Das in den Boden eindringende Wasser ist für den Boden selbst, aber auch für die Umwelt und für den Menschen von höchster Bedeutung. Böden speichern Wasser und sie können es den Pflanzen auch zeitversetzt wieder zur Verfügung stellen. Wie viel Wasser die unterschiedlichen Böden liefern können, hängt entscheidend von den Bodeneigenschaften ab. Ein Teil des Niederschlags verlässt den Wurzelraum als Sickerwasser und trägt so zur Grundwasserneubildung bei. Mit dem Wasser werden Nähr- und Schadstoffe im Boden transportiert. In die Themenkarten zum Wasserhaushalt der Böden in Deutschland fließen bodenkundliche Kennwerte aus der nutzungsdifferenzierten Bodenübersichtskarte von Deutschland 1:1.000.000 (BÜK1000N), morphologische Kennwerte aus dem DGM50 des Bundesamtes für Kartographie und Geodäsie (BKG), klimatische Kennwerte des Deutschen Wetterdienstes (DWD) für die Referenzperiode 1961–1990 sowie Landnutzungsdaten aus dem Datensatz CORINE Land Cover 2006 (UBA) ein.
Böden können nach wichtigen und typischen Bodeneigenschaften klassifiziert werden. Eine solch grundlegende Eigenschaft ist die Zusammensetzung des Bodens bzw. die Bodenart. Die Bodenart beschreibt die Größe der Mineralpartikel, aus denen ein Boden aufgebaut ist. Der Gehalt an organischer Substanz im Oberboden entscheidet darüber, wieviel Wasser oder wieviel Nährstoffe im Boden gespeichert werden können. Die Bodenmächtigkeit beschreibt den von Pflanzen durchwurzelbaren Raum unter der Erdoberfläche. In die Themenkarten zu den Eigenschaften der Böden in Deutschland fließen bodenkundliche Kennwerte aus der nutzungsdifferenzierten Bodenübersichtskarte von Deutschland 1:1.000.000 (BÜK1000N), mehr als 9000 qualitätsgesicherte Bodenprofile der Länder aus einem zwanzigjährigen Zeitraum sowie Landnutzungsdaten aus dem Datensatz CORINE Land Cover 2006 (UBA) ein.
Die Karte der physiologischen Gründigkeit der Böden in Deutschland gibt einen Überblick über die Mächtigkeit des durchwurzelbaren Raumes unterhalb der Erdoberfläche. Die physiologische Gründigkeit beschreibt die Durchwurzelbarkeit des Bodens. Sie wird durch festes Gestein, verfestigte Bänke und Horizonte sowie von anstehendem Grundwasser begrenzt. Die Karte basiert auf der Auswertung der nutzungsdifferenzierten Bodenübersichtskarte 1:1.000.000 (BUEK1000N) und zeigt den metrischen Wert der Gründigkeit in klassifizierter Form an. Die Methode ist aus der Bodenkundlichen Kartieranleitung (KA5) abgeleitet und im MethodenWIKI des FISBo BGR dokumentiert. Zur nutzungsabhängigen Differenzierung der Profildaten werden die Landnutzungsdaten aus CORINE Land Cover 2006 genutzt.
Die Karte der effektiven Durchwurzelungstiefe der Böden in Deutschland gibt einen Überblick über den durchwurzelbaren Raum unterhalb der Geländeoberfläche. Die effektive Durchwurzelungstiefe (We) ist die potentielle Ausschöpftiefe des pflanzenverfügbaren Bodenwassers, das durch Pflanzenwurzeln in Trockenjahren dem Boden maximal entzogen werden kann. Die Karte der effektiven Durchwurzelungstiefe basiert auf der Auswertung der nutzungsdifferenzierten Bodenübersichtskarte 1:1.000.000 (BUEK1000N) und zeigt die metrisch skalierte Größe in klassifizierter Form. Die Methode ist in der Bodenkundlichen Kartieranleitung (KA4) und in der Methodendokumentation Bodenkunde der Ad-hoc-AG Boden veröffentlicht. Als Landnutzungsdatensatz und zur nutzungsabhängigen Differenzierung der Profildaten werden die Daten CORINE Land Cover Projektes (2006) genutzt.
Die Karte der physiologischen Gründigkeit der Böden in Deutschland gibt einen Überblick über die Mächtigkeit des durchwurzelbaren Raumes unterhalb der Erdoberfläche. Die physiologische Gründigkeit beschreibt die Durchwurzelbarkeit des Bodens. Sie wird durch festes Gestein, verfestigte Bänke und Horizonte sowie von anstehendem Grundwasser begrenzt. Die Karte basiert auf der Auswertung der nutzungsdifferenzierten Bodenübersichtskarte 1:1.000.000 (BUEK1000N) und zeigt den metrischen Wert der Gründigkeit in klassifizierter Form an. Die Methode ist aus der Bodenkundlichen Kartieranleitung (KA5) abgeleitet und im MethodenWIKI des FISBo BGR dokumentiert. Zur nutzungsabhängigen Differenzierung der Profildaten werden die Landnutzungsdaten aus CORINE Land Cover 2006 genutzt.
