API src

Found 82 results.

Mikrobiell katalysierte Elektrosynthese von Bernsteinsäure, Teilvorhaben 1: Technische Auslegung des Reaktorsystems

Ziel ist die stoffliche Nutzung elektrischer Energie zur mikrobiellen Produktion des Kunststoffmonomers Bernsteinsäure. Hierbei wird der innovative Ansatz der mikrobiellen Elektrosynthese verfolgt. Elektrische Energie wird in den Mikroorganismus Actinobacillus succinogenes transferiert, der zugleich nachwachsende Rohstoffe zur Synthese der Katalysatoren und des Produkts nutzt. Die zusätzlichen Redoxäquivalente (NADH) durch die Aufnahme von Elektronen bewirken eine Veränderung der Stoffwechselproduktzusammensetzung in Richtung zur Bernsteinsäure. Das Konzept erlaubt die Umwandlung elektrischer Energie in komplexe Produkte unter Einsatz des selbstreplizierenden Ganzzellkatalysators unter sehr milden Reaktionsbedingungen (T kleiner als 40 Grad C, pH 7, wässriges Lösungsmittel). Zusätzlich sind die Anforderungen an die Elektroden und die Reinheit der flüssigen Phase bei einer mikrobiellen Elektrosynthese gering und somit der Prozess kostengünstig. Die Technologie der mikrobiellen Elektrosynthese konnte durch die Antragssteller bereits für die Produktion von Butanol etabliert und mehrfach publiziert werden. Im angestrebten Projekt soll ein neues, wirtschaftlich relevantes Bioproduktionsverfahren etabliert und der technologische Reifegrad des Verfahrens erhöht werden. Der Transfer der Power2X-Technologie wird zunächst ein kleinen Reaktionsgefäßen durchgeführt und im Anschluss auf einen technischen Bioreaktor überführt. Hierbei werden Betrachtungen zur Skalierbarkeit durchgeführt. Zielsetzung des TV 1 ist die technische Etablierung des neuen Reaktorsystems. Dies insbesondere durch Überarbeitung eines Bioreaktors für den Einsatz mit Elektroden unter besonderer Berücksichtigung von Korrosion im Reaktorraum. Neben den konstruktiven Ansätzen umfasst dies die Erschaffung und Charakterisierung neuer Elektodenoberflächen aus elektrisch leitfähigen, biokompatiblen Hydrogelen. Zugrundeliegende Stoffstrombilanzen werden in ein Modell überführt, um Signifikanzanalysen durchzuführen.

Mikrobiell katalysierte Elektrosynthese von Bernsteinsäure, Teilvorhaben 2: Untersuchung des Elektronentransfers und Genexpressionsanalyse

Ziel ist die stoffliche Nutzung elektrischer Energie zur mikrobiellen Produktion des Kunststoffmonomers Bernsteinsäure. Hierbei wird der innovative Ansatz der mikrobiellen Elektrosynthese verfolgt. Elektrische Energie wird in den Mikroorganismus Actinobacillus succinogenes transferiert, der zugleich nachwachsende Rohstoffe zur Synthese der Katalysatoren und des Produkts nutzt. Die zusätzlichen Redoxäquivalente (NADH) durch die Aufnahme von Elektronen bewirken eine Veränderung der Stoffwechselproduktzusammensetzung in Richtung zur Bernsteinsäure. Das Konzept erlaubt die Umwandlung elektrischer Energie in komplexe Produkte unter Einsatz des selbstreplizierenden Ganzzellkatalysators unter sehr milden Reaktionsbedingungen (T kleiner als 40 Grad C, pH 7, wässriges Lösungsmittel). Zusätzlich sind die Anforderungen an die Elektroden und die Reinheit der flüssigen Phase bei einer mikrobiellen Elektrosynthese gering und somit der Prozess kostengünstig. Die Technologie der mikrobiellen Elektrosynthese konnte durch die Antragssteller bereits für die Produktion von Butanol etabliert und mehrfach publiziert werden. Im angestrebten Projekt soll ein neues, wirtschaftlich relevantes Bioproduktionsverfahren etabliert und der technologische Reifegrad des Verfahrens erhöht werden. Der Transfer der Power2X-Technologie wird zunächst in kleinen Reaktionsgefäßen durchgeführt und im Anschluss auf einen technischen Bioreaktor überführt. Hierbei werden Betrachtungen zur Skalierbarkeit durchgeführt. Zielsetzung des TV 2 ist die Untersuchung des Elektronentransfers und die Genexpressionsanalyse. Dafür soll die Biofilmbildung auf der Elektrode und die mögliche Ausbildung von Nanodrähten analysiert werden, die einen direkten Elektronentransfer ermöglichen. Unterschiede zwischen nativen und synthetischen Biofilmen werden untersucht. Erhaltene Erkenntnisse werden auf den Produktionsprozess im Bioreaktor übertragen und der Einfluss des angelegten Potentials auf die Genexpression analysiert.

