Der interoprable INSPIRE-Downloaddienst (WFS) Biogeographische Region gibt einen Überblick über die Naturraumgliederung Brandenburgs. Diese setzt sich zusammen aus der Naturräumlichen Gliederung nach Scholz (1962) und den Naturrräumlichen Regionen des Landschaftsprogramms. Die Naturraumgliederung Brandenburgs nach Scholz beinhaltet die Geometrie und textliche Bezeichnung von 76 Naturraumuntereinheiten hinsichtlich Geologie, Klima, Relief, Boden, Hydrologie, Gewässer, Flächennutzung und natürliche Vegetation. Diese Naturräumliche Gliederung wird primär für Aufgaben im Naturschutz eingesetzt. Die Naturräumlichen Regionen des Landschaftsprogramms (LAPRO) Brandenburg wurden auf Grundlage der Veröffentlichung "Die naturräumliche Gliederung Brandenburgs" (Eberhard Scholz 1962) erstellt. Gemäß der INSPIRE-Datenspezifikation Bio-geographical Regions (D2.8.III.17_v3.0) liegen die Inhalte der Naturraumkarte INSPIRE-konform vor. Der WFS beinhaltet den FeatureType Bio-geographicalRegion. Der WebFeatureService (WFS) wird in den Versionen 1.1.0 und 2.0.0 bereitgestellt.
Der Dienst zur Naturraumgliederung Brandenburgs setzt sich zusammen aus der Naturräumlichen Gliederung nach Scholz (1962) und den Naturrräumlichen Regionen des Landschaftsprogramms. Die Naturraumgliederung Brandenburgs nach Scholz beinhalt Geometrie und textliche Bezeichnung von 76 Naturraumuntereinheiten hinsichtlich Geologie, Klima, Relief, Boden, Hydrologie, Gewässer, Flächennutzung und natürliche Vegetation. Diese Naturräumliche Gliederung wird primär für Aufgaben im Naturschutz eingesetzt. Die Naturräumlichen Regionen des Landschaftsprogramms Brandenburg wurden auf Grundlage der Veröffentlichung "Die naturräumliche Gliederung Brandenburgs" (Eberhard Scholz 1962) erstellt. Hierfür wurden die räumlichen Grenzen an den Maßstab des Landschaftsprogramms angepasst und die Bezeichnungen der Naturräume teilweise verändert. Der WebFeatureService (WFS) wird in den Versionen 1.1.0 und 2.0.0 bereitgestellt.
Waldbestände des SaarForst Landesbetriebes (Staatswald) Die Aussengrenzen (Besitzgrenzen) des Staatswaldes wurden an die ALK angeglichen und sind damit katasterscharf. Die Innengrenzen (Abgrenzungen der Waldbestände eines Eigentümers untereinander) sind anhand der DGK5 und der digitalen Orthofotos mit 40 cm Bodenauflösung digitalisiert. Neben zahlreichen datenbankinternen Attributen ist folgendes Attribut entscheidend: Bestandsname ; landesweit besitzerübergreifend eindeutiger Schlüssel. Felder und ihre Bedeutung: BESTAND: Bestand; ALTSTR: Altersstruktur BALTER: Alter mittel; BALTERMI: Bestandsalter bis; BALTERMA: Bestandsalter von; BEFE: Befundeinheit; BESTLAGE: Lage der Teilfläche; BESTSTR: Bestandesstruktur; ENTWST: Entwicklungsstufe; BESTNAM: Bestandesname; UFLAECHE: Unterfläche; BEFAHRB: Befahrbarkeit in %; DAT: Datum; FLAECHE: Fläche in ha; SEEH: Seehöhe; ARTV_BA: Artenvielfalt der Baumarten; ARTV_BV: Artenvielfalt der Bodenvegetation; BEHVEG1: Behindernde Vegetation 1; BEHVEG2: Behindernde Vegetation 2; BETR_KL: Betriebsklasse; BEST_TYP: Bestandestyp; C: Sonderfeld; D: Driglichkeit; EINZELB: Schützenswerte Einzelbäume; EXPMA: Exposition bis; EXPMI: Exposition von; EXPOS: Exposition; FEINER: Erschließung in %; FORM: Baumform; GATTER: Gatter in %; GELFOMA: Geländeform bis; GELFOMI: Geländeform von; H_PFLZ: Pflegezustand; HOEHLE: Höhlenreichtum; HORIZ: Horizontale Strukturvielfalt; KALK: Kalkung; KONTRNUA: Kontrollnutzungsart; NEIG: Neigung; TOTHOLZ: Totholz stehend; ENTSTEH: Tothol liegend; VERTI: Vertikale Strukturvielfalt; WUCHSB: Wuchsbezirk; WUCHSG: Wuchsgebiet; BESCHRIFT: ; HBA: Dominierende Baumartengruppen; BU: Ateil Buche in %; BL: Anteil Fläche temp. ohne Baumbewuchs in %; DOU: Anteil Douglasie in %; ELB: Anteil Edellaubbäume in %; KI: Anteil Kiefer in %; EI: Anteil Eiche in %; FI: Anteil Fichte in %; LAE: Anteil Lärche in %; SALH: Summe der Laubhölzer in %; SLB: Anteil sonstiger Laubbäume in %; SANH: Summe der Nadelbäume in %; SNB:Anteil sonstiger Nadelbäume in %; UFL: Bestand; SHAPE_Area: Flächengröße ha;
Alle Vegetationsflächen auf kohlenstoffreichen Böden mit Bedeutung für den Klimaschutz (BHK50) gemäß Basis-DLM (ATKIS), für die dem NLWKN entweder:a) keine,b) keine abschließend verifizierten, standardisierten oderc) keine Biotopkartierungen mit Veröffentlichungsrechten vorliegen.Enthalten sind sowohl anthropogen geprägte Bewirtschaftungen wie Landwirtschaft und Wald, Unland/vegetationslose Flächen, sowie mäßig bis minder beeinträchtigte organische Böden, die gemäß Basis-DLM (ATKIS) noch der Kategorie "Moor" zugewiesen werden.
