• Überwachung der Radioaktivität in der Umwelt nach dem Strahlenschutzvorsorgegesetz für den Freistaat Sachsen • Überwachung der anlagenbezogenen Radioaktivität nach dem Atomgesetz am Forschungsstandort Rossendorf • Überwachung von Lebensmitteln (u. a. Amtshilfe für die Landesuntersuchungsanstalt für das Gesundheits- und Veterinärwesen Sachsen) • Betrieb der Radonberatungsstelle • Überwachung der anlagenbezogenen Radioaktivität nach der Verordnung zur Gewährleistung von Atomsicherheit und Strahlenschutz an den Standorten der Wismut GmbH • Überwachung der anlagenbezogenen Radioaktivität an den Altstandorten des Uranerzbergbaus • Aufsichtliche Messungen nach der Strahlenschutzverordnung inkl. Sicherheitstechnisch bedeutsame Ereignisse und Nukleare Nachsorge • Der Geschäftsbereich ist akkreditiert nach ISO 17025 für alle relevanten Prüfverfahren im Bereich Immission und Emission. Fachbereich 20 - Zentrale Aufgaben • Probenentnahmen und Feldmessungen (ohne Messungen und Probenentnahmen im Rahmen der Radonberatung) u. a. Probenentnahmen aus Fließgewässern, Messung der nuklidspezifischen Gammaortsdosisleistung • Organisation und Logistik für die von externen Probenehmern gewonnenen und dem Geschäftsbereich 2 zu übergebenden Proben. Betrieb der Landesdatenzentrale und der Datenbank zur Umweltradioaktivität im Freistaat Sachsen • Unterstützung der beiden Landesmessstellen bei der Einführung und Pflege radiochemischer Verfahren Fachbereiche 21, 22 - Erste und Zweite Landesmessstelle für Umweltradioaktivität Laboranalysen • nach dem Strahlenschutzvorsorgegesetz • zur Überwachung der Wismut-Standorte • zur Überwachung des Forschungsstandort Rossendorf • zur Überwachung der Altstandorte des Uranbergbaus • zur Lebensmittelüberwachung • zu den aufsichtlichen Kontrolltätigkeiten des Sächsischen Landesamtes für Umwelt, Landwirtschaft und Geologie und des Sächsischen Staatsministeriums für Umwelt und Landwirtschaft u. a. in den Medien Wasser, Boden, Luft, Nahrungs- und Futtermittel. Analysierte Parameter: u. a. gamma- und alphastrahlende Radionuklide (z. B. Cäsium-137, Cobalt-60, Kalium-40, Uran-238); Strontium-90; Radium-226 und Radium-228). Fachbereich 23 - Immissionsmessungen Kontinuierliche Überwachung der Luftqualität durch Betrieb des stationären Luftmessnetzes des Freistaates (Online-Betrieb von 30 stationären Messstationen mit Übergabe der Messdaten ins Internet): • Laufende Messung der Luftgüteparameter SO2, NOx, Ozon, Benzol, Toluol, Xylole, Schwebstaub, Ruß • Gewinnung meteorologischer Daten zur Einschätzung der Luftgüteparameter • Sammlung von Schwebstaub (PM 10- und PM 2,5-Fraktionen) und Sedimentationsstaub zur analytischen Bestimmung von Schwermetallen, polyzyklischen Kohlenwasserstoffen (PAK) und Ruß • Absicherung der Messdatenverarbeitung und Kommunikation • Betreiben einer Messnetzzentrale, Plausibilitätskontrolle der Daten und deren Übergabe an das Landesamt für Umwelt, Landwirtschaft und Geologie und an die Öffentlichkeit • Absicherung und Überwachung der vorgegebenen Qualitätsstandards bei den Messungen durch den Betrieb eines Referenz- und Kalibrierlabors • Sicherung der Verfügbarkeit aller Messdaten zu > 95% • Weiterentwicklung des Luftmessnetzes entsprechend den gesetzlichen Anforderungen • Betreuung eines Depositionsmessnetzes (Niederschlag) mit zehn Messstellen • Betrieb von drei verkehrsnahen Sondermessstellen an hoch belasteten Straßen • Durchführung von Sondermessungen mit Immissionsmesswagen und mobilen Containern • Betrieb von Partikelmesssystemen im Submikronbereich (Zählung ultrafeiner Partikel) in Dresden • Betrieb von Verkehrszähleinrichtungen und Übernahmen dieser Verkehrszähldaten sowie von Pegelmessstellen der Städte in den Datenbestand des Luftmessnetzes Fachbereich 24 - Emissionsmessungen, Referenz- und Kalibrierlabor Der Fachbereich befasst sich mit der Durchführung von Emissionsmessungen an ausgewählten Anlagen aus besonderem Anlass im Auftrag des LfULG. Beispiele: • Emissionsmessungen an Blockheizkraftwerken in der Landwirtschaft (Geruch, Stickoxide, Gesamtkohlenstoff und Formaldehyd). • Ermittlung der Stickstoff-Deposition aus Tierhaltungsanlagen für Geflügel und Rinder (Emissionsmessungen von Ammoniak, Lachgas, Methan, Wasser, Kohlendioxid, Feuchte, Temperatur und Luftströmung , Ammoniak-Immissionsmessung mit DOAS-Trassenmesssystem). • Untersuchung von Emissionen aus holzgefeuerten Kleinfeuerungsanlagen zur Abschätzung von Auswirkungen der novellierten 1. BImSchV. • Unterstützung des LfULG bei der Überwachung bekannt gegebener Messstellen nach § 26 BImSchG.
