Anfall von Holzreststoff als Reststoff der Holzwirtschaft (Rinde, Speissel&Schwarten, Hackschnitzel) als Energielieferant, ohne vorgelagerte Prozeßketten und Emissionen, Angabe trocken (Oberer Heizwert) Auslastung: 5000h/a Brenn-/Einsatzstoff: Ressourcen gesicherte Leistung: 100% Jahr: 2000 Lebensdauer: 20a Leistung: 1MW Nutzungsgrad: 100% Produkt: Brennstoffe-Bio-fest
Eingabe Porosierungsmittel als Sägespäne; Korrektur CO2-Emissionen von 180 auf 148 kg/t (Sägespäneanteil:32 kg/t) Herstellung von Mauerziegeln (Ziegelwerk). Die im Ziegelwerk angelieferten tonhaltigen Rohstoffe werden vor dem Brennen aufbereitet. Dabei werden sie mit Wasser konditioniert und ins Walzwerk gegeben. Heute werden meist ein grobes und ein feines Walzwerk betrieben. Nach den Walzwerken werden die Mineralien durch Strangpresse und Abschneider geformt. Derartig vorbehandelt werden sie in die Trocknungskammer eingebracht, die mit der Abwärme des Brennofens beheizt wird. Im Anschluß werden die Ziegel gebrannt. Häufig wird die Trocknung und der Vorbrand in einem Prozeß mit dem keramischen Brand realisiert. Der Brand erfolgt in den meisten Fällen in kontinuierlich betriebenen Tunnelöfen bei Temperaturen zwischen 1000 und 1200°C. Die gebrannten Ziegel werden luftgekühlt. Die Datenbasis für den Prozeß der Ziegelherstellung in GEMIS bildet die Ökobilanz von Mauerziegeln der deutschen, österreichischen und schweizerischen Ziegelverbände (#1). Sie stützt sich auf die Primärdaten von 12 einzelnen Ziegelwerken. Die Daten wurden im Zeitraum von 1992 bis 1993 ermittelt. Genese der Kennziffern Massenbilanz: Für die Herstellung einer Tonne Ziegel müssen im Mittel ca. 1350 kg Tone in den Prozeß eingebracht werden. Dabei reicht die Spanne in der betrachteten Studie von 1055 kg bis 1725 kg Tonmineralien pro Tonne Ziegel (DACH 1996). Die enormen Differenzen sind auf Schwankungen des Wassergehalts und die Art der Ziegel zurückzuführen. Je nach Wassergehalt werden den Tonen Sand und Natursteinmehl beigemengt. Diese Mengen werden in GEMIS allerdings nicht berücksichtigt. Neben den Tonmineralien werden eine Reihe von Zuschlagsstoffen und Porosierungsmittel eingesetzt. Als Porosierungsmittel werden häufig Sägemehl und Polystyrol verwendet. Ein großer Anteil der Porosierungsstoffe wird über Reststoffe gedeckt. Da die Massenanteile der Porosierungsmittel gering sind, der Anteil von Ziegel zu Ziegel sehr unterschiedlich ist und Reststoffe in der Prozeßkettenanalyse ohne Vorkette bilanziert werden, werden die Porosierungsmittel an dieser Stelle nicht aufgeführt. Die über die Porosierungsmittel bereitgestellte Energie ist jedoch beim Energiebedarf des Prozesses zu berücksichtigen (s.u.) Energiebedarf: Der Energiebedarf der in #1 bilanzierten Werke wird größtenteils über Erdgas und Strom gedeckt. Vereinzelt werden auch Heizöle und Propan als Energieträger eingesetzt. Diese werden in GEMIS nicht bilanziert. Der arithmetisch gemittelte Energiebedarf der bilanzierten Ziegelwerke aufgeteilt nach Energieträgern ist in der folgenden Tabelle dargestellt. Tab.: Energiebedarf zur Herstellung einer Tonne Ziegel getrennt nach Energieträgern (DACH 1996, arithmetisch gemittelt). Energieträger Menge in MJ/t Erdgas 1310 elektr. Strom 150 Die Zuschlagsstoffe, die als Porosierungsmittel dienen, sind ebenfalls als Energieträger zu werten, da sie beim Brennen der Ziegel praktisch vollständig verbrennen., wobei den jeweiligen Heizwerten entsprechende Wärmemengen freigesetzt werden. Die Deckung des Energiebedarfs über Porosierungsmittel schwankt stark von Ziegelwerk zu Ziegelwerk. Arithmetisch gemittelt für die bilanzierten Werke ergibt sich ein Anteil an Endenergie von 620 MJ/t. Die Porosierungsmittel werden in GEMIS ohne Vorkette bilanziert. Prozeßbedingte Luftemissionen: Die prozeßbedingten Luftemissionen wurden für