Das Projekt "Greenhouse-gas budget of soils under changing climate and land use (BurnOut) - COST 639" wird vom Umweltbundesamt gefördert und von Hochschule Weihenstephan-Triesdorf, Zentrum für Forschung und Wissenstransfer, Institut für Ökologie und Landschaft durchgeführt. Carbon (C) stored in soils represents the largest terrestrial organic carbon (C) pool. The biogeochemical cycles of C and nitrogen (N) are closely interwoven. Although the discussion on climate change focuses on CO2, the coupled cycling of C and N deserves equally much attention. As a result of mineralization processes, both elements are liberated from soil organic matter and can be lost from the soil via the aqueous or the gaseous phase. Both C and N occur in terrestrial ecosystems in several chemical forms and are potentially emitted as greenhouse gases (GHG). On the contrary, soils can act as a strong sink for GHGs. Considerable uncertainty exists regarding the sink strength of soils under different forms of land-use, especially under future climate conditions and in regimes of ecosystem disturbances, that are typical for particular regions. Due to the significance of the GHG exchange between the atmosphere and soils, C changes in terrestrial ecosystem pools are included in international treaties (Kyoto Protocol, UNFCCC). Objectives and benefits: The main objective of the Action is (i) the improved understanding of the management of greenhouse gas emissions from European soils under different forms of land-use and in particular disturbance regimes, (ii) the identification of hot spots of greenhouse gas emissions from soils, (iii) the identification of soil and site conditions that are vulnerable to GHG emissions, (iv) the development of an advanced reporting concept across different forms of land use and land-use changes, (v) the delivery and communication policy relevant GHG reporting concepts, so as (vi) the improvement of the communication between soil C experts. The Action aims to identify gaps in previous projects such as the response of carbon and nitrogen pools in soils under typical regimes of ecosystem disturbances and land-use change. To achieve our objectives, we will establish a communication platform between experts for different forms of land use, modellers and statisticians, and the contributors to the existing framework of greenhouse gas reporting.
Das Projekt "Spatial variability of the effects of biochar on soybean-rhizobium symbiosis and plant growth on sandy soil" wird vom Umweltbundesamt gefördert und von Leibniz-Zentrum für Agrarlandschaftsforschung (ZALF) e.V., Institut für Landnutzungssysteme und Landschaftsökologie durchgeführt. Limiting of water and nutrient retention capacity of soils in sandified regions are critical factors for crop growth. Biochar can increase water retention capacity and available water capacity of sandy soils. It does not only improve soil structure, but also contribute with additional cation and increased cation exchange capacity. On the other hand, the nitrogen availability in soil can get lower due to the high carbon/nitrogen ratio of the biochar and the resulting nitrogen immobilization. The nitrogen addition from fertilizer or legumes, through its nitrogen fixation ability, is necessary to fully utilize the benefit of biochar. But fertilizer application will cause more nitrogen leaching from soil to environment. Thus, the project aims to promote soybean-rhizobium symbiosis on sandy soil to remedy shortage of nitrogen. Soybean rhizobium symbiosis has high nitrogen fixation ability. The amount of nitrogen fixed by rhizobium soybean can be up to 450 kg nitrogen ha-1. Sandy field heterogeneity is also proved to be a problem to influence plant growth. A transect study is designed to separate treatment effect from field variability. In consequence, the main objectives of the project are: (I) to investigate the potential of soybean growth and biological nitrogen fixation on sandy soil with biochar application, (II) to improve the water and nutrient retention capacity in sandy soils, (III) to examine the spatial soil property and water variation in field
