API src

Found 18 results.

Weiterentwicklung der Analysemethoden zur Bewertung des Leck-vor-Bruch-Verhaltens metallischer Komponenten einschließlich Leckratenbestimmung

Das Projekt "Weiterentwicklung der Analysemethoden zur Bewertung des Leck-vor-Bruch-Verhaltens metallischer Komponenten einschließlich Leckratenbestimmung" wird vom Umweltbundesamt gefördert und von Gesellschaft für Anlagen- und Reaktorsicherheit (GRS) gGmbH durchgeführt. Gesamtziel der geplanten Arbeiten ist die Weiterentwicklung analytischer Methoden zur Beschreibung des Verhaltens von Rissen und Lecks in metallischen druckführenden Komponenten. In diesem Zusammenhang sollen die Analysemethoden auch auf sogenannte quasi-laminare rissartige Fehlstellen, die quasi-parallel zur Oberfläche der drucktragenden Wand liegen, erweitert werden. Ferner soll der Einfluss von Eigen-spannungen auf das Verhalten von Lecks untersucht und im Hinblick auf die Bewertung des Leck-vor-Bruch-Verhaltens die Leckratenbeschreibung verbessert werden. Dabei sollen neben rissartigen Lecks auch Wasser-/Dampf-Leckagen durch Dichtungen und Armaturen in der druckführenden Umschließung berücksichtigt werden. Die weiterentwickelten Analysemethoden sollen in das bestehende Codesystem PROST / WinLeck eingebunden und Anwendern im In- und Ausland zur Verfügung gestellt werden. Zur ErfüIIung der Zielsetzung sind die folgenden Arbeitspakete vorgesehen. AP 1: Erweiterung der analytischen Bruchmechanik. AP 2: Erweiterungen Leckratenbestimmung. AP 3: Analysen zu Versuchen mit Rissen und Lecks. AP 4: Methoden zum Leck-vor-Bruch Verhalten. AP 5: Projektmanagement und Projektcontrolling.

Werkstoffentwicklung für Windenergieanlagen im Multi-Megawatt-Bereich Offshore

Das Projekt "Werkstoffentwicklung für Windenergieanlagen im Multi-Megawatt-Bereich Offshore" wird vom Umweltbundesamt gefördert und von Siempelkamp Gießerei GmbH durchgeführt. Im Rahmen des Projekts sollte ein Gusseisenwerkstoff mit Kugelgraphit für die Anwendung in der Offshore-Windenergie entwickelt und optimiert werden. Neben einer Erhöhung der Festigkeit unter wechselnder Beanspruchung im Vergleich zum derzeit in diesem Bereich eingesetzten EN-GJS-400-18-LT, stand eine ausreichende Bruchzähigkeit und dadurch qualifizierte Erhöhung der Bauteilsicherheit hinsichtlich strukturellen Versagen im Fokus der Entwicklung. Der so optimierte Werkstoff sollte durch eine unabhängige Zertifizierungsgesellschaft für den Einsatz in dynamisch hoch beanspruchten Bauteilen von Offshore-Windenergieanlagen zertifiziert und freigegeben werden. Als wesentlicher Bestandteil des Projekts war ein bruchmechanisches Nachweiskonzept für Bauteile dieses Werkstoffs zu erarbeiten, das ebenfalls durch die Zertifizierungsgesellschaft abgenommen werden sollte. Die verbesserten spezifischen Eigenschaften des Gusswerkstoffes werden zu Materialeinsparungen führen, die direkt an den Gussbauteilen entstehen sowie indirekt an anderen Bauteilen ermöglicht werden. Direkte Einsparungen werden infolge der höheren Leistungsfähigkeit des Werkstoffes durch eine Gewichtsreduktion der Gussbauteile ermöglicht. Erreicht wird dies vor allem durch die höhere Wechselfestigkeit, die bei Gussbauteilen von Windenergieanlagen dimensionierend ist. Durch eine Reduzierung der Kopfmassen ergeben sich indirekt, auf Grund der Eigenfrequenzanforderungen von WEA's, Einsparungspotentiale bei Turm und Gründung. Das Turmgewicht bei 5-MW-Anlagen beträgt ca. 400 - 700 t, die Masse der Gründung 600 - 1.000 t. Eine Verringerung der Kopfmasse um 20 t führt nach einer Untersuchung des Weltmarktführers Vestas zu 10 Prozent bis 15 Prozent geringeren Turm- und Gründungskosten bzw. -massen. Zur Erreichung des Projektziels, der Zertifizierung eines höherfesten, aber ausreichend duktilen Sphärogusswerkstoffs, wurde das Konzept der Mischkristallverfestigung eines ferritischen Gusseisens mit Kugelgraphit verfolgt. Im Vergleich zur zumeist üblichen Festigkeitssteigerung in dieser Werkstoffgruppe durch Perlitstabilisierung, weist die gewählte Vorgehensweise den Vorteil eines wesentlich geringeren Abfalls der Duktilität und Zähigkeit bei ansteigender Festigkeit auf. Somit wurde eine Gusseisensorte mit erhöhtem Si-Gehalt sowie Ni-Zugabe entwickelt und hinsichtlich seines Verhaltens unter schwingender Belastung und der Bruchzähigkeit optimiert. Dazu wurden jeweils Proben aus bauteilnahen Versuchsgeometrien entnommen und getestet. Die optimierte Zusammensetzung wurde anschließend nach den Vorgaben des GL als Zertifizierungsgesellschaft hinsichtlich der Kennwerte der Schwingfestigkeit sowie wichtiger Einflussgrößen auf diese, wie beispielsweise das Spannungsverhältnis, die Oberfläche und weitere, geprüft. usw.