Nach § 3 StrVG werden im Rahmen des Integrierten Mess- und Informationssystems (IMIS) durch die einzelnen Bundesländer Radioaktivitätsuntersuchungen in Böden, Pflanzen, Gras, Lebens- und Futtermitteln, Grund-, Trink- und Oberflächenwasser, in Abwässern, Klärschlamm, Reststoffen und Abfällen durchgeführt. Für die im einzelnen im Normalbetrieb durchzuführenden Probenmessungen wurde vom Bundesministerium für Umwelt, Naturschutz und Reaktorsicherheit (BMU) allen Bundesländern ein Mengengerüst für die entsprechenden Umwelt- bereiche vorgegeben. Die Festlegung der Probeentnahmepunkte erfolgte auf der Grundlage dieses Mengenschlüssels sowie des am jeweiligen Ort vorhandenen Spektrum an o.a. Umweltmedien. Die Beprobungen werden nach einem festgelegten Probenentnahmeplan [PEP] -medienspezifisch- durchgeführt. Die Probeentnahmepläne sind so konzipiert, daß sie möglichst flächendeckend und gleichmäßig über das Jahr verteilt, die Entnahme repräsentativer Proben aller Umweltbereiche ermöglicht.
Nach dem Drohnenangriff auf das havarierte ukrainische Atomkraftwerk Tschernobyl vergangene Woche hat Sachsen-Anhalts Umweltminister Prof. Dr. Armin Willingmann am heutigen Donnerstag am Rande der Landtagssitzung die gefährliche Attacke scharf verurteilt und vor einem Comeback der Atomkraft in Deutschland gewarnt. „Wie viel kriminelle Energie und Menschenfeindlichkeit muss zusammenkommen, wenn man fast 40 Jahre nach dem weltweit schwersten Reaktorunfall den havarierten Reaktorblock mit einer Kampfdrohne angreift und offenbar schwerste Folgen für Menschen und Umwelt gewissenlos in Kauf nimmt,“ fragte Willingmann. „Atomkraft bleibt eine Risikotechnologie – insbesondere auch in kriegerischen Konflikten“, erklärte der Minister weiter. „Auch vor diesem Hintergrund halte ich die Debatte um ein Comeback der Atomkraft in Deutschland für verfehlt.“ Vergangenen Freitag war eine Kampfdrohne in 87 Metern Höhe an der Schutzhülle des 1986 havarierten Reaktorblocks 4 explodiert. Der erst 2019 neu in Betrieb genommene Sarkophag aus Stahl und Beton wurde dabei auf einer Fläche von 40 Quadratmetern beschädigt. Einsatzkräften gelang es, das Feuer infolge der Explosion zu löschen. In seinem vorläufigen Fazit zum Angriff sprach Willingmann von „Glück im Unglück“: „Die Internationale Atomenergie-Organisation IAEO konnte keinen Anstieg der Radioaktivität messen, so konnten auch für das deutsche Staatsgebiet radiologische Auswirkungen ausgeschlossen werden.“ Willingmann verwies zugleich auf die Sorge der internationalen Atomexperten, dass neben Tschernobyl auch weitere Kraftwerksstandorte durch den andauernden Krieg in Mitleidenschaft gezogen werden könnten. IAEO-Angaben zufolge wird etwa das Kernkraftwerk Saporischschja seit nunmehr einem Jahr nur noch über die einzig verbliebene 750-Kilovolt-Leitung mit Strom versorgt. Jüngsten Forderungen aus der Politik nach einem Comeback der Atomkraft in Deutschland erteilte der Minister vor diesem Hintergrund eine deutliche Absage: „Atomkraftwerke basieren nicht nur auf einer Risikotechnologie, sie können eben auch Objekte terroristischer Angriffe sein. Atomkraft ist zudem für die Versorgungssicherheit in Deutschland auch nicht erforderlich. Alte Meiler werden zurückgebaut und es gibt auch seitens der Energieunternehmen, insbesondere der Betreiber der zuletzt abgeschalteten drei Atommeiler, kein Interesse, zur Atomkraft zurückzukehren“, betonte Willingmann. Der Minister wies darauf hin, dass sich Wirtschaft sowie Verbraucherinnen und Verbraucher zu Recht eine verlässliche Energiepolitik wünschen. „Die Rückkehr zur Atomenergie ist eine reine, lobbygetriebene Scheindebatte, die vollends die akuten Probleme bei Errichtung und Betrieb von Atomkraftwerken – auch im Ausland – ausblendet: von der nahezu aussichtslosen Standortsuche über mehrjährig verzögerte Errichtungszeiten, bis hin zu neuen Abhängigkeiten bei Brennstäben oder längeren Betriebsunterbrechungen. Last not least: Wer lautstark Atomkraft fordert, muss darüber hinaus die in Deutschland seit Jahrzehnten ungelöste Frage beantworten, wo der strahlende Müll denn dauerhaft gelagert werden soll“, so Willingmann. Bekanntlich findet bundesweit in den nächsten Jahren weiter die Suche nach einem Endlager für rund 27.000 Kubikmeter hochradioaktive Abfälle statt. Und wie die Bundesgesellschaft für Endlagersuche jüngst bekannt gegeben hat: Auch in Sachsen-Anhalt gibt es Gesteinsformationen, die für ein mögliches Atomendlager infrage kommen könnten. Die neue Bundesregierung müsse nunmehr vor allem die Energiewende weiter vorantreiben, forderte der Energieminister weiter: „Neben dem Ausbau erneuerbarer Energien müssen wir beim Ausbau der Stromnetze weiter vorankommen. Zudem muss die neue Bundesregierung endlich die Kraftwerksstrategie verabschieden, damit neue wasserstofffähige Gaskraftwerke zur Absicherung der Energieversorgung zeitnah realisiert werden können. Hier haben wir unnötig viel Zeit verloren!