Die Stadt Schrobenhausen plant den Ersatz der bestehenden Brücke über den Arnbach bei Linden (SOB 21), da das Bestandbauwerk in sehr schlechtem Zustand ist. Die Brücke befindet sich im Nordwesten von Edelshausen (zwischen Edelshausen und Linden). Das bestehende Brückenbauwerk wird durch einen Betonfertigteildurchlass mit Rechteckquerschnitt ersetzt. Das neue Bauwerk weist im Querschnitt die gleichen Abmessungen wie das Bestandsbauwerk auf. Die zulässige Gesamtbelastung wird jedoch wesentlich höher sein. Das Ersatzbauwerk wird in Form eines Rechteckdurchlasses mit einer lichten Weite von 3 m und einer lichten Höhe von 1,70 m mit ca. 30 cm Sohlsubstrat hergestellt. Die Länge der Sohle beträgt ca. 6 m. An den Durchlassenden werden Flügelwandscheiben als Fertigteile angebracht. Oberhalb des Durchlasses wird die bestehende Straße entsprechend der bestehenden Fahrbahnoberfläche neu erstellt und profiliert. Am Fahrbahnrand befinden sich Bordsteine mit einer Höhe von ca. 15 cm über der Fahrbahnoberkante. Als Absturzsicherung wird auf beiden Seiten ein Füllstabgeländer aus Stahl mit einer Höhe von ca. 1,10 m angebracht. Im Anschluss an das Bauwerk wird ober- und unterstromseitig die Böschung mit Hilfe von Flügelwänden befestigt. Im Sohlbereich vor und nach dem Bauwerk werden dazu bei Bedarf Natursteine verwendet. Entlang der Flügelwände werden die Böschungen ebenfalls mit Natursteinen befestigt. Aufgrund des vertieften Einbaues des Durchlassprofils ist eine ca. 30 cm starke Sohlsubstratschicht zur besseren ökologischen Einbindung des Bauwerkes vorgesehen. Durch diese Schicht ändert sich das Sohlniveau im Vergleich zum bestehenden Bauwerk nicht. Grundsätzlich ist bei den vorliegenden Untergrundverhältnissen von einer Korrespondenz des Arnbachs mit dem Grundwasserspiegel auszugehen. Vorhandenes Schichtwasser kann nicht ausgeschlossen werden. Im Regelfall führt der Arnbach im Bereich des Bauwerkes max. ca. 30 cm Wasser. Im Zuge des Bauvorhabens wird er mittels Fangedamm umgeleitet. Es sind dadurch aufgrund der Gründungsart und der damit verbundenen Aushubtiefe unterhalb der zukünftigen Durchlasssohle keine aufwendigen Wasserhaltungsarbeiten geplant. Auch ein ggf. erforderlicher Bodenaustausch kann im Normalfall ohne besondere Wasserhaltung ausgeführt werden. Die vorgesehene Ausführungszeit einschließlich des Abbruches des Bestandsbauwerkes sind mit ca. 6 – 8 Wochen kalkuliert. Zunächst soll das bestehende Brückenbauwerk komplett abgebrochen werden. Das Abbruchgut soll fachgerecht entsorgt werden und erhöhte Schadstoffbelastungen sind aufgrund der Lage und Nutzung des Bauwerkes nicht zu erwarten.
Das Projekt "ESSEM COST Action ES1406: Soil fauna - Key to Soil Organic Matter Dynamics and Modelling (KEYSOM)" wird vom Umweltbundesamt gefördert und von Universität Bremen, Zentrum für Umweltforschung und nachhaltige Technologie (UFT), Allgemeine und theoretische Ökologie durchgeführt. Soil is a non-renewable ecosystem resource under seriously pressure by land use, urbanisation and climate change. Soil organic matter (SOM) is key to soil fertility, climate change mitigation, combatting land degradation, and the conservation of above- and below-ground biodiversity and associated ecosystem services. Existing models of SOM dynamics are defined mostly in terms of plant residues input and microbial decomposition, overlooking the important contribution of soil fauna activity. Here, we bring biogeochemists and soil ecologists together to develop a research network for improved SOM models by implementing the role of the soil fauna as a basis for sustainable soil management. An international interdisciplinary approach within a COST Action is envisaged as the proper platform for both experimentalists and modellers to provide solutions. Deliverables will be provided through workshops addressing key challenges in SOM / soil fauna experimentation and modelling, support of research exchange, education of young scientists and better access to experimental data. The Action will be organised within four Working Groups to address: 1. Knowledge gap analysis of SOM - soil fauna interaction; 2. Potentials and limitations for inclusion of soil fauna effects in SOM modelling; 3. Data assemblage and data sharing; 4. Knowledge management and advocacy training; (Descriptions are provided by the Actions directly via e-COST.)