Naturraumgliederung Brandenburgs und textliche Bezeichnung von 76 Naturraumuntereinheiten hinsichtlich Geologie, Klima, Relief, Boden, Hydrologie, Gewässer, Flächennutzung und natürliche Vegetation. Der Datensatz entstand durch Digitalisierung (im Maßstab 1:1.000.000) und topographische Anpassung an die Topographische Karte 1:100.000 (TK100) auf der Grundlage von: Eberhard Scholz: Die naturräumliche Gliederung Brandenburgs. Pädagogisches Bezirkskabinett, Potsdam 1962, 71 Seiten Der empfohlene Einsatzmaßstab ist ab 1:10.000.
Die nutzbare Feldkapazität (nFK) eines Bodens bzw. Horizontes ist der Teil der Feldkapazität, der für die Vegetation verfügbar ist. Sie beinhaltet damit die Wassermenge, die ein grundwasserferner Horizont in natürlicher Lagerung bei Saugspannungen von pF 1,8-4,2 nach ausreichender Sättigung gegen die Schwerkraft zurückhalten kann. Die Berechnung erfolgt zunächst für jeden Horizont. Die Ergebnisse werden bezogen auf 100 cm Tiefe oder den durchwurzelbaren Boden-raum (dB) aufaddiert und klassifiziert. Die Methode gibt die repräsentative nFK der jeweiligen Tiefenstufe wieder.
Die nutzbare Feldkapazität eines Bodens ist der Teil der Feldkapazität, der für die Vegetation verfügbar ist. Sie beinhaltet die Wassermenge, die ein grundwasserferner Standort in natürlicher Lagerung nach ausreichender Sättigung gegen die Schwerkraft zurückhalten kann und entspricht gemäß Konvention einer Saugspannung von pF 1,8 bis 4,2.
Seit langem ist bekannt, dass sich Böden mehr oder weniger schnell verändern. Manche dieser Veränderungen haben natürliche Ursachen. Andere wiederum sind auf Bodenbelastungen zurückzuführen, die der Mensch direkt oder indirekt verursacht. Hierzu gehören zum Beispiel die Stoffeinträge über Niederschlag und Staub (Säuren, Nährstoffe, Schwermetalle, Radionukleide, organische Schadstoffe usw.). Aber auch der Land- oder Forstwirt verändert die Böden seit eh und je durch Kultivierung und Nutzung. Die weitaus meisten dieser Prozesse laufen sehr langsam und für die menschlichen Sinne nur schwer wahrnehmbar ab. Um mögliche Veränderungen zu dokumentieren, führt das LBEG das niedersächsische Boden-Dauerbeobachtungsprogramm durch. Hierzu wurde in Kooperation mit anderen Landesdienststellen ein Netz von insgesamt 90 so genannten Boden-Dauerbeobachtungsflächen (BDF) aufgebaut. Siebzig entfallen auf ortsüblich landwirtschaftlich (BDF-L) genutzte und zwanzig auf forstlich genutzte (BDF-F) Standorte. Die Auswahl von repräsentativen Boden-Dauerbeobachtungsflächen (BDF) erfolgte anhand geowissenschaftlicher Kriterien wie Boden- und Gesteinsverhältnisse, Klima und Morphologie. Darüber hinaus berücksichtigte das LBEG typische Bodennutzungen (Land- und Forstwirtschaft, Naturschutzflächen) und Belastungsfaktoren (Immissionen, nutzungsbedingte Belastungen etc.). Ziel ist es, auf Basis dieser repräsentativ ausgewählten Messflächen mögliche Bodenveränderungen aufzudecken, Ursache und Auswirkungen zu bewerten und zu prognostizieren. Gelingt dies, steht den Handelnden in Politik, Verwaltung und Bodennutzung rechtzeitig eine gesicherte Datengrundlage für ihre Entscheidungsprozesse zur Verfügung. Das BDF-F-Programm besteht aus einer Kombination von Merkmals- und Prozessdokumentation. Die Merkmalsdokumentation beinhaltet die periodische Bestimmung von Vorräten und Zuständen wie physikalische, chemische und biologische Bodenuntersuchungen, Erhebungen der Biomasse und deren Inhaltsstoffe, Beurteilungen des Waldzustands durch Kronenansprache und Nadel-/Blattanalysen sowie Aufnahmen der Bodenvegetation. Die Prozessdokumentation geschieht durch die Messung von Flüssen im und über die Grenzen des Ökosystems. In Waldökosystemen stellen die Deposition, die Freisetzung durch Verwitterung, die Aufnahme in die Biomasse und der Sickerwasseraustrag wichtige Flüsse für viele Elemente dar. Daneben werden auch der Streufall und physikochemische Milieugrößen (Immission, Meteorologie) zur Beurteilung von Stresssituationen für die Waldökosysteme gemessen (Text: Nordwestdeutsche Forstliche Versuchsanstalt). In anderen Bundesländern gibt es ähnliche Programme, deren inhaltlicher Umfang unter den durchführenden Institutionen abgestimmt ist. Innerhalb Europas ist eine entsprechende Rahmenrichtlinie in Vorbereitung.