“ Tschernobyl und die Folgen Am 26. April 1986 explodierte Reaktorblock 4 des ukrainischen Atomkraftwerks Tschernobyl. Nach Angaben der Weltgesundheitsorganisation (WHO) kamen infolge des Unglücks mindestens 4.000 Menschen ums Leben, weit mehr erkrankten an Krebs. Mehr als 600.000 Menschen mussten sich an den Aufräumarbeiten beteiligen, bis heute wird die Havarie als weltweit schwerster Reaktorunfall aller Zeiten angesehen. Unmittelbar nach der Havarie wurde ein Sarkophag aus Stahl und Beton errichtet, um die Strahlung einzudämmen. Nachdem dieser in die Jahre kam, wurde zwischen 2010 und 2016 mit internationaler Hilfe eine neue Schutzhülle „New Safe Confinement (NSC)“ für mehr als zwei Milliarden Euro errichtet und über den ersten Sarkophag geschoben. Die Reaktorkatastrophe in Tschernobyl vor fast 40 Jahren hatte weitreichende Folgen. Nach der Nuklearkatastrophe verteilten sich Wolken mit radioaktiven Stoffen zunächst über weite Teile Europas, später über die gesamte nördliche Halbkugel. Nach Angaben des Bundesamtes für Strahlenschutz (BfS) regnete ein Teil der radioaktiven Stoffe auch in Deutschland nieder. In der Region Magdeburg wurde nach Angaben des damaligen Bezirks-Hygieneinstituts unmittelbar nach der Katastrophe eine 100- bis 500-mal höhere Radioaktivität in der Luft gemessen. In einigen Gegenden Deutschlands sind bis heute insbesondere bestimmte Pilz- und Wildarten noch immer mit Cäsium-137 belastet. Der Süden Deutschlands – vor allem Südbayern und der Bayerische Wald – ist vom Tschernobyl-Fallout besonders betroffen. Aber auch in Sachsen-Anhalt hat die Region um Schollene an der Landesgrenze zu Brandenburg eine höhere Belastung als im übrigen Norden Deutschlands. Fragen und Antworten zu den Folgen und Spätfolgen der Reaktorkatastrophe sind auf den Internetseiten des Umweltministeriums abrufbar: https://mwu.sachsen-anhalt.de/umwelt/strahlenschutz/faq-tschernobyl Zum Thema Atomkraft gibt es ein weiteres FAQ unter: https://mwu.sachsen-anhalt.de/energie/atomkraft Impressum: Ministerium für Wissenschaft, Energie, Klimaschutz und Umwelt des Landes Sachsen-Anhalt Pressestelle Leipziger Str. 58 39112 Magdeburg Tel: +49 391 567-1950, E-Mail: PR@mwu.sachsen-anhalt.de , Facebook , Instagram , LinkedIn , Mastodon und X
Gesundheitliche Folgen des Unfalls von Tschornobyl in der ehemaligen Sowjetunion Durch den Reaktorunfall von Tschornobyl (russ.: Tschernobyl) erhielten insbesondere Notfallhelfer*innen und Aufräumarbeiter*innen (sogenannte Liquidator*innen) hohe Strahlendosen. Auch die Bevölkerung in der Nähe war z.T. einer hohen Strahlendosis ausgesetzt. 28 Notfallhelfer*innen starben in Folge eines akuten Strahlensyndroms. Ein Anstieg von Schilddrüsenkrebserkrankungen ist auf die Strahlung zurückzuführen. Die gesundheitlichen Folgen werden bis heute untersucht. Blumen am Denkmal für die Feuerwehrleute von Tschornobyl Die gesundheitlichen Folgen des Reaktorunglücks von Tschornobyl wurden in zahlreichen Publikationen untersucht. Wichtige Zusammenfassungen dieser Erkenntnisse liefern u.a. die Berichte vom Wissenschaftlichen Komitee über die Effekte der atomaren Strahlung der Vereinten Nationen (United Nations Scientific Committee on the Effects of Atomic Radiation, UNSCEAR ) und des Tschernobyl-Forums . Das Tschernobyl-Forum war eine Arbeitsgruppe der Internationalen Atomenergie-Organisation (International Atomic Energy Agency, IAEA ), der Weltgesundheitsorganisation (World Health Organisation, WHO ), mehrerer UN -Organisationen und der Regierungen von Russland, Belarus und der Ukraine, die zwischen 2003 und 2005 die wissenschaftliche Aufarbeitung der Folgen des Reaktorunfalls für Mensch und Umwelt vorantrieb. Bei der Untersuchung werden oftmals folgende Personengruppen unterschieden: Notfallhelfer*innen und Liquidator*innen Am Tag des Reaktorunfalls, dem 26. April 1986, waren rund 600 Notfallhelfer*innen ( z. B. Werksangehörige, Feuerwehrleute und