Hauptkomponenten und Entwicklungsschritte des zu optimierenden integrierten Systems (Integrated Plant Management - IPM) sollen folgende sein: a: Entwicklung eines neuartigen biologisch abbaubaren Compoundproduktes aus einem Viskosevlies und einer Beschichtung zum Mulchen (VliesFilm). Beide Bestandteile des VliesFilms sind biobasiert und bestehen zu 100% (Vlies), bzw. 50% (Beschichtung) aus nachwachsenden Rohstoffen und sind biologisch abbaubar. Alle Inhaltstoffe (PVOH, Glycerol) der Beschichtung haben eine Lebensmittelzulassung (E-Nummer), stehen aber nicht in Konkurrenz zur Lebensmittelproduktion wie z.B. stärkebasierte Materialien. Der primäre Fokus liegt auf der Entwicklung und Optimierung des VliesFilms aus NaWaRos hinsichtlich der phytosanitären Eigenschaften im Vergleich zu konventionellem Mulchmaterial (PE, 20-25my). Als wichtigste pflanzenbaulichen Faktoren sind hier Wasserverfügbarkeit, Bodentemperatur, und die Unterdrückung von Unkräutern zu nennen. b: Der VliesFilm soll einen Mehrwert gegenüber konventionellen PE-Folien erhalten. Zu diesem Zweck werden die Beschichtungen eingefärbt, um repellente Effekte auf anfliegende Insekten (Modell Blattläuse) zu erreichen. Da diese Maßnahme einen Anflug zwar verringert, aber meist nicht komplett verhindern kann, wird ein regelmäßiges Monitoring vorgenommen, um etwaige interventiven Maßnahmen zu ergreifen. Hieraus folgt dann ein System zum integrierten Pflanzenschutz, um den Einsatz von chemischen Pflanzenschutzmitteln zu minimieren.
P ist für alle Lebewesen ein lebensnotwendiges Nährelement. In terrestrischen Ökosystemen ist P häufig ein limitierender Nährstoff. Der P-Gehalt im Oberboden beeinflusst die Pflanzenartenvielfalt im Dauergrünland. P ist für die Eutrophierung von Oberflächengewässern hauptverantwortlich. Außerdem gehört P zu den knappen Rohstoffen. Die Preise für mineralische P-Dünger werden deshalb in Zukunft vermutlich weiter steigen. Ein effizienter Einsatz mineralischer P-Dünger ist daher sowohl aus Gründen des Natur- und Umweltschutzes als auch aus Kostengründen notwendig. Von einer ressourcenschonenden und umweltverträglichen Grünlandbewirtschaftung wird erwartet, dass die Düngung den P-Bedarf der Pflanzen deckt, gleichzeitig aber die P-Verluste durch Erosion, Abschwemmung und Auswaschung so gering wie möglich gehalten werden. Daher ist es notwendig, die Düngung an den zeitlichen und mengenmäßigen Nährstoffbedarf der Vegetation anzupassen. Um dieses Ziel zu erreichen, muss einerseits der saisonabhängige P-Bedarf der Pflanzen bekannt sein und andererseits die P-Dynamik im Boden berücksichtigt werden. Die P-Dynamik im Boden ist von vielen Bodeneigenschaften abhängig. Entscheidend sind vor allem pH-Wert, Bodenwasserhaushalt (Redoxpotential), Bodentemperatur und mikrobielle Aktivität (Phosphataseaktivität) im Boden. Für die Optimierung von P-Düngemaßnahmen sind daher Kenntnisse über die P-Dynamik im Boden und die verschiedenen P-Pools im Boden notwendig. Davon hängt die Ausnutzbarkeit und Ertragswirksamkeit der P-Dünger