API src

Found 921 results.

Natürliche Bodenfruchtbarkeit

Die natürliche Bodenfruchtbarkeit bildet die Grundlage für die land- und forstwirtschaftliche Nutzung unserer Böden sowie für die Etablierung standortangepasster Vegetation. Das Bodenbewertungsinstrument Sachsen (2022) dient als methodische Grundlage für die Bewertung auf Basis der Bodenkarte Dresden (2024). Haupteingangsparameter ist die Menge des pflanzenverfügbaren Wassers (nFKWe) unter zusätzlicher Berücksichtigung von Hangneigung, Grundwassereinfluss, Bodentyp und kapillarer Aufstiegsrate.

Besondere Standorteigenschaften

Böden mit besonderen Standorteigenschaften können eine spezialisierte Vegetation oder bestimmte Lebensräume hervorbringen. Dies betrifft insbesondere sehr nasse, trockene, nährstoffarme, basenreiche, skelettreiche oder flachgründige Böden. Für dieses Thema wurden aufgrund der Datenlage vorläufig nur besonders nasse und besonders trockene Standorte berücksichtigt

Wasserhaushalt Hamburg

Rasterkarten zum Wasserhaushalt, bzw. zur Grundwasserneubildung, berechnet mit mGROWA (FZ Jülich, 2021). Im Webdienst werden 6 Layer gezeigt: - Grundwasserneubildung des hydrolog. Jahres 2019 [Min] - Grundwasserneubildung des hydrolog. Jahres 2018 [Max] - mittlere jährliche Grundwasserneubildung (1991 - 2019) - mittlere jährliche Grundwasserneubildung (1961 - 1990, Klimareferenzperiode) - Direktabfluss Mittlere Rate (1991-2020) - Tatsächliche Verdunstung Mittlere Rate (1991-2020) Beschreibung: Etwa ein Viertel des Niederschlags gelangt in Hamburg über den Boden ins Grundwasser und bildet damit einen erheblichen Anteil unserer täglichen Wasserversorgung und ist ökologische Grundlage für die Vegetation und den Boden als Wasserspeicher. Der übrige Niederschlag wird im Wesentlichen durch Verdunstung und Abfluss ins Sielnetz und in die Gewässer bestimmt. Aktuell werden pro Jahr bei durchschnittlichen Niederschlägen (etwa 770 mm pro Jahr) 136 Millionen Kubikmeter (m³) Grundwasser auf Hamburger Gebiet neu gebildet. Im Trockenjahr 2019 waren es nur 75 Millionen m³, was sich in stark fallenden Grundwasserständen, fehlender Bodenfeuchte und sich durch teilweises Trockenfallen von Gewässern für Tier und Pflanze als Trockenstress auswirkte. Auf die Beobachtung der Entwicklung der Grundwasserneubildung kommt deshalb in Zeiten des Klimawandels besondere Bedeutung zu. Neben klimatischen Veränderungen ist deshalb ein ausgefeiltes Flächen- und Ressourcenmanagement nötig, um der wachsenden urbanen Versiegelung und dem steigenden Wasserverbrauch mit Strategien und Maßnahmen hin zu einem naturnahen Wasserhaushalt entgegenzuwirken. Datengrundlagen und Methodik: Grundlage für die Berechnung und Darstellung von flächen- und zeitlich differenzierten Rasterkarten der verschiedenen Wasserhaushaltskomponenten ist das rasterzellenbasierte Wasserhaushaltsmodell mGROWA des Forschungszentrums Jülich. In mGROWA wurden zunächst standortbezogen auf Basis der jeweiligen Niederschlagsmengen und klimatischen Einflussgrößen die tatsächliche Verdunstung und der Gesamtabfluss in täglicher Auflösung mit einer Zellengröße von 25 x 25 m berechnet. Die berechneten Tageswerte wurden nachfolgend auf langjährig, jährliche und monatliche Zeiträume aggregiert. Danach wurde der Gesamtabfluss auf Basis der Standorteigenschaften in verschiedene Abflusskomponenten aufgeteilt. In der Datenzusammenstellung sind neben den Rasterkarten der potentiellen und tatsächlichen Verdunstung, des Gesamtabflusses und der Standorteigenschaften die Rasterkarten der Abflusskomponenten urbaner Direktabfluss, Sickerwasserrate, Zwischen- und Dränageabflüsse, sowie letztendlich die Grundwasserneubildung enthalten. Im Folgenden dargestellt werden auszugsweise die Karten zum mittleren langjährigen Mittel 1961-1990 (Klimareferenzperiode) und 1991-2019, das Nassjahr 2018 mit sehr großer und das Trockenjahr 2019 mit sehr geringer Neubildung. Die Daten werden als WMS-Darstellungsdienst und als WFS-Downloaddienst bereitgestellt.