Untersuchungen zum Einfluss von Mischungszusammensetzungen und der technologischen Bedingungen auf das Compoundier- und Vulkanisationsverhalten sowie die anwendungsspezifischen Eigenschaften neuartiger Füllstoff-Kautschuk-Komposite

Das Projekt "Untersuchungen zum Einfluss von Mischungszusammensetzungen und der technologischen Bedingungen auf das Compoundier- und Vulkanisationsverhalten sowie die anwendungsspezifischen Eigenschaften neuartiger Füllstoff-Kautschuk-Komposite" wird vom Umweltbundesamt gefördert und von Universität Halle-Wittenberg Zentrum für Ingenieurwissenschaften durchgeführt. Die allgemeine Veränderung des Weltklimas macht umweltpolitische Maßnahmen erforderlich, die dieser Entwicklung entgegenwirken. Hauptaugenmerk kommt dabei dem energieproduzierenden und dem Transportsektor zu. Speziell für den Automobilsektor hat die Europäische Union Zielstellungen formuliert, die zunächst die PKW-Flotte betreffen, da diese den Hauptteil des transportbedingten CO2-Ausstoßes verursacht. Für neue PKW wird als Höchstgrenze für zulässige CO2-Emission, gültig für den Durchschnitt der Autoflotte eines Herstellers, 120 g/km für das Jahr 2012, 95 g/km für das Jahr 2020 und 70 g/km für das Jahr 2025 vorgeschlagen. Neben anderen Fahrzeugkomponenten stehen hinsichtlich der Reduzierung des CO2-Ausstoßes die Reifen und hier insbesondere die Lauffläche im Fokus. Für Reifen mit vermindertem Rollwiderstand können z.B. die Reifendimensionen, die Masse, das Profil sowie die Reifenmischungszusammensetzung optimiert werden. Das Forschungsprojekt hat sich zum Ziel gesetzt, Laufflächenmischungen zu entwickeln, mit denen eine Verringerung des Rollwiderstandes des Reifens erreicht werden kann. Dabei wird davon ausgegangen, dass eine Verbesserung der Polymer-Füllstoffanbindung einen der Hauptaspekte darstellt. Im Rahmen des Projektes sollen neuartige Füllstoffe entwickelt und die die Polymermatrix auf diese optimal abgestimmt werden.