Das Projekt "WiSSCy: Impact of Wind, Rain, and Surface Slicks on Air-Sea CO2 Transfer Velocity - Tank Experiments" wird vom Umweltbundesamt gefördert und von Universität Hamburg, Zentrum für Meeres- und Klimaforschung, Institut für Meereskunde (IfM) durchgeführt. The goal is to improve the understanding of the parameterization of air-sea gas exchange with emphasis on CO2. This is being done using the linear wind-wave tank facility of the University of Hamburg. Using this facility, gas exchange coefficients are inferred by measuring gas transfer under a wide variety of parameters such as wind, mechanically generated waves, rain, and surface films. Our emphasis is on the physical processes involved in the air-sea gas exchange and its quantitative measurement. Experiments are conducted with freshwater and with salt water to test the influence of salinity on the gas exchange parameters. All experiments are being performed for evasion and invasion to investigate if rain-induced gas transfer is symmetrical or asymmetrical. While these experiments do not address in great detail the small-scale processes that are involved in the transfer, they allow to determine parameterizations of the gas exchange as a function of parameters of the atmospheric boundary layers as they are needed in climate models and for the analysis of satellite data.
Das Projekt "Greenhouse Gas Emission of Different Crop Rotations of Rice (flooded and non-flooded) and Maize" wird vom Umweltbundesamt gefördert und von Karlsruher Institut für Technologie (KIT), Sondervermögen Großforschung, Institut für Meteorologie und Klimaforschung - Atmosphärische Umweltforschung (IMK-IFU) durchgeführt. This subproject will assess net-fluxes of CH4 and N2O as well as soil CO2 emissions from flooded and non-flooded rice as well as maize grown in different rotations and under different management practices. SP5 will encompass two research tasks, (i) automated chamber measurements and (ii) soil gas concentration measurements of different crop rotations. In total 36 automated chambers will be placed in two large field blocks (18 chambers each) divided into fields representing three crop-rotations: R-WET (rice flooded - rice flooded), R-MIX (rice flooded - rice non-flooded), M-MIX (maize - rice flooded) experiencing three differ-ent crop management practices: a control with no fertilizer application (zero-N), site specific nutrient management (site-spec) and conventional fertilizer application (conv). In the fields of conventional fertilization SP5 will also conduct soil concentration measurements of CO2, N2O and CH4 for identification of the main production and/ or consumption horizons which may differ between the three crop rotation systems which will allow identification of the dominating processes responsible for GHG exchange with the atmosphere. Emissions of different greenhouse gases together with data on biomass production/ yields (conducted by IRRI) will be aggregated to compile the total GHG exchange of different crop rotations and management practices. Thus, the data obtained in SP5 will create a sound basis for projecting the environmental consequences of different land use options in rice-based systems with respect to the net GHG exchange. Moreover, data obtained in SP5 will be linked in particular with results from C and N process studies of SP1-SP4 and will form a sound base for further development, testing and valida-tion of the process based model applied in SP6/ 7.