die 12 bilanzierten Werke durch Messungen erfaßt . In GEMIS wird das arithmetische Mittel der einzelnen Werke angesetzt. Die Emissionsfaktoren sind in der folgenden Tabelle dargestellt: Tab.: Emissionsfaktoren der einzelnen Luftschadstoffe pro Tonne gebrannter Ziegel (DACH 1996, arithmetisch gemittelt). Schadstoff Masse in kg/t Ziegel SO2 0,100 NOx 0,260 Staub 0,019 CO2 180,417 CO 0,391 HF 0,003 HCl 0,012 organische Stoffe (gesamt C) 0,063 Die Emissionen, die aus der Bereitstellung des Stromes resultieren, sind dabei noch nicht berücksichtigt. Wasserinanspruchnahme: Der Wasserbedarf beim Mischen und Formen der Rohmaterialien im Prozeß der Ziegelherstellung ist wie der Rohstoffbedarf selbst sehr stark von der Grubenfeuchte der Tone abhängig. Daher kann die eingesetzte Wassermenge stark variieren (#3). Das arithmetische Mittel der für die Ziegelverbände erstellten Ökobilanz ergibt einen Wasserbedarf von 0,1 m³/t Ziegel. Dieser Wert wird in GEMIS übernommen. Abwasserinhaltsstoffe: Bei allen bilanzierten Werken ist der Abwasseranfall zu vernachlässigen (#1). Das eingesetzte Prozeßwasser und die Grubenfeuchte der Tone verdampfen während des Trocknungs- und Brennprozesses (#2). Reststoffe: Bei allen in #1 untersuchten Werken ist die aus der Entsorgung fester Abfälle resultierende Umweltbelastung gering. Daten hierzu wurden daher nicht aufgeführt. Der bei der Ziegelherstellung anfallende Trocken- und Brennbruch wird werksintern wiederverwertet (Beimengen zum Rohton) oder nach einer Weiterverarbeitung verkauft (Tennismehl). Die daraus resultierenden Produkte werden in GEMIS nicht berücksichtigt (s. Allokation). Auslastung: 5000h/a Brenn-/Einsatzstoff: Rohstoffe gesicherte Leistung: 100% Jahr: 2000 Lebensdauer: 20a Leistung: 1t/h Nutzungsgrad: 74,1% Produkt: Baustoffe
Das Projekt "Teil I" wird vom Umweltbundesamt gefördert und von energy of nature, Projektgesellschaft fuer umwelttechnische Anlagensysteme Leipzig, Bereich Bioverfahrenstechnik durchgeführt. Das vorgesehene Projekt befasst sich mit der Verwertung und Verbesserung des bei der Klaerschlammfaulung entstehenden Klaergases. Dabei soll durch eine biologische Reinigung das Klaergas bis auf Erdgasqualitaet verbessert werden, so dass ein hoeherer Brennwert, die Einsetzbarkeit von Erdgas-BHKWs und eine deutliche Erhoehung der Standzeiten der BHKW zu einer Verbesserung der Wirtschaftlichkeit der Klaergasverstromung in Klaeranlagen fuehren. Die Reinigung des Klaergases soll durch den biologischen Entzug des CO2 beim Durchstroemen eines Algenreaktors erfolgen, wobei CO2 durch die Algen als Kohlenstoffquelle fuer den Aufbau von Biomasse genutzt wird. Die Algenbiomasse kann sowohl einer energetischen Nutzung durch Rueckfuehrung in die Faulung (theoretischer Energiegewinn 10-12 Prozent) wie auch einer stofflichen Nutzung als Duenger und Futter oder zur Wertstoffextraktion unterworfen werden. Das Vorhaben soll in Kooperation mit der Technischen Dresden, ISIW, das einen eigenstaendigen Teil bearbeitet, realisiert werden.
Das Projekt "Teil II" wird vom Umweltbundesamt gefördert und von Technische Universität Dresden, Institut für Siedlungs- und Industriewasserwirtschaft durchgeführt. Schwerpunkt der Untersuchungen ist es, den Nutzungsgrad fuer das innerhalb der Abwasser-/Abfallaufbereitung anfallende Biogas zu steigern. Durch ein Verfahren zur biologischen Trennung von Methan und Kohlendioxid mit Hilfe von Algenkulturen wird der Brennwert des Gases erhoeht und dem von Erdgas angenaehert. Die Grundlagenuntersuchungen zur Entwicklung geeigneter Reaktoren werden vom Kooperationspartner energy of nature Projektgesellschaft fuer umwelttechnische Anlagensysteme Leipzig mbH durchgefuehrt. Der vorliegende Antrag beinhaltet die Verfahrensgestaltung, worin die zu entwickelnden speziellen Reaktoren eingebunden werden.