Vorhaben: Gasreservoire und Bruchprozesse

Das Projekt "Vorhaben: Gasreservoire und Bruchprozesse" wird vom Umweltbundesamt gefördert und von Helmholtz-Zentrum Potsdam Deutsches GeoForschungsZentrum durchgeführt. Für eine sichere und nachhaltige Nutzung unterirdischer Geosysteme muss die Integrität von Reservoir- und Barrieregesteinen langfristig gewährleistet sein. Eine besondere Rolle spielen dabei Prozesse, welche durch Rissbildung und Risswachstum zu einer Schwächung des Gesteins führen können. Diese Schwächung kann z. B. durch Diffusions- und Transportprozesse infolge wechselnder Druck- und Spannungsbedingungen hervorgerufen werden. Dabei ist die Rissbildung und Rissausbreitung im Untergrund mit seismischen Ereignissen verbunden. Diese Mikrobeben sind zumeist nur mit entsprechend sensitiver Messtechnik registrierbar, die Seismizität kann allerdings auch spürbare Größenordnungen erreichen oder sogar zu Schädigungen an Bauwerken und Infrastruktur führen. In konventionellen Kohlenwasserstofflagerstätten wird häufig nach einem längeren Produktionszeitraum eine erhöhte seismische Aktivität festgestellt, die auf Kompaktionsprozesse des Reservoirgesteins und die Aktivierung von Bruchzonen zurückzuführen ist. Bei der hydraulischen Stimulierung unkonventioneller Kohlenwasserstofflagerstätten oder geothermischer Reservoire werden seismische Ereignisse aufgezeichnet, die je nach Belastungszyklus und Gesteinstyp stark variieren können. Auch in Gasspeichern führen Belastung und Rissbildung zu erhöhter Seismizität, welche Prozesse anzeigt, die sich ungünstig auf die Speicherstabilität auswirken. Im Rahmen des Verbundprojekts SECURE sollen skalenübergreifende Werkzeuge zur Prognose und Charakterisierung hydromechanischer Prozesse bei der Nutzung unterirdischer Reservoirsysteme entwickelt werden. Die Forschungsarbeiten konzentrieren sich dabei auf Rissbildung und Risswachstum in Reservoiren und Deckgesteinen, welche als mikroseismische Ereignisse detektiert werden können. Hierzu sollen Modelle konzipiert werden, die erstmals bruchmechanische Prinzipien mit probabilistischen Seismizitätsmodellen kombinieren. Das Verbundprojekt gliedert sich in drei Arbeitspakete. Im Mittelpunkt des ersten Arbeitspakets steht das Monitoring. Dabei soll geprüft werden, wie schwache Mikroseismizität bestmöglich detektiert und charakterisiert werden kann. Ein Schwerpunkt der Arbeiten liegt in der Entwicklung einheitlicher Standards zur Beschreibung von Magnituden und Herdparametern. Das zweite Arbeitspaket umfasst die Entwicklung fluidmechanischer Reservoirmodelle anhand von vier Fallstudien. Hierfür werden von den Industriepartnern Daten aus konventionellen Erdgasfeldern, aus Experimenten zur hydraulischen Stimulierung, aus Gasspeichern und aus geothermischen Aquifersystemen bereitgestellt. Ziel ist es, Druck- und Spannungsfelder als Funktion der Produktions- und Feldparameter zu bestimmen. Im dritten Arbeitspaket sollen auf Basis von Spannungssimulationen Seismizitätsmodelle entwickelt werden, welche zur Kalibrierung der fluidmechanischen Reservoirmodelle dienen. (Text gekürzt)

Schwerpunkt-Optimierung bereits tastuntersuchter, befund-korrelierbarer mechanischer u. optischer Sondierungstechniken fuer die 'in-situ'-Grobanalyse u. labortechnische Feinanalyse schadhafter Bauwerkspartien u. dort entnommener Kernproben (F317)

