Dieses Vorhaben adressiert als Bestandteil des Verbundvorhabens 'TurboHyTec - Turbomaschinen für Hydrogen-Technologien' wesentliche technologische Fragestellungen von Turbomaschinen, die eine Schlüsselstellung zu einer nachhaltigen Energieversorgung mittels erneuerbarer Energien einnehmen. Turbomaschinen sind Kernelemente in vielen Energiespeichersystemen und Industrieprozessen und finden auch Verwendung in Prozessen zur Erzeugung synthetischer grüner Brennstoffe. Wasserstofftechnologien sind ein zentraler Baustein für das Gelingen der Energiewende. Nachhaltig hergestellter Wasserstoff ist ein umweltschonender Energieträger, der zur Speicherung von überschüssiger erneuerbarer Energie eingesetzt werden kann. Voraussetzung für den weiteren Ausbau der erneuerbaren Energien ist eine deutliche Ausweitung der Speicherkapazitäten basierend auf neuartigen Speichertechnologien. Unter verstärkter Digitalisierung und Virtualisierung sind sowohl für die Speicherung als auch die Verteilung geeignete Verdichtungs- und Expansionsaggregate zu entwickeln. Das Vorhaben widmet sich drei thematisch übergeordneten Themen zur Entwicklung von Turbokomponenten für Anwendungen im Rahmen der Energiewende. Für die Realisierung einer wasserstoffbasierten Energieinfrastruktur wird im HAP 'Wasserstoff-Anwendungen' eine aerodynamische Bewertungsfähigkeit von Radialverdichtervoluten für die Luftversorgung von Brennstoffzellen erarbeitet (AP 1.4b). Im HAP 'Energiespeicher' erfolgt zum einen eine Modellanalyse für ein elektro-thermisches Energiespeichersystem für die zukünftige Sektorenkopplung und Ausgleich der Volatilität regenerativer Stromgewinnung (AP 2.1). Zum anderen wird ein transsonischer Radialverdichter für Anwendungen in zukünftigen dekarbonisierten Energiewandlungsprozessen optimal ausgelegt (AP 2.3b). Im HAP 'Digitalisierung' werden hochgenaue skalenauflösende Strömungssimulation für einen virtuellen Kaskadenprüfstand im Rahmen der Produktauslegung qualifiziert (AP 4.6d).
Hochtemperaturbrennstoffzellen mit keramischem Festelektrolyt (SOFC: Solid Oxide Fuel Cell) sind aufgrund ihres hohen Wirkungsgrades und ihrer Umweltvertraeglichkeit eine zukunftsweisende Alternative gegenueber konventioneller Energieerzeugung. Die Leistungsfaehigkeit und Lebensdauer der Einzelzellen sind dabei entscheidende Kriterien fuer die wirtschaftliche Nutzung von Brennstoffzellen. Bisherige Untersuchungen haben ergeben, dass es bei Langzeitbetrieb zu irreversiblen Veraenderungen in der Mikrostruktur der Anode kommt, die zu einer Senkung der Leistungsfaehigkeit fuehren. Je nach Belastung der Einzelzellen treten unterschiedliche Degradationsmechanismen auf. Ziel dieses Projektes ist die Entwicklung einer Anode, die aus mehreren Funktionsschichten besteht, um so die noetige Leistungsfaehigkeit und Langzeitstabilitaet zu liefern. Es soll ein Gradient in der Korngroesse, dem Nickelanteil und somit der Porositaet und der elektrischen Leitfaehigkeit erreicht werden, da die einzelnen Bereiche der Anodenstruktur unterschiedlichen Anforderungen genuegen muessen. So sind an der Grenzschicht Elektrolyt/Anode kleine Koerner erwuenscht, um eine moeglichst grosse Reaktionsflaeche zu erhalten. Wohingegen an der Grenzflaeche Anode/Interkonnektor ein hoher Anteil an grossen Nickelkoernern erforderlich ist, um einen guten elektrischen Kontakt und hohe Porositaet zu gewaehrleisten. Die optimale Zusammensetzung und Mikrostruktur der einzelnen Funktionsschichten soll durch systematische Belastungstests (elektrisch, chemisch, thermomechanisch) an verschiedenen homogenen Modellstrukturen, das sind Cermetproben aus Nickel- und YSZ-Teilchen mit definierter, homogener Zusammensetzung und Mikrostruktur, und durch die elektrochemische Charakterisierung von Einzelzellen mit entsprechenden homogenen Anodenstrukturen ermittelt werden. Vor und nach Durchfuehrung der Belastungstests ist eine umfassende Analyse der Zusammensetzung und Mikrostruktur der Modell- und Anodenstrukturen mittels Elektronenmikroskopie (REM, TEM, EDX, WDX) vorgesehen. Anhand der gewonnenen Ergebnisse soll ein Modell fuer die verschiedenen Verlust- und Degradationsmechanismen in der Anode entwickelt werden.