Das Projekt "FLEX - Messung der globalen Photosynthese mit Hilfe der Fluoreszenz" wird vom Umweltbundesamt gefördert und von Helmholtz-Zentrum Potsdam Deutsches GeoForschungsZentrum durchgeführt. Der ESA-Programmrat für Erdbeobachtungen hat im Mai 2007 die Fluoreszenz Explorer (FLEX) Mission als eine von sechs potentiellen Satellitenmissionen ausgewählt, um in einer Machbarkeitsstudie ihre prinzipiellen und anwendungsorientierten Möglichkeiten zu untersuchen. Hauptziel des FLEX-Programmes ist die Aufzeichnung der globalen Photosynthese mit Hilfe der Chlorophyll-Fluoreszenz. Diese Strahlung wird von der Vegetation im sichtbaren und nahen Infrarot Bereich des elektromagnetischen Spektrums emittiert und beinhaltet einzigartige Informationen zur photosynthetischen Aktivität von Pflanzen. Dazu wird FLEX mit einem spektral sehr hochauflösenden Spektrometer ausgestattet, das flächenhaft die Trennung des Fluoreszenzsignals vom reflektierenden Sonnenlicht ermöglicht. Zusätzliche Instrumente dienen der Erfassung weiterer Parameter. Dazu gehört z.B. die Vegetationstemperatur, die zusammen mit der Fluoreszenzmessung eine Abschätzung der Effizienz der Lichtabsorption und des Austauschs von Kohlenstoff zwischen Pflanze und Atmosphäre ermöglicht. Derzeit befinden sich FLEX und die übrigen fünf Erdbeobachtungsmissionen in der Vorphase A. Anhand von drei Studien werden die Machbarkeit der Mission und deren Anforderungen untersucht. Es werden Methoden zur Erfassung der Fluoreszenz vom Weltraum aus entwickelt sowie der Nutzen der Chlorophyll-Fluoreszenz für eine regionale dynamische Vegetationsmodellierung analysiert. Die Erfassung der Fluoreszenz anhand einer atmosphärischen Korrektur erfolgt unter Federführung des GFZ innerhalb eines Konsortiums, bestehend aus dem GFZ-Potsdam, der NLR-Niederlande, der Universiät Valencia und der FU Berlin. Dieses Projekt startete im September 2007 und wird voraussichtlich im Januar 2009 abgeschlossen. Ziel ist die Entwicklung einer neuen Methodik zur Trennung der emittierten Fluoreszenz von der Oberflächenreflexion aus zukünftigen FLEX-Bilddaten. Dabei gilt es diverse Probleme zu lösen wie z.B.: die Simulation optischer Daten mit einer sehr hohen spektralen Auflösung, die genaue Modellierung des Strahlungstransfers zwischen Boden und Atmosphäre, die Analyse und Validierung der entwickelten Methodik anhand simulierter und realer Daten.
Das Projekt "Improved Methods for the Assessment of the Generic Impact of Noise in the Environment (IMAGINE)" wird vom Umweltbundesamt gefördert und von Müller-BBM Gesellschaft mit beschränkter Haftung durchgeführt. For the production of strategic noise maps as required under the EU Directive 2002/49/EC, improved assessment methods for environmental noise will be required. Noise from any major source, be it major roads, railways, airports or industrial activities in agglomerations, needs to be included in the noise mapping. For road and rail, improved methods will be developed in the 5th frame work Harmonoise project. These methods will be adopted to develop methods for aircraft and industrial noise in the IMAGINE project proposed here. Noise source databases to be developed in IMAGINE for road and rail sources will allow a quick and easy implementation of the methods in all member states. Measured noise levels can add to the quality of noise maps because they tend to have better credibility than computed levels. In the project proposed here, guidelines for monitoring and measuring noise levels will be developed, that can contribute to a combined product (measurement and computation) that has high quality and high credibility. Noise action plans shall be based on strategic noise maps. The IMAGINE project will develop guidelines for noise mapping that will make it easy and straightforward to assess the efficiency of such action plans. Traffic flow management will be a key element of such action plans, both on a national and a regional level. Noise mapping will be developed into a dynamic process rather than a static presentation of the situation. IMAGINE will provide the link between Harmonoise and the practical process of producing noise maps and action plans. It will establish a platform where experts and end users can exchange their experience and views. This platform should continue after the project and provide a basis for exploitation to the IMAGINE results. me Contractor: Detalrail B.V.; Utrecht; Netherlands.