Mikrobiell katalysierte Elektrosynthese von Bernsteinsäure

Ziel ist die stoffliche Nutzung elektrischer Energie zur mikrobiellen Produktion des Kunststoffmonomers Bernsteinsäure. Hierbei wird der innovative Ansatz der mikrobiellen Elektrosynthese verfolgt. Elektrische Energie wird in den Mikroorganismus Actinobacillus succinogenes transferiert, der zugleich nachwachsende Rohstoffe zur Synthese der Katalysatoren und des Produkts nutzt. Die zusätzlichen Redoxäquivalente (NADH) durch die Aufnahme von Elektronen bewirken eine Veränderung der Stoffwechselproduktzusammensetzung in Richtung zur Bernsteinsäure. Das Konzept erlaubt die Umwandlung elektrischer Energie in komplexe Produkte unter Einsatz des selbstreplizierenden Ganzzellkatalysators unter sehr milden Reaktionsbedingungen (T kleiner als 40 Grad C, pH 7, wässriges Lösungsmittel). Zusätzlich sind die Anforderungen an die Elektroden und die Reinheit der flüssigen Phase bei einer mikrobiellen Elektrosynthese gering und somit der Prozess kostengünstig. Die Technologie der mikrobiellen Elektrosynthese konnte durch die Antragssteller bereits für die Produktion von Butanol etabliert und mehrfach publiziert werden. Im angestrebten Projekt soll ein neues, wirtschaftlich relevantes Bioproduktionsverfahren etabliert und der technologische Reifegrad des Verfahrens erhöht werden. Der Transfer der Power2X-Technologie wird zunächst ein kleinen Reaktionsgefäßen durchgeführt und im Anschluss auf einen technischen Bioreaktor überführt. Hierbei werden Betrachtungen zur Skalierbarkeit durchgeführt. Zielsetzung des TV 1 ist die technische Etablierung des neuen Reaktorsystems. Dies insbesondere durch Überarbeitung eines Bioreaktors für den Einsatz mit Elektroden unter besonderer Berücksichtigung von Korrosion im Reaktorraum. Neben den konstruktiven Ansätzen umfasst dies die Erschaffung und Charakterisierung neuer Elektodenoberflächen aus elektrisch leitfähigen, biokompatiblen Hydrogelen. Zugrundeliegende Stoffstrombilanzen werden in ein Modell überführt, um Signifikanzanalysen durchzuführen.

TI-Bioraffinerien: C4-Bioraffinerie: Fermentative Gewinnung von Bio-Butanol unter Verwertung von Neben-, Rest- und Abfallstoffen der Mühlenindustrie für die Weiterverarbeitung zu bio-basierten Schmierstoffkomponenten, Teilvorhaben D

TI-Bioraffinerien: C4-Bioraffinerie: Fermentative Gewinnung von Bio-Butanol unter Verwertung von Neben-, Rest- und Abfallstoffen der Mühlenindustrie für die Weiterverarbeitung zu bio-basierten Schmierstoffkomponenten, Teilvorhaben A

TI-Bioraffinerien: C4-Bioraffinerie: Fermentative Gewinnung von Bio-Butanol unter Verwertung von Neben-, Rest- und Abfallstoffen der Mühlenindustrie für die Weiterverarbeitung zu bio-basierten Schmierstoffkomponenten, Teilvorhaben C

TI-Bioraffinerien: C4-Bioraffinerie: Fermentative Gewinnung von Bio-Butanol unter Verwertung von Neben-, Rest- und Abfallstoffen der Mühlenindustrie für die Weiterverarbeitung zu bio-basierten Schmierstoffkomponenten, Teilvorhaben B

ERACoBioTECH Call 1 - Bester: Bioprozesse für eine optimierte Produktion von Butylestern aus nachwachsenden Rohstoffen, Teilprojekt Rostock

Die Spezialchemieindustrie ist ein 450-Milliarden-Dollar-Markt und Teil des globalen Chemiemarktes mit einem Gesamtwert von 5,4 Billionen Dollar. Der Projektpartner GBL umschließt bereits einen Markt für Butanol und Aceton mit einem Wert von 2,3 Milliarden US-Dollar innerhalb des Marktes für erneuerbare fortgeschrittene Technologien im kommerziellen Maßstab, zum Beispiel für die Herstellung verschiedenster Chemikalien wie Butylester. Butylester, gewonnen aus Butanol und organischen Säuren, haben vielfältige Anwendungen von der Grundchemikalie bis hin zu hochwertigen Inhaltsstoffen in Duftstoffen, Aromen, Kosmetika, Spezialpolymeren und Beschichtungen. Um einen nachhaltigen und effizienten Weg zu erneuerbaren Butylestern aus Lignocellulose-Biomasse zu generieren, wird sich das BESTER-Projekt auf die Herstellung von Carbonsäuren konzentrieren. Diese entwickelten Säuren und deren enzymatische Veresterung der Komponentenprodukte mit Butanol, auf die das BESTER Projekt abzielt, werden den Marktwert erhöhen und gleichzeitig die Treibhausgasemissionen verringern.