Das Projekt "Verbesserung der Qualitaet von Biogas mit dem Ziel der Erhoehung seines Heizwertes auf Heizgasstandard" wird vom Umweltbundesamt gefördert und von Landeshauptstadt Stuttgart, Tiefbauamt durchgeführt. Objective: To construct a plant for the purification of biogas produced in a sewage treatment plant and to upgrade its calorific value. A projected 10 000 m3 of biogas will be processed daily. General Information: The biogas, which contains a high percentage of CO2, has a calorific value of 7.45 Kwh/m3. In addition, for final use H2S should be eliminated from the biogas. In order to reach the prescribed calorific value of 11.2 Kwh/m3 it may be necessary to add some hydrocarbons such as propane. The CO2 and H2S are removed in a regenerative alcanolamin process (MEA) for which the required steam of the MEA-lye is obtained from the sludge incineration plant. The condensate is conveyed back to the boiler on the sludge incineration plant. For purification the sewage gas has to go through the following process: - removal of CO2 and H2S by means of regenerative alcanolamine scrubbing; - drying, compression and absorption on activated aluminium oxide; - analysis of the CO2 content and dew point of the purified gas; - odorization with a pungent substance added by metering pump; - conditioning of the purified gas with LPG, to comply with the prescribed calorific value for fuel gas. Achievements: Experimental operation of the plant carried out from 5/9 to 11/9/1985 with the agreement of the Public Works Department and the City Gas Company was successfully completed. During this period approx. 40000 m3 purified sewage gas of natural gas quality were fed into the city's mains gas supply. The plant was thus deemed to be accepted and was transferred to the authority of the Public Works Department on 12/9/1985. Output Data of the plant were the following: Crude gas approx. 606 Nm3/h CO2 approx. 36 - 38 per cent vol. H2S approx. 270 - 320 mg/Nm3 N2 + 02 approx. 0.6 - 1.8 per cent vol. t approx. 20 deg. C. Purified gas max. 369 Nm3/h min. 128 Nm3/h. From commissioning in September 1985 until the end of 1988 3.8 million m3 of purified gas have been produced. This is equivalent to 3.7 million litres or 3.2 million kg of heating oil. The guaranteed performance of the plant is exceeded and the consumption of operating materials falls below the stated values. Despite increased output the guaranteed composition of purified gas is below the required levels. Operating costs of the main sewage plant are slightly reduced by sewage gas processing.
Das Projekt "Gas-enrichment installation to upgrade coal-mine gas for the use in the Oberhausen gas distribution network" wird vom Umweltbundesamt gefördert und von Ruhrkohle AG durchgeführt. Objective: To build a compressor and a gas-enrichment installation (pressure-change-adsorption system) to bring the coal-mine exhaust gas of the Sterkrade mines to a fuel value equivalent to that of natural gas and feed this gas into the gas network of Oberhausen. The nominal output of the installation is 3500 Nm3/h of upgraded gas. The reuse of the mine exhaust gas currently flared is estimated to save 9,152 TOE/year. In the FRG there are 22 coal-mines where this technology could be applied with similar benefits leading to a total saving of 1 per cent of the gas imported in the FTG (62.9 billion m3) equivalent to 192,890 TOE/year. General Information: The Sterkrade pit has 3 gas suction devices whose function is to eliminate the methane gas from the coal-mine. Some 20 per cent of the mine gas can be reused in the central boiler of the mine, but 80 per cent finds no application and is flared. This project intends to upgrade this gas to a quality suitable for distribution in the natural gas network of the town. The mine gas contains a methane portion varying from 26 to 44 per cent and must be enriched to 87 per cent. This is achievable by using a 'pressure-change-adsorption' installation (DWA-Anlage) which consists of separation-columns and a buffer storage tank containing molecular sieves. The mine gas passes through the separation-columns where the methane is adsorbed leaving a methane-free exhaust which is then partly recirculated into another column where it re-collects the previously adsorbed methane until the necessary concentration. The upgraded gas is then compressed and fed +/- 80 per cent into the network, and the remaining 20 per cent is used for covering the requirements of the mine. The total cost of the project amounts to DM 10,619,590.-. The 'DWA' equipment will be installed by Berghau AG Niederrhein (BAN), a 100 per cent subsidiary of the contractor. A contract covers the subcontracting by Ruhrkohle to BAN. Patent coverage exists.