Das Projekt "Die Bedeutung des Bodenskeletts als Speicher für kurzfristig verfügbare Nährelemente" wird vom Umweltbundesamt gefördert und von Universität Freiburg, Institut für Geo- und Umweltnaturwissenschaften, Professur für Bodenökologie durchgeführt. For soil chemical analyses, the soil skeleton is normally rejected because this size fraction is considered to have no significant short-term nutritional potential. In order to revise this practice, the short-term potential for ion storage and ion mobilization of the isolated and cleaned soil skeleton was investigated by model experiments, using undisturbed and homogenized soil samples as references. The cleaned skeleton was embedded in an inert quartz-silt-matrix ('fine earth substituted soil systems'). The study considered different soil profiles on granite, gneiss and sandstone bedrock from Black Forest, Germany. The method allowed for the investigation of soil columns at a water status near field capacity. After the extraction of water soluble ions with deionized water, cation exchange properties were determined by percolation of the soil cores with ammonium chloride (NH4Cl). The results revealed site-specific ion mobilization potentials of the soil skeleton. Below the A-horizon, the skeleton fraction of the gneiss site plays the dominant role as a source for short-term base cation supply. The fine earth of the corresponding soil horizon had lost this function, since the base saturation was less than 5 %. More than 80 % of the exchangeable Ca and Mg in naturally layered soil cores originate from the skeleton. The skeleton of the granite site had much lower ion mobilization rates, but nevertheless, due to the high skeletal contents in soil the importance for ion mobilization must not be neglected. The soil skeleton of the sandstone site showed cation exchange capacities which were comparable to the gneiss site, but its ecological importance is less because of the low skeleton content in soil.
Das Projekt "Echival-Feldversuch in einem von Wuestenbildung bedrohten Gebiet" wird vom Umweltbundesamt gefördert und von Freie Universität Berlin, Institut für Meteorologie WE03 durchgeführt. Objective: The main goal is to provide for 'Global Change' studies and global system modelling a) the necessary area-average parametrizations of the water and energy transfer between soils, vegetation and the atmosphere, as well as b) data sets, (i) against which models can be tested that describe these processes, and (ii) which are relevant for the documentation of changes in these processes due to climate variability andor the impact of man's activity. General Information: The general setup foresees three sites arranged nearly triangularly at a distance of about 100 km and at each site there will be a couple of stations arranged around one central station to achieve the nested higher resolution of one to two kilometers. During a period of about 10 days it is expected that up to four aircraft will measure atmospheric parameters and remote sensing data above the whole plain. The aircraft equipped with eddy-correlation instruments for flux measurements have to play the integrating role for the experimental area. Supported by frequent radiosonde ascents at different locations near the experimental area it should be possible to derive from these measurements also the advective fluxes, which may play an important role under dry conditions. These may result from large scale circulation including the intrusion of Mediterranean air masses from the south-east and Atlantic air masses from the west into a continental heat low. Satellite data will be used to measure the albedo of the surface as well as the diurnal temperature wave and its changes with the retreat of the vegetation during the drying season. The role of the vegetation in the exchange of water between soils and the atmosphere will be assessed by random sampling surveys on leaf-area index, PAR, spectral reflectance, stomata resistance and biomass production. It is further planned to analyse soil samples with respect to their physical properties and to determine the soil moisture content by different methods. To validate the data obtained from satellites and the methods used in the processing of these data, mobile measurements are foreseen. The experimental results which will finally be obtained have to be imbedded in climatological and meteorological background data for the Iberian peninsula in order to find out to what degree the experimental phase covers average or extraordinary climatological conditions. The experiment will be accompanied by modelling efforts at different scales, ranging from one dimensional SVAT models to three dimensional general circulation models.
Origin | Count |
---|---|
Bund | 56 |
Land | 16 |
Type | Count |
---|---|
Förderprogramm | 56 |
Text | 15 |
Umweltprüfung | 1 |
License | Count |
---|---|
closed | 16 |
open | 56 |
Language | Count |
---|---|
Deutsch | 72 |
Englisch | 41 |
Resource type | Count |
---|---|
Dokument | 2 |
Keine | 52 |
Webseite | 19 |
Topic | Count |
---|---|
Boden | 67 |
Lebewesen & Lebensräume | 72 |
Luft | 61 |
Mensch & Umwelt | 72 |
Wasser | 66 |
Weitere | 70 |