Rettungskräfte) an dem Kraftwerk tätig. In den Jahren 1986 und 1987 waren über 240.000 Personen als Aufräumarbeiter*innen (sogenannte Liquidator*innen) im Umkreis von 30 Kilometern um das Kraftwerk eingesetzt. Weitere Aufräumarbeiten wurden bis etwa 1990 durchgeführt. Die Gesamtzahl der für den Einsatz registrierten Liquidator*innen betrug etwa 600.000. Bevölkerung 1986 wurden etwa 116.000 Bewohner*innen aus der unmittelbaren Umgebung des Unfallreaktors evakuiert (im Umkreis von 30 Kilometern um das Kraftwerk und in weiteren Gebieten mit gemessenen Ortsdosisleistungen von mehr als 0,2 Millisievert pro Stunde). In den Folgejahren waren es zusätzlich etwa 220.000 Personen. Im Jahr 2006 lebten noch etwa 6 Millionen Menschen in den "kontaminierten Gebieten". Als "kontaminiert" gelten dabei die Gebiete der ehemaligen Sowjetunion, die am Boden Cäsium-137 -Konzentrationen von mehr als 37.000 Becquerel pro Quadratmeter aufwiesen. Auch die damals in der Ukraine, Belarus und in den 19 "betroffenen Oblasten" (Verwaltungsbezirke) in Russland lebenden 98 Millionen Menschen wurden bei der Untersuchung der gesundheitlichen Folgen betrachtet. Als "betroffen" gelten dabei die Oblaste von Russland, die kontaminierte Gebiete enthielten. Akute gesundheitliche Folgen Zwei Werksmitarbeiter starben unmittelbar an den schweren Verletzungen durch die Explosion des Reaktors. 134 Notfallhelfer*innen erlitten ein akutes Strahlensyndrom . Davon starben 28 innerhalb von vier Monaten nach dem Unfall. Ihr Tod ist auf die hohen Strahlendosen zurückzuführen. Weitere 19 Personen mit einem akuten Strahlensyndrom starben in den Folgejahren (1987 - 2004). Ihr Tod steht möglicherweise auch im Zusammenhang mit den Strahlendosen nach dem Unfall. Für die Überlebenden des akuten Strahlensyndroms sind Hautverletzungen und später auftretende, strahleninduzierte Katarakte , also eine Trübung der Augenlinse oder Grauer Star, die schwerwiegendsten gesundheitlichen Schäden. Die 134 Personen mit akutem Strahlensyndrom erhielten Ganzkörperdosen durch externe Gammastrahlung von 0,8 bis 16 Gray . Manche erhielten zudem durch Betastrahlung Hautdosen von 400 bis 500 Gray , die zu schweren Verbrennungen führten. Die meisten der Verstorbenen starben an Infektionen infolge der Verbrennungen. 13 Personen mit einem akuten Strahlensyndrom wurden mit einer Knochenmarktransplantation behandelt. Nur einer der behandelten Personen überlebte. Bei den Liquidator*innen und in der Bevölkerung wurden nach den vorliegenden Berichten keine akuten Strahlenschäden beobachtet. Später auftretende gesundheitliche Folgen In Folge des Reaktorunfalls erhielten die Liquidator*innen und die im Umkreis lebende Bevölkerung erhöhte Strahlendosen, die zu später auftretenden Strahlenschäden geführt haben können bzw. in Zukunft immer noch führen können. Die Höhe der Strahlendosen kann sich stark unterscheiden: Liquidator*innen erhielten in Folge ihrer Aufräumarbeiten im Zeitraum von 1986 bis 1990 im Mittel eine zusätzliche effektive Dosis von 120 Millisievert . Die Dosiswerte variierten von weniger als 10 bis mehr als 1000 Millisievert . Für 85% von ihnen lag sie im Bereich von 20 bis 500 Millisievert . Evakuierten Personen erhielten im Mittel eine zusätzliche effektive Dosis von 33 Millisievert . 6 Millionen Menschen in den kontaminierten Gebieten erhielten im Zeitraum von 1986 bis 2005 eine effektive Dosis von durchschnittlich 9 Millisievert . Bei 70% der Menschen lag die zusätzliche effektive Dosis unter 1 Millisievert , bei 20% zwischen 1 und 2 Millisievert , bei 2,5% lag die effektive Dosis über 50 Millisievert . 98 Millionen Menschen auf dem Gebiet der Ukraine, Belarus und den 19 betroffenen Oblasten in Russland erhielten im Mittel eine vergleichsweise geringe zusätzlich effektive Dosis (im Zeitraum von1986 bis 2005) von insgesamt 1,3 Millisievert . Zum Vergleich: Auf dem Gebiet der Ukraine, Belarus und den 19 betroffenen Oblasten in Russland wurde für denselben Zeitraum eine Hintergrundstrahlung von 50 Millisievert geschätzt. Die ermittelten zusätzlichen effektiven Dosen stellen damit in Teilen eine deutliche Erhöhung gegenüber der Hintergrundstrahlung dar. Wie viele Menschen wegen der erhöhten Strahlendosen in Folge des Reaktorunfalls erkrankten oder starben, lässt sich nicht genau angeben. Das Tschernobyl-Forum schätzte 2005, dass ungefähr 4.000 Todesfälle auf die zusätzlichen Strahlendosen zurückzuführen sind. Medien zum Thema Mehr aus der Mediathek Tschornobyl (russ. Tschernobyl) Was geschah beim Reaktorunfall 1986 in Tschornobyl? In Videos berichten Zeitzeugen. Broschüren und Bilder zeigen die weitere Entwicklung. Stand: 10.02.2025