Das Projekt "Metrology for Biofuels - Call 2009 Energy I: Providing a reference for physical parameters in biofuels" wird vom Umweltbundesamt gefördert und von Physikalisch-Technische Bundesanstalt durchgeführt. The European directive 2009/28/EC on the promotion of the use of energy from renewable sources endorsed in Article 3 a mandatory target of a 20Prozent share of energy from renewable sources in overall Community energy consumption by 2020 and a target of at least 10 percent of the final consumption of energy in transport. Fuels from renewable sources (biofuels) show differences to fossil fuels when looking to their physical parameters. Thus, the parameters known for fossil fuels and used for volume measurement (legal purpose)and for process control in the engines (industrial purpose) cannot be transferred to biofuels. The parameters density, viscosity, and calorific value are important for legal purposes (measurement of volume, conversion into a standard volume at defined temperature, measurement of energy content). The ANNEX III Energy content of transport fuels of the European directive 2009/28/EC is not supported by traceable measurements. The density and thermal expansion coefficients of biofuels differ from those of fossil fuels. The density of blends does not follow a simple linear mixing rule. In order to be able to take into account these differences, accurate measurements of density at various temperatures are required. The viscosity is a quantity used as a correction factor for some flow meters. Thus, accurate measurements of viscosity at various temperatures are required, too. The calorific value as a measure for the energy content is the most important quantity describing the amount of substance needed for energy generation and, by this, is of large importance for the economical benefit and influences the impact on environment, especially the carbon dioxide balance. The parameters density, viscosity and calorific value input to the process control during injection, atomisation, ignition, and combustion of fuel in the engine. A precise knowledge of these parameters is necessary for the optimisation of the combustion process to reach a reduction in consumption, pollutant emission, and noise. Thus the physical parameters of biofuels need to be determined by measurements traceable to the SI. At moment, singular measurements of different parameters already exist. But many of them are not traceable to SI and are not supported by a chemical analysis of the material. This prohibits a comparison of results. There are no area-wide investigations about the spread of parameters within one sort of biofuel produced at different regions of Europe and investigations about the spread of parameters between different sorts of biofuel. The measurement methods are not optimised for biofuels so far. Reference materials are available for some parameters at standard temperatures and pressures, but not for the large range of temperatures which is relevant. The large variety of biofuels and their blends with fossil fuels require rules to determine the physical parameters from the knowledge of their constituents. usw.
Das Projekt "A novel approach for the integration of biomass pyrolytic conversion processes in existing markets of liquid fuels and chemicals" wird vom Umweltbundesamt gefördert und von Universität Stuttgart, Institut für Physikalische Elektronik durchgeführt. General Information/Objectives: The proposed integrated approach has the following objectives: - Pyrolysis of various feedstocks, e.g. straw, around donax, hardwood (eucalyptus species) and softwood (pine species). - Evaluation of characteristics of qualified feedstocks (ultimate and proximate analysis and calorific value). - Optimization of flash pyrolysis and combustion processes to increase liquid yields and improve liquids quality. - Close-coupling of existing biomass conversion (CFB reactor), post treatment (product stream dedusting and pyrolysis vapour quenching) and upgrading (plasma reactor) processes - Derivation of scale-up rules for flash pyrolysis plants. - Setting-up of requirements for risk analysis of integrated advanced pyrolysis systems including detailed study on techno economics for either heat or power applications. - Proposals for the removal of barriers to introduce pyrolysis liquids to niche markets, e.g. refinery infrastructure. Technical Approach In the framework of previous R and D programmes, a novel reactor configuration, suitable for the maximisation of the liquid products derived from biomass flash pyrolysis has been constructed and tested. It is a Circulating Fluidised Bed (CFB) reactor, which is fuelled by partial combustion of the by-products of the pyrolytic process. This is achieved by recirculation of the by-product char to the lower portion of the CFB reactor, where it is combusted, providing the energy requirements to carry out the biomass devolatilization process. Results have shown total liquid yields of 55-60 per cent wt, based on maf feedstock. However essential process modifications (e.g. hot gas filtration and liquid recovery based on direct quench of pyrolysis vapours)are required to improve quality and further increase liquid yields. Moreover, the liquid products have to be analyzed and upgrading techniques (such as hydrotreatment of zeolite cracking) thoroughly investigated prior to applying the process at a larger scale. A scale up procedure (for plants up to 1 tonne maf biomass/h) should furthermore be based on robust results derived by large-scale hydrodynamics study. Finally, market applications of the overall process require a detailed risk analysis as well as an assessment of the necessary procedures to accelerate pyrolysis products penetration in the existing infrastructure of liquid fuels and chemicals. Expected Achievements and Exploitation The output of the project include: - a breakthrough in pyrolysis liquid upgrading technology - derivation of scale-up rules to minimize risks associated to changing fluid dynamics in larger systems. - development of an integrated scheme for biomass conversion - techno economic assessment of the concept - ... Prime Contractor: Agricultural University of Athens, Department of Land Reclamation and Agricultural Engineering, Laboratory of Farm Structures; Athens; Greece.