Bio-Gerätebenzin für Kleinmotoren, Teilvorhaben 2: Herstellung biogener Kraftstoffe

Ziel des Forschungsvorhabens ist die Entwicklung von maßgeschneiderten Gerätebenzinen speziell für den Einsatz in Kleinmotoren. Diese sollen bis zu 100% auf Basis nachwachsender Rohstoffe erzeugt werden und ein deutliches Innovationspotenzial, wie z.B. die Reduktion von Emissionen und Kraftstoffverbrauch, aufweisen. Mit Hinblick auf ihre Marktfähigkeit sollen akzeptable Produktionskosten, hohe Verfügbarkeit und eine sichere Handhabung gewährleistet sein. Im ersten Schritt werden anhand motorischer Basisuntersuchungen mit gängigen Kraftstoffen (Superbenzin, Gerätebenzine, Alkohol-Kraftstoffe, etc.) die chemisch-physikalischen Anforderungen an optimale Kraftstoffe definiert. Parallel hierzu werden biobasierte Kraftstoffe bzw. Kraftstoffkomponenten hergestellt. Am IKFT werden hierzu zwei Ansätze verfolgt: Die Herstellung von C2+-Alkoholen, insbesondere Butanol, und die Herstellung von Alkylatbenzinen aus biomassebasierten Olefinen. Durch Laboranalysen der biobasierten Kraftstoffe werden im Abgleich mit den definierten Anforderungen maßgeschneiderte Gerätebenzin-Formulierungen identifiziert. Diese werden einerseits in motorischen Untersuchungen überprüft und andererseits auf ihre Werkstoffverträglichkeit (Motor und Peripherie) und Mischbarkeit mit Motorölen hin beurteilt. Abschließend werden die biobasierten Gerätebenzin-Formulierungen bezüglich ihrer ökologischen, motorischen und wirtschaftlichen Eignung für den Markt bewertet.

Differenzierung unterschiedlicher Biokraftstoffqualitäten im Hinblick auf die Ablagerungsbildung, Teilvorhaben 1: Einfluss von Vliesvariablen

In diesem Projekt wird der Einfluss biogener Brennstoffe auf die Funktion von Fahrzeugstandheizungen untersucht. Im Fokus steht die Neigung der Brennstoffe zur Bildung von Ablagerungen und Rückständen. Der Untersuchungsumfang umfasst sowohl Dieselkraftstoffblends mit Beimischungen von Fettsäuremethylestern (FAME) und vollständig hydrierten Pflanzenölen (HVO) als auch Ottokraftstoffe mit Zusatz von Ethanol, Methanol oder Butanol. Zur Bewertung werden zum einen idealisierte Versuche mit einem Prüfstand zur Einzeltropfenverdampfung auf heißen Oberflächen (Tiegelverdampfer) durchgeführt. Hierbei können die prinzipiellen chemisch-physikalischen Vorgänge bei der Entstehung von Ablagerungen optimal beobachtet werden. Zum anderen soll mit einem realitätsnahen Prüfaufbau die Ablagerungsbildung bei kontinuierlicher Verdampfung in einem porösen Medium (Verdampfer-Vlies) untersucht werden, was dem Prinzip der Brennstoffaufbereitung bei typischen Fahrzeugstandheizungen entspricht. Als Randbedingungen werden z.B. die Temperatur, die Brennstoffzusammensetzung oder die Eigenschaften des porösen Mediums variiert. Ziel ist die bestmögliche Auslegung von Verdampferbrennern, besonders für zukünftige, höhere Zumischquoten von Bio-Kraftstoffen im nationalen und internationalen Markt. Speziell für Diesel-Kraftstoffe wird ferner der Einfluss von biogenen Bestandteilen auf die Funktion der bei mobilen Heizgeräten häufig eingesetzten Hubkolben-Dosierpumpen in entsprechenden Dauerlauf-Tests untersucht. Damit soll die Funktionssicherheit dieser Fördereinrichtung auch bei kritischen Kraftstoffen bzgl. Ablagerungsbildung und Bauteilverschleiß nachgewiesen werden. Zudem wird an einem entsprechenden Prüfstand (Heatflux-Methode) die Beeinflussung der laminaren Brenngeschwindigkeit durch Alkohol-Beimischungen, wie Ethanol oder Butanol in Ottokraftstoffen bestimmt. Diese Ergebnisse sind ebenfalls wesentlich für die Auslegung der Brennraumgeometrie für entsprechende Brennstoffe, unter anderem um einen minimalen Schadstoffausstoß sicherzustellen.

1 2 3 4 57 8 9