Der Unfall von Tschornobyl ( russ. : Tschernobyl) Am 26. April 1986 kam es in Block 4 des Kernkraftwerks Tschornobyl in der Ukraine zu einem schweren Unfall. Dabei wurden erhebliche Mengen radioaktiver Substanzen freigesetzt, die aufgrund hoher Temperaturen des brennenden Reaktors in große Höhen gelangten und sich mit Wind und Wetter über weite Teile Europas verteilten. In der Folge wurden die in einem Umkreis von etwa 30 Kilometern um den havarierten Reaktor lebenden Menschen evakuiert oder zogen aus eigenem Antrieb fort. Messung der Ortsdosisleistung mit einem Handmessgerät am Reaktor von Tschornobyl im Rahmen einer Messübung im Jahr 2016. Zum Zeitpunkt des Unglücks waren die Messwerte weit höher. Am 26. April 1986 ereignete sich im Block 4 des Kernkraftwerks Tschornobyl ( russ. : Tschernobyl) in der Ukraine der bisher schwerste Reaktorunfall in der Geschichte. Die weitreichenden und langwierigen ökologischen, gesundheitlichen – auch psychischen – und wirtschaftlichen Folgen dieses Unfalls stellten die damalige Sowjetunion und später Russland, Belarus und insbesondere die Ukraine vor große Herausforderungen – auch heute noch. Unfallhergang Das Kernkraftwerk Tschornobyl ( russ. : Tschernobyl) gehörte zu einem Reaktortyp, der ausschließlich in der ehemaligen Sowjetunion gebaut wurde. Wesentliche Unterschiede dieses Reaktortyps zu westlichen Reaktoren liegen darin, dass sie Graphit nutzen, um die Geschwindigkeit von Neutronen in der Kernspaltungsreaktion zu reduzieren, und keine druckdichte Beton- und Stahl-Sicherheitshülle um den Reaktorkern, das so genannte Containment, besitzen. Während eines planmäßigen langsamen Abschaltens und eines gleichzeitigen Versuchsprogramms zur Überprüfung verschiedener Sicherheitseigenschaften der Anlage, kam es zu einer unkontrollierten atomaren Kettenreaktion. Dies führte zu einer Explosion des Reaktors, die das rund 1.000 Tonnen schwere Dach des Reaktorbehälters anhob. Mangels Containment lag der Reaktorkern infolge der heftigen Explosion frei, so dass radioaktive Stoffe aus dem Reaktor ungehindert in die Atmosphäre gelangten. Das im Reaktor verwendete Graphit brannte. Bei den Lösch- und Aufräumarbeiten wurden viele Beschäftigte des Reaktors, Feuerwehrleute sowie als "Liquidatoren" bekannte Rettungs- und Aufräumkräfte einer extrem hohen Strahlenbelastung ausgesetzt. Bei 134 von ihnen kam es zu akuten Strahlensyndromen . Die gesundheitlichen – auch psychischen – Folgen des Reaktorunfalls werden bis heute untersucht. Die Freisetzungen radioaktiver Stoffe konnten erst nach 10 Tagen durch den Abwurf von ca. 5.000 Tonnen Sand, Lehm, Blei und Bor aus Militärhubschraubern auf die Reaktoranlage und das Einblasen von Stickstoff zur Kühlung des geschmolzenen Kernbereichs beendet werden. In den Jahren 1986 und 1987 waren über 240.000 Personen als Liquidatoren innerhalb einer 30-Kilometer-Sperrzone rund um den havarierten Reaktor eingesetzt. Weitere Aufräumarbeiten wurden bis etwa 1990 durchgeführt. Insgesamt waren etwa 600.000 Liquidatoren für den Einsatz registriert. Über den Unfallhergang und langfristige Planungen zum Rückbau der Anlage informiert das Bundesamt für Sicherheit in der nuklearen Entsorgung ( BASE ) auf seiner Webseite. Freisetzung von Radioaktivität in die Umwelt Aufgrund des Unfalls gelangten vom 26. April bis zum 6. Mai 1986 in erheblichem Maße radioaktive Stoffe in die Umwelt . Durch den 10 Tage anhaltenden Reaktorbrand entstand eine enorme Hitze. Mit dem thermischen Auftrieb gelangten tagelang große Mengen radioaktiver Stoffe durch das zerstörte Dach der Reaktorhalle in Höhen von vielen Tausenden Metern. Verschiedene Luftströmungen (Winde) verteilten die radioaktiven Stoffe über weite Teile Europas. Sie kontaminierten mehr als 200.000 Quadratkilometer, davon rund 146.000 Quadratkilometer im europäischen Teil der ehemaligen Sowjetunion. Ein Schild warnt im Sperrgebiet vor dem "Roten Wald", einem Gebiet, das nach dem Unfall in Tschornobyl (russ.