Das Projekt "Teilprojekt 3" wird vom Umweltbundesamt gefördert und von Karlsruher Institut für Technologie (KIT), Engler-Bunte-Institut, Bereich Gas, Erdöl und Kohle durchgeführt. 1. Vorhabenziel: Ziel des Verbundprojektes (mit 7 Partnern: 3 x Forschung, 4 x Industrie) ist die Entwicklung eines Konzeptes zur Speicherung der bei Wind und Photovoltaik volatil anfallenden elektrischen Energie durch Fixierung von CO2 in Form von Methan und Brennwert-erhöhenden Gaskomponenten. Aufgabe des EBI ist die Ermittlung und experimentelle Untersuchung von Strategien für die Synthese von Brennwert-erhöhenden Gaskomponenten aus H2/CO2-Mischungen. Für ausgewählte Katalysatoren/-Kombinationen sollen die Reaktionsbedingungen für maximale Ausbeuten von C2 bis C4-Alkanen ermittelt werden, sowie gegebenenfalls von anderen Komponenten, die auch für die stoffliche Nutzung geeignet erscheinen. CO2 aus Kraftwerksabgasen, Vergasungsgasen und anderen Quellen soll als Kohlenstoffquelle bewertet werden. Im Hinblick auf die Dynamik des Gesamtsystems soll das dynamische Verhalten von Synthesereaktoren/Syntheseverfahren rechnerisch untersucht werden. 2. Arbeitsplanung: Nach Festlegung von Zielkomponenten und Synthesewegen wird eine Festbett-Syntheseapparatur mit integrierter Analytik gebaut. Mit dieser Apparatur werden umfangreiche Syntheseversuche mit verschiedenen Katalysatoren und variablen Reaktionsbedingungen durchgeführt (Variation Gesamtdruck, Synthesegaszusammensetzung, Verweilzeiten, Temperatur, Katalysator). Mit rechnerischen Simulationen werden verschiedene Fälle betrachtet, die im Hinblick auf das Gesamtsystem von Bedeutung sind. CO2 wird als Kohlenstoffquelle mit fossilen Rohstoffen verglichen.
Das Projekt "Klaergasaufbereitung zur Erhoehung des Brennwertes auf H-Gas-Qualitaet" wird vom Umweltbundesamt gefördert und von Landeshauptstadt Stuttgart, Tiefbauamt durchgeführt. Entfernung von CO2 und H2S aus dem Klaergas (Heizwert 6,5 KWh/m3). Dadurch wird der Brennwert angehoben und Umweltbeeinflussungen durch Schwefel werden vermieden. Zur Reinigung wird Monoethanolamin verwendet. Die Regeneration der Lauge erfolgt bei einer Temperatur von 110 Grad C und einem Druck von 0,5 bar. Zur Trocknung wird das aufbereitete Gas ueber Aluminiumoxide gefuehrt, das thermisch regeneriert wird. Das gereinigte Gas kann bei Bedarf mit Fluessiggas noch nachkonditioniert werden, damit der Brennwert von H-Erdgas (11,2 KWh/m3) erreicht wird.
Origin | Count |
---|---|
Bund | 81 |
Land | 8 |
Type | Count |
---|---|
Förderprogramm | 78 |
Text | 2 |
Umweltprüfung | 1 |
unbekannt | 8 |
License | Count |
---|---|
closed | 8 |
open | 78 |
unknown | 3 |
Language | Count |
---|---|
Deutsch | 88 |
Englisch | 16 |
Resource type | Count |
---|---|
Archiv | 2 |
Datei | 2 |
Dokument | 3 |
Keine | 63 |
Webseite | 23 |
Topic | Count |
---|---|
Boden | 72 |
Lebewesen & Lebensräume | 65 |
Luft | 48 |
Mensch & Umwelt | 89 |
Wasser | 47 |
Weitere | 89 |