Das Projekt "Schwerpunkt-Optimierung bereits tastuntersuchter, befund-korrelierbarer mechanischer u. optischer Sondierungstechniken fuer die 'in-situ'-Grobanalyse u. labortechnische Feinanalyse schadhafter Bauwerkspartien u. dort entnommener Kernproben (F317)" wird vom Umweltbundesamt gefördert und von Technische Hochschule Aachen, Lehrstühle für Baustoffkunde und Institut für Bauforschung durchgeführt. Es soll versucht werden, bereits tastuntersuchte Verfahren weiterzuentwickeln / zu optimieren, mit deren Hilfe grob am Bauwerk und verfeinert im Labor schadhafte Bauwerkspartien im Naturstein- / Fugen- / Verbundbereich Moertel / Naturstein beurteilt werden koennen. Dazu sollen in diesen Bereichen minimale Bohrkerne gebohrt, dabei alle Bohrparameter erfasst und mit Hilfe der an labortechnisch untersuchten Bohrkernen festgestellten Gefuege- / physikalischen / bruchmechanischen Kennwerte Verwitterungsprofil / -neigung ermittelt werden. Diese Untersuchungen sollen unterstuetzt werden durch endoskopische Beobachtung und anschliessende bildanalytische Auswertung des Gefueges / der Feuchtigkeitswanderung in den Bohrkanaelen, bei entsprechender Praeparation auch ueber laengere Zeit, die gleichzeitig Ausgangskanaele fuer das Ausraeumen defekter Moertelfugen sind und zum Ansetzen von Geraeten zum Vorbehandeln / Traenken der Bauwerksoberflaechen dienen.

Vorhaben: Automatisierte Überwachung von Mikroseismizität in räumlich begrenzten Reservoiren und einheitliche Behandlung von Unsicherheiten bei der Bestimmung von Herdparametern

Das Projekt "Vorhaben: Automatisierte Überwachung von Mikroseismizität in räumlich begrenzten Reservoiren und einheitliche Behandlung von Unsicherheiten bei der Bestimmung von Herdparametern" wird vom Umweltbundesamt gefördert und von Ludwig-Maximilians-Universität München, Department für Geo- und Umweltwissenschaften, Sektion Geophysik durchgeführt. Für eine sichere und nachhaltige Nutzung unterirdischer Geosysteme muss die Integrität von Reservoir- und Barrieregesteinen langfristig gewährleistet sein. Eine besondere Rolle spielen dabei Prozesse, welche durch Rissbildung und Risswachstum zu einer Schwächung des Gesteins führen können. Diese Schwächung kann z. B. durch Diffusions- und Transportprozesse infolge wechselnder Druck- und Spannungsbedingungen hervorgerufen werden. Dabei ist die Rissbildung und Rissausbreitung im Untergrund mit seismischen Ereignissen verbunden. Diese Mikrobeben sind zumeist nur mit entsprechend sensitiver Messtechnik registrierbar, die Seismizität kann allerdings auch spürbare Größenordnungen erreichen oder sogar zu Schädigungen an Bauwerken und Infrastruktur führen. In konventionellen Kohlenwasserstofflagerstätten wird häufig nach einem längeren Produktionszeitraum eine erhöhte seismische Aktivität festgestellt, die auf Kompaktionsprozesse des Reservoirgesteins und die Aktivierung von Bruchzonen zurückzuführen ist. Bei der hydraulischen Stimulierung unkonventioneller Kohlenwasserstofflagerstätten oder geothermischer Reservoire werden seismische Ereignisse aufgezeichnet, die je nach Belastungszyklus und Gesteinstyp stark variieren können. Auch in Gasspeichern führen Belastung und Rissbildung zu erhöhter Seismizität, welche Prozesse anzeigt, die sich ungünstig auf die Speicherstabilität auswirken. Im Rahmen des Verbundprojekts SECURE sollen skalenübergreifende Werkzeuge zur Prognose und Charakterisierung hydromechanischer Prozesse bei der Nutzung unterirdischer Reservoirsysteme entwickelt werden. Die Forschungsarbeiten konzentrieren sich dabei auf Rissbildung und Risswachstum in Reservoiren und Deckgesteinen, welche als mikroseismische Ereignisse detektiert werden können. Hierzu sollen Modelle konzipiert werden, die erstmals bruchmechanische Prinzipien mit probabilistischen Seismizitätsmodellen kombinieren. Das Verbundprojekt gliedert sich in drei Arbeitspakete. Im Mittelpunkt des ersten Arbeitspakets steht das Monitoring. Dabei soll geprüft werden, wie schwache Mikroseismizität bestmöglich detektiert und charakterisiert werden kann. Ein Schwerpunkt der Arbeiten liegt in der Entwicklung einheitlicher Standards zur Beschreibung von Magnituden und Herdparametern. Das zweite Arbeitspaket umfasst die Entwicklung fluidmechanischer Reservoirmodelle anhand von vier Fallstudien. Hierfür werden von den Industriepartnern Daten aus konventionellen Erdgasfeldern, aus Experimenten zur hydraulischen Stimulierung, aus Gasspeichern und aus geothermischen Aquifersystemen bereitgestellt. Ziel ist es, Druck- und Spannungsfelder als Funktion der Produktions- und Feldparameter zu bestimmen. Im dritten Arbeitspaket sollen auf Basis von Spannungssimulationen Seismizitätsmodelle entwickelt werden, welche zur Kalibrierung der fluidmechanischen Reservoirmodelle dienen. (Text gekürzt)