und somit die bedarfsgerechte Menge und der optimale Zeitpunkt der P-Düngung ab. Über die P-Dynamik im Boden in Abhängigkeit vom Bodenwasserhaushalt und die verschiedenen P-Pools in österreichischen Grünlandböden ist bisher noch wenig bekannt. Die Thematik ist aber von großer praktischer Relevanz, weil P ein knapper Rohstoff mit großer Umweltwirkung ist. Sowohl aus landwirtschaftlicher als auch aus wasserwirtschaftlicher Sicht stellen sich folgende Fragen: - Werden die verschiedenen P-Pools im Boden durch langjährige Düngung unterschiedlich angereichert? - Welchen Einfluss hat die Höhe der jährlich ausgebrachten P-Düngermenge? - Bestehen Unterschiede zwischen mineralischer und organischer Düngung? - Welche P-Pools im Boden werden bei fehlender Düngung bevorzugt abgereichert? - Bestehen hinsichtlich P-Pools Unterschiede zwischen verschiedenen Tiefenstufen im Boden? - Welchen Einfluss haben Grundwasserspiegelschwankungen und Veränderungen des Bodenwassergehaltes auf die P-Dynamik und P-Mobilität im Boden? - Haben feuchte und nasse Grünlandstandorte einen geringeren P-Düngerbedarf als wechselfeuchte oder frische Standorte? Für die Beantwortung dieser Fragen bieten sich Langzeitfeldversuche an. Langzeitfeldversuche wurden in Gumpenstein 1960 und in Admont 1946 angelegt. Die Düngungs- und Nutzungsgeschichte auf den einzelnen Versuchsparzellen ist bestens dokumentiert. (Text gekürzt)
Das Projekt WegDemo verfolgt anbindend an das erfolgreiche bis Ende 2007 gelaufene Pilotprojekt WegenerNet, ein dreiteiliges Ziel hin zur Erreichung einer professionell geführten, in Forschung und Region nachgefragten Klima- und Wetterdatenressource WegenerNet: 1.) Aufbereitung der WegenerNet Stationsdaten in operationell verfügbare hochauflösende Wetter- und Klimamonitoring-Felder für alle Daten ab Jänner 2007 (Basisauflösung 1 km x 1 km; gesamtes WegenerNet-Gebiet); 2.) Publikation, Verbreitung und Positionierung der Ergebnisse und Informationen zum aufgebauten (weltweit einzigartigen) Feldexperiment in Forschungs-Community, Öffentlichkeit und Region; 3.) Demonstration des WegenerNet Vollbetriebs in operationeller Form, Festigung der Wartungs-, Service- und Entwicklungsaufgaben bei Stationsinfrastruktur und Sensorik, beim Prozessierungssystem und bei den Nutzerschnittstellen (insbes. Web). Per Sommer 2009 soll das WegenerNet nach Abschluss des WegDemo Projekts schließlich in einen langfristig angelegten operationellen Betrieb als eine in dieser Art international einzigartige Ressource für hoch auflösende Wetter- und Klimabeobachtung übergehen. Weiters werden im Laufe des WegDemo Projektes die Kooperationen mit den komplementären flächendeckenden Messungen im WegenerNet-Gebiet zur hoch auflösenden Blitzbeobachtung (LiNet der Forschungsgruppe Sferics/Dept. f. Physik, Univ. München, D) und zur hoch auflösenden Wolken-, Regen- und Hagelbeobachtung (3D Doppler-Wetterradar der Steirische Hagelabwehrgenossenschaft und TU Graz) intensiviert werden. Ebenso werden (längerfristige) Zukunftsplanungen durchgeführt.
