | 133 |
Webseite | 19 |
Topic | Count |
---|---|
Boden | 154 |
Lebewesen & Lebensräume | 145 |
Luft | 126 |
Mensch & Umwelt | 154 |
Wasser | 134 |
Weitere | 152 |