Teilvorhaben: Mikromechanische Modellierung von systematischen Rissfeldern und Bildung eines Bewertungskriteriums

Das Projekt "Teilvorhaben: Mikromechanische Modellierung von systematischen Rissfeldern und Bildung eines Bewertungskriteriums" wird vom Umweltbundesamt gefördert und von Universität Stuttgart, Otto-Graf-Institut, Materialprüfungsanstalt durchgeführt. In großen kerntechnischen Komponenten können herstellungsbedingt Rissfelder enthalten sein. Solche Rissfelder werden mit ZfP-Methoden mit einigen Einschränkungen erfasst. Die ZfP-Ergebnisse fließen in die sicherheitstechnische Beurteilung von rissfeldbehafteten Komponenten derart ein, als dass in den Regelwerken die Rissfelder als abdeckender Einzelfehler betrachtet werden. Bei großen Rissfeldern ist diese Vorgehensweise bruchmechanisch nicht anwendbar. Gesamtziel dieses Vorhabens ist es, eine ingenieursmäßige Methodik abzuleiten, mit der es möglich ist, den Sicherheitsabstand gegen Versagen für eine rissfeldbehaftete Komponente zu berechnen. Das Vorhaben ist Teil eines Verbundprojekts gemeinsam mit dem IEHK RWTH Aachen. Schwerpunkt der MPA-Untersuchungen sind Charakterisierung der Werkstoffe, Bruchmechanik- und Bauteilversuche, Simulationen mit Rousselier-Modell In einer Literaturrecherche werden Aufbau und Größe typischer Rissfelder herausgearbeitet. Existierende Berechnungskonzepte zur Bewertung von Rissfeldern werden gesichtet. Im Vorhaben werden drei Werkstoffe - eine Forschungsschmelze mit einem repräsentativen Rissfeld (IEHK; MeKom1), eine vergleichbare Schmelze ohne Rissfeld (IEHK; MeKom2) und ein realer Reaktordruckbehälterwerkstoff (MeKom3) - untersucht. Die Werkstoffe MeKom1 und 2 werden mechanisch (unterschiedliche Mehrachsigkeiten) und bruchmechanisch charakterisiert. Für alle 3 Werkstoffe werden Bruchmechanikversuche unter Mixed-Mode-Belastung durchgeführt. Aus MeKom1 wird ein Modellbehälter geprüft. Für systematische Untersuchungen werden Proben mit künstlichen Mehrfachrissen gefertigt, um den Einfluss von Rissausrichtung, -größenverteilung, -anzahl sowie der gegenseitigen Beeinflussung von Rissfeldern zu untersuchen. Zum Verständnis der Vorgänge beim Risswachstum und beim Zusammenwachsen der Risse werden Simulationen mit dem Schädigungsmodell nach Rousselier und Beremin (Tieflage) durchgeführt. Das Rousselier-Modell wird zur Beschreibung von niederen Mehrachsigkeiten erweitert.