The Tropical Glaciology Group's research on Kilimanjaro started in 2002 and is in progress. Central aspects of our research plan are: 1) Development of the working hypothesis: From a synopsis of (i) proxy data indicating changes in East African climate since ca. 1850, (ii) 20th century instrumental data (temperature and precipitation), and (iii) the observations and interpretations made during two periods of fieldwork (June 2001 and July 2002) a scenario of modern glacier retreat on Kibo is reconstructed. This scenario offers the working hypothesis for our project. 2) Impact of local climate on the glaciers: This goal involves micrometeorological measurements on the glaciers, and the application of collected data to full glacier energy and mass balance models. These models quantify the impact of local climate on a glacier, based on pure physical system knowledge. Our models are validated by measured mass loss and surface temperature. 3) Latest Extent of the Kilimanjaro glaciers: Here, a satellite image was analyzed to derive the surface area and spatial distribution of glaciers on Kilimanjaro in February 2003. To validate this approach, an aerial flight was conducted in July 2005. 4) Linking local climate to large-scale circulation: As glacier behavior on Kilimanjaro, a totally free-standing mountain, is likely to reflect changes in larger-scale climate, this goal explores the large-scale climate mechanisms driving local Kilimanjaro climate. Well known large-scale forcings of east African climate are sea surface temperature variations in the Pacific and, more important, in the Indian Ocean. 5) Regional modification of large-scale circulation: The regional precipitation response in East Africa due to large-scale forcing is not adequately resolved in a global climate model as used in 4). Thus, mesoscale model experiments with the numerical atmospheric model RAMS will be conducted within this goal. They are thought to reveal the modification of atmospheric flow by the Kilimanjaro massif on a regional scale. 6) Practical aspects: Based on micro- and mesoscale results, (i) how much water is provided by glaciers, (ii) providing future projections of glacier behavior as basis for economic and societal studies (practical part), e.g., for studies on the impact of vanishing glaciers on Kibo's touristic appeal, and (iii) which impact does deforestation on the Kilimanjaro slopes have on summit climate? Referring to item 2), two new automatic weather stations have been installed in February 2005. They complete a station operated by Massachusetts University on the surface of the Northern Icefield since 2000.
PhytOakmeter (www.phytoakmeter.de) is a field platform using the Quercus robur oak clone DF159 outplanted since 2010. This platform is used to monitor the impact of climate change and land use management on the "soil - plant - interactor" complex. Sites from PhytOakmeter are located either in forest or grassland habitats and represent a wide range of environmental contexts with specific stressors. All sites are equipped with loggers measuring air and soil temperature and soil moisture. Soil cores have been collected to analyze their chemical and physical characteristic. The DKr plot in Kreinitz (Germany) started in 2010 with 12 oak trees outplanted yearly between 2010 and 2019 over two 11m x 15m grassland plots. Soil temperature and soil moisture were measured between 2016 and 2025, and soil chemistry was assessed yearly in the root-affected zone of trees aged between one and five years. Soil porosity and texture were evaluated in 2020. The bundled publication is supplemented by recorded precipitation and weather data from an automatic weather station located on site.
Beobachtungen an deutschlandweit verteilten Straßenwetterstationen. Meteorologische Parameter wie Temperatur, Niederschlag usw. werden alle 15 Minuten gemessen.
Das ist eine senseBox der Humboldt Explorers. Weitere Informationen unter www.humboldt-explorers.de
Das ist eine senseBox der Humboldt Explorers. Weitere Informationen unter www.humboldt-explorers.de
Das ist eine senseBox der Humboldt Explorers. Weitere Informationen unter www.humboldt-explorers.de
Das ist eine senseBox der Humboldt Explorers. Weitere Informationen unter www.humboldt-explorers.de
| Origin | Count |
|---|---|
| Bund | 410 |
| Global | 3 |
| Land | 75 |
| Wirtschaft | 8 |
| Wissenschaft | 94 |
| Zivilgesellschaft | 271 |
| Type | Count |
|---|---|
| Agrarwirtschaft | 1 |
| Daten und Messstellen | 319 |
| Ereignis | 2 |
| Förderprogramm | 358 |
| Hochwertiger Datensatz | 1 |
| Repositorium | 1 |
| Taxon | 1 |
| Text | 44 |
| unbekannt | 89 |
| License | Count |
|---|---|
| geschlossen | 57 |
| offen | 705 |
| unbekannt | 53 |
| Language | Count |
|---|---|
| Deutsch | 603 |
| Englisch | 273 |
| Resource type | Count |
|---|---|
| Archiv | 16 |
| Bild | 4 |
| Datei | 39 |
| Dokument | 28 |
| Keine | 296 |
| Multimedia | 1 |
| Unbekannt | 5 |
| Webdienst | 2 |
| Webseite | 453 |
| Topic | Count |
|---|---|
| Boden | 815 |
| Lebewesen und Lebensräume | 763 |
| Luft | 703 |
| Mensch und Umwelt | 811 |
| Wasser | 638 |
| Weitere | 778 |