WF 7200 Naturwald

Naturwälder sind Waldflächen, die nach repräsentativen, standörtlichen und vegetationskundlichen Kriterien ausgewählt werden und ihrer natürlichen Entwicklung überlassen bleiben. Die wissenschaftliche Beobachtung ihrer Entwicklung dient der Erforschung von Waldlebensgemeinschaften, ihrer Böden, ihrer Vegetation, Waldstruktur und Fauna sowie der Ableitung und Veranschaulichung von Erkenntnissen für die Waldbaupraxis.

Vegetationsstruktur des Grünvolumens 2009

Die vorliegende Vegetationsstruktur des Grünvolumens basiert auf einem Zwischenergebnis aus dem durch das Leibniz-Institut für ökologische Raumentwicklung e.V. (IÖR) erstellten Gutachten "Grünvolumenbestimmung der Stadt Dresden auf der Grundlage von Laserscandaten" vom August 2014. Dieses ist unter dem zugeordneten Dokument einsehbar. Einleitung: Städtisches Grün ist aus stadtökologischer und sozialer Sicht unverzichtbar und erfüllt wichtige Funktionen wie Staubbindung, Temperaturminderung, Winddämpfung oder Grundwasserneubildung. Darüber hinaus bilden öffentliche Grünanlagen Oasen der Ruhe, die der Erholung, Freizeitgestaltung und Kommunikation dienen und wichtige soziale Funktionen erfüllen. Die ökologische Wirksamkeit des städtischen Grüns ist im besonderen Maße von der vorliegenden Vegetionsstruktur abhängig. So besitzt niedrige Vegetation (Rasen und Wiesen) vor allem in den Abend- und Nachtstunden eine abkühlende Wirkung, während hohe Vegetation (mittlere bis große Bäume) vorwiegend am Tag zu einer Absenkung der klimatischen Belastung beiträgt, aber zugleich die Belüftung negativ beeinträchtigen kann. Mittlere Vegetation (Sträucher, Stauden, Hecken und kleine Bäume) verfügt ebenso wie die hohe Vegetation über ein hohes Maß an Staubbindevermögen aus der Luft, während niedrige Vegetation vorwiegend Staub- und Gasteile aus den Niederschlägen bindet und aufgrund der hohen Versickerungsleistung einen großen Anteil zur Grundwasserneubildung beiträgt (siehe auch Metadaten zur Planungshinweiskarte Stadtklima). Hintergrund: Für die Grünvolumenbestimmung war es zwingend erforderlich, Vegetation von anthropogenen Objekten mit einer relevanten Höhe über dem Boden, wie Gebäuden, Laternen, Fahrzeugen etc. zu trennen. Gleichzeitig war für die Anwendung der Kronenformkorrektur (nur auf Laubbäume) und des pauschalen Aufschlages für Rasen und Ackerflächen eine weitere Differenzierung nach Vegetationstypen erforderlich. Folgende Vegetationstypen sollten voneinander getrennt werden: - Laubbaum - Nadelbaum - Sträucher - Rasen - Acker. Datengrundlage/Methodik: Grundlage der Bestimmung der Vegetationsstruktur (als Zwischenergebnis der Grünvolumenbestimmung) sind Laserscandaten, RGBI-Bilddaten sowie Gebäudedaten. Klassifizierung der Vegetationsstruktur des Grünvolumens: - Value 0: vegetationslos => (farblos oder weiß) - Value 1: Laubbaum => (grün) - Value 2: Nadelbaum => (dunkelgrün) - Value 3: Sträucher => (braungrün) - Value 4: Rasen, Wiesen und sonstige niedrige Vegetation => (gelbgrün/hellgrün) - Value 5: Acker => (gelbgrün/hellgrün)

INSPIRE-WFS SL Hydro - Physische Gewässer ATKIS Basis-DLM - Feuchtgebiet - OGC WFS Interface