Beitrag zur bruchmechanischen Absicherung von Rohrleitungen aus hochzaehem Werkstoff

Das Projekt "Beitrag zur bruchmechanischen Absicherung von Rohrleitungen aus hochzaehem Werkstoff" wird vom Umweltbundesamt gefördert und von Universität Stuttgart, Staatliche Materialprüfungsanstalt durchgeführt.

Praezisierung der Aussagen zur Sproedbruchsicherheit von WWER-Reaktordruckbehaeltern auf der Grundlage der Ermittlung bruchmechanischer und mechanisch technologischer Kennwerte bestrahlter Reaktorstaehle

Das Projekt "Praezisierung der Aussagen zur Sproedbruchsicherheit von WWER-Reaktordruckbehaeltern auf der Grundlage der Ermittlung bruchmechanischer und mechanisch technologischer Kennwerte bestrahlter Reaktorstaehle" wird vom Umweltbundesamt gefördert und von Energiewerke Nord AG durchgeführt. Das Forschungsprojekt dient der Praezisierung der Sproedbruchbewertung von WWER-Reaktordruckbehaeltern auf der Basis experimentell ermittelter bruchmechanischer Kennwerte bestrahlter Reaktorstaehle und moderner methodischer Bewertungsgrundlagen. Dazu ist es erforderlich, in Targetkanaelen des Rheinsberger Reaktors WWER-2 bestrahlte Bruchmechanikproben von verschiedenen Reaktordruckgefaessstaehlen, die fuer die WWER-440-Bloecke als auch fuer die WWER-1000-Bloecke charakteristisch sind, zu untersuchen. Ergebnisse der Untersuchungen sind die Ermittlung bruchmechanischer Kennwerte unter Beruecksichtigung der Bestrahlungstemperatur, des akkumulierten Neutronenflusses und unterschiedlicher Cu- und P-Gehalte der Proben zum Vergleich der Verschiebung dieser Kennwerte infolge der Neutronenbestrahlung mit der Verschiebung der Sproedbruchuebergangstemperatur. Die ermittelten Materialdaten gehen in die bruchmechanische Versagensanalyse zur Abschaetzung der Sproedbruchsicherheit, dh der Ermittlung der maximal zulaessigen Fehlergroesse bei vorgegebenen Lastfaellen ein.

Ermittlung bruchmechanischer Kennwerte im instrumentierten Kerbschlagbiegeversuch

Das Projekt "Ermittlung bruchmechanischer Kennwerte im instrumentierten Kerbschlagbiegeversuch" wird vom Umweltbundesamt gefördert und von Universität Magdeburg, Fakultät für Maschinenbau, Institut für Werkstofftechnik und Werkstoffprüfung durchgeführt. Fuer die Bewertung der Bruchsicherheit von Komponenten des Primaerkreislaufs und des Sicherheitseinschlusses ist die Kenntnis bruchmechanischer Werkstoffkenngroessen von grosser Bedeutung. Da die Ermittlung dieser Kenngroessen aufwendig ist, wird nach mit bruchmechanischen Kenngroessen korrelierenden Ersatzkenngroessen gesucht. Voraussetzung hierfuer sind aehnliche Spannungszustaende und Bruchmechanismen in den benutzten Proben. Die Kerbschlagprobe, zusaetzlich mit einem Anriss vesehen zur Bestimmung der Rissinitiierungszaehigkeit, erfuellt diese Voraussetzung. Das Vorhaben hat zum Ziel, durch die Anwendung des instrumentierten Kerbschlagbiegeversuchs bei der Bestimmung der Kerbschlagzaehigkeit und Rissinitiierungszaehigkeit im Temperaturbereich von 20 bis 350 Grad C fuer Staehle deutscher Reaktoren und der WWER 440-Typen eine Korrelation zwischen beiden Kenngroessen zu finden.

1 2