--russisch: Tschernobyl) am höchsten kontaminiert wurde. Freigesetzt wurden unter anderem radioaktive Edelgase wie etwa Xenon-133, leicht flüchtige Stoffe wie radioaktives Jod, Tellur und radioaktives Cäsium, die sich mit dem Wind weit über die Nordhalbkugel, insbesondere über Europa, verteilten und schwer flüchtige radioaktive Nuklide wie Strontium und Plutonium , die sich vor allem in einem Umkreis von etwa 100 Kilometern um den Unfallreaktor in der Ukraine und in den angrenzenden Gebieten von Belarus ablagerten. Aufgrund ihrer vergleichsweise kurzen Halbwertszeiten waren radioaktives Jod und Xenon-133 drei Monate nach dem Unfall praktisch aus der Umwelt verschwunden. Cäsium-137 und Strontium-90 haben dagegen eine Halbwertszeit von rund 30 Jahren und kontaminieren die Umwelt deutlich länger: 30 Jahre nach dem Unfall in Tschernobyl hat sich die Aktivität dieser radioaktiven Stoffe etwa halbiert. Plutonium -239 und Plutonium -240 haben mehrere Tausend Jahre Halbwertszeit – diese in der näheren Umgebung des Unfallreaktors vorzufindenden radioaktiven Stoffe sind bis heute praktisch nicht zerfallen, ihre Aktivitäten sind etwa so hoch wie 1986. Ende April/Anfang Mai 1986 trafen die radioaktiven Luftmassen des Reaktorunfalls von Tschornobyl ( russ. : Tschernobyl) in Deutschland ein. Aufgrund heftiger lokaler Niederschläge im Süden Deutschlands wurde Süddeutschland deutlich höher belastet als Norddeutschland. Die radioaktiven Stoffe lagerten sich unter anderem in Wäldern, auf Feldern und Wiesen ab – auch auf erntereifem Gemüse und Weideflächen. Über die Folgen für die Umwelt in der näheren Umgebung des Reaktors sowie in Deutschland informiert der Artikel " Umweltkontaminationen und weitere Folgen des Reaktorunfalls von Tschornobyl ". Frühe Schutzmaßnahmen Der Unfall im Kernkraftwerk Tschornobyl ( russ. : Tschernobyl) hatte nicht nur Folgen für die Umwelt , sondern auch massive Auswirkungen auf die Gesundheit und das Leben der Bevölkerung in den am stärksten betroffenen Gebieten in der nördlichen Ukraine, in Belarus und im Westen Russlands. Am 1. Mai 1986 sollte ein Vergnügungspark in Prypjat eröffnet werden. Die Stadt wurde am 27. April 1986 evakuiert; das Riesenrad steht seitdem. Evakuierungen Am Tag nach dem Unfall wurde die Stadt Prypjat evakuiert, sie ist bis heute nicht bewohnt. Das Gebiet in einem Radius von 30 Kilometern rund um das Kernkraftwerk Tschornobyl ( russ. : Tschernobyl) wurde anschließend zum Schutz der Bevölkerung vor hoher Strahlung zur Sperrzone. Die Orte innerhalb der Sperrzone wurden evakuiert und aufgegeben – betroffen davon waren 1986 neben Prypjat auch Tschornobyl, Kopatschi und weitere Ortschaften. Die Sperrzone wurde später anhand der Höhe der Kontamination räumlich angepasst. Insgesamt wurden mehrere 100.000 Personen umgesiedelt (zwangsweise oder aus eigenem Antrieb). Schutz vor radioaktivem Jod Die Zahl der Schilddrüsenkrebserkrankungen stieg nach 1986 in der Bevölkerung von Weißrussland, der Ukraine und den vier am stärksten betroffenen Regionen Russlands deutlich an. Dies ist zum größten Teil auf die Belastung mit radioaktivem Jod innerhalb der ersten Monate nach dem Unfall zurückzuführen. Das radioaktive Jod wurde vor allem durch den Verzehr von Milch von Kühen aufgenommen, die zuvor kontaminiertes Weidegras gefressen hatten. Dies gilt als Hauptursache für die hohe Rate an Schilddrüsenkrebs bei Kindern. Radioaktives Jod wurde außerdem durch weitere kontaminierte Nahrung sowie durch Inhalation mit der Luft aufgenommen. Nach Aufnahme in den Körper reichert es sich in der Schilddrüse an. Wird genau zum richtigen Zeitpunkt nicht-radioaktives Jod in Form einer hochdosierten Tablette aufgenommen, kann verhindert werden, dass sich radioaktives Jod in der Schilddrüse anreichert (sogenannte Jodblockade ). Entsprechende Informationen der zuständigen Behörden gab es in den betroffenen Staaten der ehemaligen Sowjet-Union für die Bevölkerung, insbesondere in ländlichen Gebieten, jedoch nicht – auch nicht darüber, dass potenziell betroffene Lebensmittel, insbesondere Milch, nicht oder nur eingeschränkt verzehrt werden sollte. Dazu kam, dass die betroffene Bevölkerung oft keine Alternativprodukte zur Nahrungsaufnahme zur Verfügung hatte. Schutzhülle am Reaktor Schutzhülle (New Safe Confinement) über dem havarierten Reaktor von Tschernobyl Quelle: SvedOliver/Stock.adobe.com Um die im zerstörten Reaktorblock befindlichen radioaktiven Stoffe sicher einzuschließen und weitere Freisetzungen radioaktiver Stoffe in die Umgebung zu begrenzen, wurde von Mai bis Oktober 1986 eine als "Sarkophag" bekannte Konstruktion aus Beton und Stahl um den zerstörten Reaktor errichtet. Wegen der Dringlichkeit blieb keine Zeit für eine detaillierte Planung. 