API src

Found 2021 results.

Related terms

Remanufacturing von PEM-Brennstoffzellenstacks für eine nachhaltige Kreislaufwirtschaft

Dem Projektvorhaben liegt folgende Problemstellung zu Grunde: Brennstoffzellensysteme werden erst wirtschaftlich und ökologisch nachhaltig, wenn eine Kreislaufwirtschaft um das Produkt aufgebaut wird. Dies liegt zum einen darin begründet, dass (Primär-)Platin, das Teil der MEA ist, einen erheblichen Anteil am CO2-Fußabdruck und den Kosten eines Brennstoffzellenstacks hat und zum anderen, dass Brennstoffzellensysteme eine hohe Wertschöpfung haben, welche am Ende des ersten Produktlebenszyklus so weit wie möglich erhalten bleiben sollte. Da verschiedene Komponenten der Brennstoffzelle, insbesondere die MEA, nach einer gewissen Betriebszeit chemische Degradationserscheinungen aufweisen, ist eine unmittelbare Weiterverwendung ausgeschlossen. Sobald ein Brennstoffzellenstack an sein Lebensende gelangt oder aufgrund eines Defekts frühzeitig ausfällt, bedarf es einer Zustandsbeurteilung des Stacks. Daraus muss abgeleitet werden, ob eine Reparatur des Stacks in Form eines Austauschs degradierter Zellen möglich ist. Falls dies nicht mehr möglich ist, bedarf es der Demontage des Brennstoffzellenstacks sowie einer entsprechenden Befundung und ggf. Wiederaufbereitung der Einzelkomponenten, um der Anforderung eines möglichst hohen Wertschöpfungserhalts gerecht zu werden. Komponenten, die aufgrund irreversibler Degradationserscheinungen nicht mehr aufbereitet werden können, müssen im Sinne der Nachhaltigkeit möglichst sortenrein einem Recycling zugeführt werden. Unter Berücksichtigung der erwarteten Stückzahlen müssen daher bereits jetzt Konzepte für die automatisierte Zustandsbeurteilung und Demontage von Brennstoffzellenstacks, mit dem Ziel einer Kreislaufwirtschaft, entwickelt werden, um langfristig zum Erfolg der Technologie beizutragen.

Ammoniak Cracking: Ammoniak als Wasserstoffträger für den interkontinentalen Transport

Auf dem Weg zur Dekarbonisierung der deutschen Wirtschaft ist die Verfügbarkeit großer Mengen 'grünen' Wasserstoffs von entscheidender Bedeutung. Bis 2030 erwartet die Bundesregierung einen nationalen Wasserstoffbedarf von rund 90 bis 110 TWh. Der zusätzliche Verbrauch wird im Industriesektor (z.B. Stahlproduktion) und im Mobilitätsbereich mit Brennstoffzellen (z.B. Busse, Flugzeuge) benötigt. Da die nationale Produktion an grünen Wasserstoff in Deutschland jedoch für die nationalen Dekarbonisierungsziele nicht ausreicht, setzt die Bundesregierung auf umfangreiche Importe aus Regionen mit günstigen erneuerbaren Energien. Für einen energieeffizienten Wasserstofftransport ist die Umwandlung von Wasserstoff in Ammoniak, das eine hohe Wasserstoffdichte aufweist, sinnvoll. Die Rückgewinnung des Wasserstoffs aus Ammoniak erfolgt am Zielort über das sogenannte Ammoniak Cracking. Stand der Technik ist, dass die Ammoniakspaltung industriell bisher nur für kleine Nischenanwendungen, mit nur geringen Wasserstoffströmen (typische Größe: 1 - 2 t pro Tag) angewendet wird. Vor dem Hintergrund der nationalen Klimaschutzziele, der angestrebten Reduktion der CO2-Emissionen und der angespannten Versorgungslage mit Energierohstoffen, strebt das Forschungsprojekt HyPAC eine Transformation der deutschen Wirtschaft auf Wasserstoff-Basis an. Im Rahmen von HyPAC soll ein neues Verfahren zur Wasserstofferzeugung aus Ammoniak, entwickelt und erstmalig in einer Miniplant demonstriert werden. Linde strebt einen industriellen, leicht skalierbaren und energieeffizienten Ammoniak Cracking Prozess an, um im großen Maßstab Wasserstoff (~ 500 t pro Tag) in hoher Reinheit und zu attraktiven Preispfaden zentral zu erzeugen und für große industrielle Abnehmer, wie chemische Industrie, Wasserstoff-Pipeline-Netz oder Gasturbinen, bereitzustellen. Bei Projekterfolg kann das Verfahren einen großen Beitrag zur signifikanten Reduktion der CO2-Emissionen aus Stromerzeugung, Verkehr und Industrie, leisten.

Degradations-optimierter Betrieb von Multi-Brennstoffzellensystemen im Schwerlastverkehr, Teilvorhaben: Brennstoffzellen Modellentwicklung

FROstschäden bei PEM-BrennstoffZellEN für mobile Anwendungen und Strategien zum sicheren Einsatz bei tiefen Temperaturen

HyCET - Hydrogen Combustion Engine Trucks: Entwicklung und Pilotierung von LKW mit Wasserstoffverbrennungsmotor, sowie H2-Infrastrukturaufbau

FROstschäden bei PEM-BrennstoffZellEN für mobile Anwendungen und Strategien zum sicheren Einsatz bei tiefen Temperaturen, FROZEN: FROstschäden bei PEM-BrennstoffZellEN für mobile Anwendungen und Strategien zum sicheren Einsatz bei tiefen Temperaturen

Entwicklung eines langzeitrobusten Brennstoffzellen-BHKW, Teilvorhaben: Entwicklung und Optimierung eines PEM-Brennstoffzellenstacks und degradationsreduzierender Betriebsstrategien und deren Integration in ein BHKW

Aufbau eines Wasserstoff-Kompetenzzentrums in Braunschweig, Teilvorhaben: Alterungsverhalten von Wasserelektrolyseuren und Brennstoffzellen

Entwicklung, Evaluierung und Quantifizierung der technischen Vorteile der im CellForm-Verfahren hergestellten Bipolarplatten hinsichtlich der Effizienz und der maximal möglichen Stromstärken des Brennstoffzellenstacks

FH-Europa 2020: Ganzheitliche Entwicklung von Antriebssystemen leichter Elektro-Nutzfahrzeuge mit Brennstoffzelle

1 2 3 4 5201 202 203