Dieser Dienst stellt für das INSPIRE-Thema Gewässernetz (Hydro-Physische Gewässer) aus ATKIS Basis-DLM umgesetzte Daten bereit. Das Thema Gewässernetz ist in Anhang I der INSPIRE-Richtlinie ist dieses Thema wie folgt definiert: „Elemente des Gewässernetzes, einschließlich Meeresgebieten und allen sonstigen Wasserkörpern und hiermit verbundenen Teilsystemen, darunter Einzugsgebiete und Teileinzugsgebiete. Gegebenenfalls gemäß den Definitionen der Richtlinie 2000/60/EG des Europäischen Parlaments und des Rates vom 23. Oktober 2000 zur Schaffung eines Ordnungsrahmens für Maßnahmen der Gemeinschaft im Bereich der Wasserpolitik (2) und in Form von Netzen.“ Zusätzlich findet man im Steckbrief Hydrografie GDI-DE(www.geoportal.de) folgende ergänzende Definition zum Thema. „Die Datenspezifikation zum Thema Hydrografie legt den Schwerpunkt auf die Darstellung und Beschreibung von Stehgewässern und Fließgewässern bzw. Seen, Flüssen und anderen Gewässern. Je nach Anwendungsfall gibt es thematische und geographische Einschränkungen bzw. eine unterschiedliche Semantik: Geographisch betrachtet sind alle Binnengewässer bzw. oberirdischen Wasserkörper im Binnenland angesprochen. Topographisch gesehen umfasst der Begriff „Gewässernetz“ die Gesamtheit aller von der Quelle bis zur Mündung zueinander fließenden Gewässer.„:Ein schlecht entwässertes oder periodisch überschwemmtes Gebiet, in dem der Boden mit Wasser gesättigt ist und Vegetation gedeiht.

Naturräumliche Gliederung Brandenburgs nach Scholz

Naturraumgliederung Brandenburgs und textliche Bezeichnung von 76 Naturraumuntereinheiten hinsichtlich Geologie, Klima, Relief, Boden, Hydrologie, Gewässer, Flächennutzung und natürliche Vegetation. Der Datensatz entstand durch Digitalisierung (im Maßstab 1:1.000.000) und topographische Anpassung an die Topographische Karte 1:100.000 (TK100) auf der Grundlage von: Eberhard Scholz: Die naturräumliche Gliederung Brandenburgs. Pädagogisches Bezirkskabinett, Potsdam 1962, 71 Seiten Der empfohlene Einsatzmaßstab ist ab 1:10.000. Naturraumgliederung Brandenburgs und textliche Bezeichnung von 76 Naturraumuntereinheiten hinsichtlich Geologie, Klima, Relief, Boden, Hydrologie, Gewässer, Flächennutzung und natürliche Vegetation. Der Datensatz entstand durch Digitalisierung (im Maßstab 1:1.000.000) und topographische Anpassung an die Topographische Karte 1:100.000 (TK100) auf der Grundlage von: Eberhard Scholz: Die naturräumliche Gliederung Brandenburgs. Pädagogisches Bezirkskabinett, Potsdam 1962, 71 Seiten Der empfohlene Einsatzmaßstab ist ab 1:10.000. Naturraumgliederung Brandenburgs und textliche Bezeichnung von 76 Naturraumuntereinheiten hinsichtlich Geologie, Klima, Relief, Boden, Hydrologie, Gewässer, Flächennutzung und natürliche Vegetation. Der Datensatz entstand durch Digitalisierung (im Maßstab 1:1.000.000) und topographische Anpassung an die Topographische Karte 1:100.000 (TK100) auf der Grundlage von: Eberhard Scholz: Die naturräumliche Gliederung Brandenburgs. Pädagogisches Bezirkskabinett, Potsdam 1962, 71 Seiten Der empfohlene Einsatzmaßstab ist ab 1:10.000.

AN 9 - Anlage von Feldvogelinseln (Kiebitzinseln)

Der Kiebitz brüten gerne in niedriger Vegetation auf zeitweilig vernässten Böden. Feldvogelinseln dienen dem Kiebitz und anderen Feldvogelarten nicht nur als Brutplatz, sondern sind auch ein wichtiges Nahrungs- und Deckungshabitat für dessen Jungvögel. Grundlage für die Förderkulisse stellen von Wiesenlimikolen besiedelte Gebiete in Niedersachsen dar, die einer landwirtschaftlichen Ackernutzung unterliegen. Dabei wurden Landnutzungsdaten auf Basis der Daten aus ATKIS (2017) sowie auf Basis der landwirtschaftlichen Feldblöcke (Stand 2021) zu Grunde gelegt. Datenbasis stellen aktuelle Brutvorkommen von Wiesenlimikolen aus den Ergebnissen des Wiesenvogelmonitorings (2014-2021), der landesweiten Kiebitz- und Uferschnepfenerfassung 2020, der SPA-Monitorings sowie aus weiteren vorliegenden Daten, wie zum Beispiel der Gelege- und Kükenschutzprojekte, dar.