Die Karte der effektiven Durchwurzelungstiefe der Böden in Deutschland gibt einen Überblick über den durchwurzelbaren Raum unterhalb der Geländeoberfläche. Die effektive Durchwurzelungstiefe (We) ist die potentielle Ausschöpftiefe des pflanzenverfügbaren Bodenwassers, das durch Pflanzenwurzeln in Trockenjahren dem Boden maximal entzogen werden kann. Die Karte der effektiven Durchwurzelungstiefe basiert auf der Auswertung der nutzungsdifferenzierten Bodenübersichtskarte 1:1.000.000 (BUEK1000N) und zeigt die metrisch skalierte Größe in klassifizierter Form. Die Methode ist in der Bodenkundlichen Kartieranleitung (KA4) und in der Methodendokumentation Bodenkunde der Ad-hoc-AG Boden veröffentlicht. Als Landnutzungsdatensatz und zur nutzungsabhängigen Differenzierung der Profildaten werden die Daten CORINE Land Cover Projektes (2006) genutzt.
Das Projekt "Weiterentwicklung des Programms ESCAPE für Higher-Tier-Simulationen zur Berechnung von PEC-Boden-Werten einschließlich Plateaukonzentrationen für PSM unter Einbeziehung von FOCUS-Abbaukinetiken" wird vom Umweltbundesamt gefördert und von Fraunhofer-Institut für Molekularbiologie und Angewandte Oekologie durchgeführt. 'ESCAPE2' ist eine Software, die die Berechnung der Ausbildung einer Plateaukonzentration entsprechender Pflanzenschutzmittel (PSM) im Boden und von PEC-Boden-Werten in Abhängigkeit von der Zeit ermöglicht, wobei in das bereits existierende Programm 'ESCAPEI' folgende Parameter zusätzlich einbezogen werden: Porenwasserkonzentration 'ESCAPE1' berechnet Gesamtgehalte im Boden und differenziert nicht zwischen den verschiedenen Phasen 'Bodenwasser' und 'Bodenmatrix'. Im Rahmen der Revision des Dokuments 'Persistence in soll' ist geplant, zusätzlich zum Gesamtgehalt auch die Konzentration im Porenwasser zu berechnen, die häufig einen direkten Zugang zum bioverfügbaren Anteil im Boden bietet. Für die Weiterentwicklung von 'ESCAPEI' bedeutet diese Ergänzung, dass der Sorptionskoeffizient (Kd oder Koc) als zusätzlicher Parameter ins Programm einbezogen wird. Temperaturabhängigkeit des Bioabbaus Konstante Temperaturbedingungen, wie in einer Laborstudie sind keine sinnvolle Basis für die realistische Berechnung von Bodenkonzentrationen unter Freilandbedingungen. Derzeit entwickelt die EFSA im Rahmen der Revision des Dokuments 'Persistence in soil' eine Anzahl von realistic worst case Szenarien für Europa mit täglich schwankenden Temperaturen. Im Rahmen von 'ESCAPE2' werden diese (und eventuell, speziell für Deutschland abgeleitete) Szenarien berücksichtigt, um realistische Klimaszenarien für die Berechnung der Persistenz zu ermöglichen. Neben der Erstellung neuer benutzerfreundlicher Auswahl- und Einleseroutinen für diese Szenarien ist im 'ESCAPE2' zusätzlich die Temperaturabhängigkeit programmiert, wobei der neue von der EFSA vorgeschlagenen Q10-Faktor von 2.58 Berücksichtigung findet. Eine freie Wahl des Q10-Faktors für perspektivische Veränderungen wird angestrebt. Feuchteabhängigkeit des Bioabbaus Die Klimaszenarien, die derzeit von der EFSA entwickelt werden, sollen auch Niederschlagsdaten und Daten zur potentiellen Evapotranspiration beinhalten. Sie können grundsätzlich dazu verwendet werden, auch die Feuchtegehalte im Boden zu berechnen. Mit Hilfe dieser Feuchten könnten dann die Abbaurate korrigiert werden. Im Rahmen von 'ESCAPE2' wird ein Einbau entsprechender Routinen zur Berechnung dynamischer Bodenfeuchten realisiert werden. Erstellung von Bodenszenarien Bisher werden Böden hinsichtlich der Berechnung von Plateaukonzentrationen von PSM nur durch zwei Parameter beschrieben, der Bodentiefe und der Bodendichte. Beide beeinflussen die berechneten Bodenkonzentrationen. Um die bisher diskutierten Prozesse adäquat beschreiben zu können, ist der Einbau weiterer Bodenparameter zur Charakterisierung von Böden erforderlich. So benötigt man zur Berechnung von Porenwasserkonzentrationen den Gehalt an organischem Kohlenstoff, für die Berechnung der Feuchteabhängigkeit mindestens Feldkapazität und Welkepunkt. Die Zusammenfassung verschiedener Standardböden zu 'Bodenszenarien', die der Anwender zusammen mit den Klimadateien auswählen kann, ist sinnvoll.