2016 wurde mit internationaler Unterstützung eine etwa 110 Meter hohe Schutzhülle - das "New Safe Confinement" - über den ursprünglichen Sarkophag geschoben und 2019 betriebsbereit in die Verantwortung der Ukraine übergeben. Die Schutzhülle ist rund 165 Meter lang und besitzt eine Spannweite von ungefähr 260 Metern; ihre projektierte Lebensdauer beträgt 100 Jahre. Der Rückbau des alten Sarkophags sowie die Bergung und sichere Endlagerung des darin enthaltenen radioaktiven Materials stehen als nächste Herausforderung an. Konsequenzen für den Notfallschutz in Deutschland Über die Folgen des Reaktorunfalls von Tschornobyl ( russ. : Tschernobyl) für die Organisation und Umsetzung des radiologischen Notfallschutzes in Deutschland informiert der Artikel " Entwicklung des Notfallschutzes in Deutschland " Medien zum Thema Mehr aus der Mediathek Tschornobyl (russ. Tschernobyl) Was geschah beim Reaktorunfall 1986 in Tschornobyl? In Videos berichten Zeitzeugen. Broschüren und Bilder zeigen die weitere Entwicklung. Stand: 15.01.2025
Das Geoportal des BfS Das BfS -Geoportal ist eine interaktive Kartenanwendung. Mit dem BfS -Geoportal können Messdaten rund um den Strahlenschutz abgerufen werden: Zum Beispiel über künstliche Radionuklide ( Cäsium-137 ) in Nahrungs- oder Futtermitteln oder die im Regen gemessene Radioaktivität . Die Suchergebnisse lassen sich auf bestimmte Zeiträume oder Gegenden eingrenzen oder können im Überblick über Deutschland auf einer Landkarte dargestellt werden. Das Bundesamt für Strahlenschutz ( BfS ) stellt mit dem BfS -Geoportal ein eigenes Internetportal für die Suche und Darstellung raumbezogener Daten (Geodaten) und Webdienste (Geodatendienste) des BfS bereit. Geodaten sind alle Daten mit direktem oder indirektem Bezug zu einem bestimmten Standort oder geografischen Gebiet. Beispiele für Geodaten sind die Anzahl der Sonnenstunden an einer bestimmten Messstation oder die Stärke der Gamma- Strahlung an einer bestimmten ODL-Sonde . Geodaten lassen sich durch ihren Standort-Bezug in Karten darstellen. Ein Geodatenservice ermöglicht es, auf in einer Datenbank vorgehaltene Geodaten z.B. automatisiert über das Internet zuzugreifen. Was ist das BfS -Geoportal? Mit dem BfS -Geoportal können Kommunen, Unternehmen und Interessenverbände genauso wie interessierte Bürgerinnen und Bürger Messdaten rund um den Strahlenschutz abrufen: Zum Beispiel über künstliche Radionuklide (Cäsium-137) in Futtermitteln oder die aktuellen ODL-Stundenwerte . Die Suchergebnisse lassen sich auf bestimmte Zeiträume oder Gegenden eingrenzen oder können im Überblick über Deutschland auf einer Landkarte dargestellt werden. Welche Daten stellt das BfS in seinem Geoportal bereit? Das BfS stellt eigene Messdaten sowie weitere von Bundes-, Landes- und anderen Partnerbehörden bereit. Dies sind in der Mehrzahl Daten aus dem Integrierten Mess- und Informationssystem ( IMIS ). Am IMIS -Messprogramm zur kontinuierlichen Überwachung der Umwelt sind mehrere Messnetze und mehr als 60 Labore in Bund und Ländern beteiligt. Darüber hinaus lassen sich beispielweise Radon-222 -Konzentrationen in der Freiluft abrufen ( hier ) oder der aktuelle UV-Index anzeigen ( hier ). Die Daten sind thematisch unterteilt in Gamma-Ortsdosisleistung ( ODL ) Luft Niederschlag Bodenoberfläche Boden Wasser Nahrungsmittel Futtermittel Sonstige Umweltmedien Radon UV Sonstiges Über das BfS -Geoportal werden vom BfS Daten gemäß des Gesetzes zur Förderung der elektronischen Verwaltung (E-Government-Gesetz - EgovG) der Öffentlichkeit zur Verfügung gestellt. Umgangssprachlich wird dieses Gesetz auch 'Open-Data-Gesetz' genannt. Wie funktioniert das BfS -Geoportal? Das BfS-Geoportal Das BfS -Geoportal ist eine interaktive Kartenanwendung. Die gewünschten Daten können im BfS -Geoportal über das Menü (links im Geoportal) ausgewählt und in die Karte geladen werden. Die Legende (rechts im Geoportal) erklärt die Farbgebung der Daten in der Karte und stellt weitere Funktionen bereit. Die genauen Messwerte lassen sich an den einzelnen Datenpunkten in der Karte abrufen. In ergänzenden Diagrammen werden z.B. Zeitreihen angezeigt (soweit verfügbar). Eine "Hilfe"-Seite leitet bei der Benutzung des BfS -Geoportals an und informiert ausführlich über Bedienung und Funktionalität (Hilfe- Button am Ende des Menüs). Was sind Webdienste und welche Geodatendienste stellt das BfS bereit? Ein Web -Dienst ist eine standardisierte Abfrage und Antwort über das Internet, die von Computern automatisiert oder von Nutzern interaktiv durchgeführt werden kann. Werden Geoinformationen