Der Kiebitz brüten gerne in niedriger Vegetation auf zeitweilig vernässten Böden. Feldvogelinseln dienen dem Kiebitz und anderen Feldvogelarten nicht nur als Brutplatz, sondern sind auch ein wichtiges Nahrungs- und Deckungshabitat für dessen Jungvögel. Grundlage für die Förderkulisse stellen von Wiesenlimikolen besiedelte Gebiete in Niedersachsen dar, die einer landwirtschaftlichen Ackernutzung unterliegen. Dabei wurden Landnutzungsdaten auf Basis der Daten aus ATKIS (2017) sowie auf Basis der landwirtschaftlichen Feldblöcke (Stand 2021) zu Grunde gelegt. Datenbasis stellen aktuelle Brutvorkommen von Wiesenlimikolen aus den Ergebnissen des Wiesenvogelmonitorings (2014-2021), der landesweiten Kiebitz- und Uferschnepfenerfassung 2020, der SPA-Monitorings sowie aus weiteren vorliegenden Daten, wie zum Beispiel der Gelege- und Kükenschutzprojekte, dar.
Im Rahmen einer Langzeituntersuchung zur Hochmoorrenaturierung wurden mit umfassenden Daten aus den Jahren von 1984 bis 2021 die Entwicklungen von Wasserhaushalt, Boden, Klima, Nährstoffdynamik, Flora, Vegetation und Fauna untersucht. Im Jahr 1984 wurden Hochmoorpflanzenarten mit Erfolg eingebracht. Bultbildende Torfmoose haben sich nur sehr kleinflächig vor allem in Heideflächen etabliert. Eine flächige Ausbreitung von Schlenkentorfmoosen, Entwicklung von Akrotelm und Streuauflage verringerten die Verdunstung der Fläche, so dass lange Trockenphasen wie 2018/2019 von der Moorvegetation gut überstanden wurden. Feuchteliebende Arthropoden der Moore wurden nachgewiesen, aber nur wenige Hochmoorspezialisten. Ein winterlicher Überstau von 10 – 30 cm für Schlenkenbereiche ist ausreichend. Die Böden wiesen größtenteils abnehmende Gehalte an pflanzenverfügbaren Nährstoffen auf. Unsere Ergebnisse zeigen, dass sich ein teilabgetorftes Hochmoor mit einer Restschicht aus stark zersetztem Hochmoortorf (Schwarztorf) wiedervernässen lässt und dass eine erste Akrotelmentwicklung stattfinden kann. Auch bei einem moderaten weiteren Temperaturanstieg dürften die klimatischen Bedingungen für die Hochmoorregeneration in Nordwestdeutschland ausreichen.
Origin | Count |
---|---|
Bund | 694 |
Land | 218 |
Type | Count |
---|---|
Förderprogramm | 630 |
Kartendienst | 2 |
Taxon | 1 |
Text | 83 |
Umweltprüfung | 1 |
unbekannt | 171 |
License | Count |
---|---|
closed | 188 |
open | 677 |
unknown | 23 |
Language | Count |
---|---|
Deutsch | 866 |
Englisch | 162 |
andere | 1 |
unbekannt | 19 |
Resource type | Count |
---|---|
Archiv | 8 |
Bild | 21 |
Datei | 6 |
Dokument | 33 |
Keine | 638 |
Unbekannt | 4 |
Webdienst | 30 |
Webseite | 232 |
Topic | Count |
---|---|
Boden | 819 |
Lebewesen & Lebensräume | 856 |
Luft | 610 |
Mensch & Umwelt | 888 |
Wasser | 681 |
Weitere | 875 |