INSPIRE-WFS SL Hydro - Physische Gewässer ATKIS Basis-DLM - Feuchtgebiet - OGC API Features

Dieser Dienst stellt für das INSPIRE-Thema Gewässernetz (Hydro-Physische Gewässer) aus ATKIS Basis-DLM umgesetzte Daten bereit. Das Thema Gewässernetz ist in Anhang I der INSPIRE-Richtlinie ist dieses Thema wie folgt definiert: „Elemente des Gewässernetzes, einschließlich Meeresgebieten und allen sonstigen Wasserkörpern und hiermit verbundenen Teilsystemen, darunter Einzugsgebiete und Teileinzugsgebiete. Gegebenenfalls gemäß den Definitionen der Richtlinie 2000/60/EG des Europäischen Parlaments und des Rates vom 23. Oktober 2000 zur Schaffung eines Ordnungsrahmens für Maßnahmen der Gemeinschaft im Bereich der Wasserpolitik (2) und in Form von Netzen.“ Zusätzlich findet man im Steckbrief Hydrografie GDI-DE(www.geoportal.de) folgende ergänzende Definition zum Thema. „Die Datenspezifikation zum Thema Hydrografie legt den Schwerpunkt auf die Darstellung und Beschreibung von Stehgewässern und Fließgewässern bzw. Seen, Flüssen und anderen Gewässern. Je nach Anwendungsfall gibt es thematische und geographische Einschränkungen bzw. eine unterschiedliche Semantik: Geographisch betrachtet sind alle Binnengewässer bzw. oberirdischen Wasserkörper im Binnenland angesprochen. Topographisch gesehen umfasst der Begriff „Gewässernetz“ die Gesamtheit aller von der Quelle bis zur Mündung zueinander fließenden Gewässer.„:Ein schlecht entwässertes oder periodisch überschwemmtes Gebiet, in dem der Boden mit Wasser gesättigt ist und Vegetation gedeiht.

SoilSuite – Sentinel-2 – Europe, 5 year composite (2018-2022)

The SoilSuite contains a collection of different image data products that provide information about the spectral and statistical properties of European soils and other bare surfaces such as rocks. It is created using DLR's Soil Composite Mapping Processor (ScMAP), which utilises the Sentinel-2 data archive. SCMaP is a specialised processing chain for detecting and analysing bare soils/surfaces on a large (continental) scale. Bare surface and soil pixels are selected using a combined NDVI and NBR index (PVIR2) that optimises the exclusion of photosynthetically active and non-active vegetation. The index is calculated and applied for each individual pixel. All SoilSuite products are calculated based on the available Sentinel-2 scenes recorded between January 2018 and December 2022 in Europe. The data package excludes all scenes with a cloud cover of > 80 % and a sun elevation of < 20°. The spectral composite products are calculated from the mean value after extensive removal of clouds, haze and snow effects at both scene and pixel level. The spectral data products are available at a pixel size of 20 m and contain 10 Sentinel-2 bands (B02, B03, B04, B05, B06, B07, B08, B08a, B11, B12). The SoilSuite comprises: (a) “Bare Surface Reflectance Composite – Mean” that provides the spectral properties of soils that vary due to different soil organic carbon (SOC) content, soil moisture and soil minerology. This product is often used for spectral and digital soil mapping approaches, (b) “Bare Surface Reflectance Composite - Standard deviation” informing about the spectral dynamic of bare surfaces and soils, (c) “Bare Surface Reflectance Composite – 95% Confidence” contains information about the reliability of the spectral information due to the number of valid observations per pixel, (d) “Bare Surface Statistics Product” provides the number of bare soil occurrences over the total number of valid observations (Band 1), the number of bare soil occurrences (Band 2) and the total number of valid observations (Band 3), (e) “Mask” is a product that aggregates simple landcover classes that occur during the time period between 2018 - 2022 (Sentinel-2). The three-class Mask contains bare surface occurrences (1), permanent vegetation (2) and other surfaces such as water bodies, urban areas, roads (3). Additionally, the SoilSuite provides (f) “Reflectance Composite – Mean” that represents the mean reflectance of all valid Sentinel-2 observations between 2018 – 2022 including vegetation, bare and other surfaces, and (g) “Reflectance Composite – Standard deviation”, which contains the standard deviation per band for all valid Sentinel-2 observations between 2018 – 2022.

1 2 3 4 591 92 93