über Webdienste bereitgestellt, spricht man von Geodatendiensten. Auf welchen gesetzlichen Vorgaben basiert das BfS -Geoportal? Anlass zur Entwicklung des seit Ende 2013 verfügbaren BfS -Geoportals war die europäische INSPIRE -Richtlinie ( INfrastructure for SPatial InfoRmation in Europe , Richtlinie 2007/2/EG). Mit INSPIRE verfolgt die EU das Ziel, mithilfe einer gemeinsamen Geodateninfrastruktur in Europa die grenzübergreifende Nutzung von Geodaten zu erleichtern. Insbesondere sollen so umweltpolitische Entscheidungen und Maßnahmen in Europa unterstützt werden. Als Umsetzung der INSPIRE Richtlinie in Deutschland hat das "Gesetz über den Zugang zu digitalen Geodaten" (Geodatenzugangsgesetz, GeoZG) in den vergangenen Jahren die technischen Entwicklungen und Normierungen von Such-, Darstellungs- und Download -Diensten erheblich vorangetrieben. Unter anderem wurde es dadurch möglich, Nutzern zentral Zugriff auf Geodatendienste unterschiedlicher Quellen zu gewähren, wie dies zum Beispiel im BfS -Geoportal möglich ist. Wo finde ich weitere Geodaten? Unabhängig vom eigenen Geoportal stellt das BfS seine Daten und Webdienste über Geoportal.de bereit. Dieses Portal ist die zentrale Suchmaschine für die Geodateninfrastruktur in Deutschland. Geoportal.de ist ein Service von Bund, Ländern und Kommunen. Hier werden deutschlandweit verfügbare Informationen wie Straßenkarten, Luftbilder und fachliche Themenkarten von Energie über Bauleitplanung bis zu Naturschutz zusammengefasst, um einen umfassenden Überblick über frei verfügbare Geoinformationen in Deutschland zu bieten. Medien zum Thema Mehr aus der Mediathek Radioaktivität in der Umwelt In Broschüren, Videos und Grafiken informiert das BfS über radioaktive Stoffe im Boden, in der Nahrung und in der Luft. Stand: 22.10.2024
Radioökologielabor Leitstelle für Arzneimittel und deren Ausgangsstoffe sowie Bedarfsgegenstände Im Radioökologielabor des BfS wird die radioaktive Kontamination in Lebensmitteln und Umweltmedien gemessen. Die Beschäftigten führen Felduntersuchungen und Laborexperimente durch und entwickeln radiochemische Methoden zur schnellen Bestimmung von Alpha- und Betastrahlern in Lebensmitteln und Umweltmedien. Das Radioökologielabor ist Leitstelle für Arzneimittel und deren Ausgangsstoffe sowie Bedarfsgegenstände Mitglied des internationalen Labornetzwerks ALMERA (Analytical Laboratories for the Measurement of Environmental Radioactivity). Das Radioökologielabor des Bundesamtes für Strahlenschutz ( BfS ) misst die radioaktive Kontamination hauptsächlich in Lebensmitteln und Umweltmedien, führt Felduntersuchungen und Laborexperimente durch und entwickelt radiochemische Methoden insbesondere zur schnellen Bestimmung von Alpha- und Betastrahlern in Lebensmitteln und Umweltmedien. Die wissenschaftlichen Untersuchungen und Messungen sind die Grundlage, um die für den Transport und die Anreicherung radioaktiver Stoffe in der Umwelt maßgeblichen Prozesse zu verstehen und durch radioökologische Modelle zu beschreiben. Sie tragen ferner dazu bei, Empfehlungen zum Schutz der Bevölkerung auszusprechen, wenn große Mengen radioaktiver Stoffe in die Umwelt freigesetzt werden. Ziel von Felduntersuchungen, Laborexperimenten und der Methodenentwicklung ist die radioaktive Kontamination von Umweltmedien sowie Lebensmitteln zu erfassen, die für den Transport und die Anreicherung radioaktiver Stoffe in der Umwelt verantwortlichen Prozesse zu verstehen und durch radioökologische Modelle zu beschreiben, die Entwicklung oder Optimierung radiochemischer Verfahren zur Bestimmung von Alpha- und Betastrahlern in Lebensmitteln und Umweltmedien, die Entwicklung von Schnellmethoden zum Einsatz im Notfallschutz oder in Fällen der Nuklearspezifischen Gefahrenabwehr, die Festschreibung der Verfahren in Analysevorschriften und Messanleitungen. Messungen: Grundlage für Empfehlungen zum Schutz der Bevölkerung Werden, etwa nach einem Kernkraftwerksunfall, große Mengen radioaktiver Stoffe in die Umwelt freigesetzt, liegt die Hauptverantwortung für die Radioaktivitätsmessungen bei den entsprechenden Landesbehörden der betroffenen Länder. Ergänzend wird die radioaktive Kontamination von Umweltproben und Lebensmittelproben auch im Radioökologielabor des Bundesamtes für Strahlenschutz ( BfS ) gemessen. Ziel ist es, die radiologische Situation möglichst schnell zu erfassen. Auf Grundlage der von den Ländern gemeldeten Daten und eigenen Messergebnissen können die Expertinnen und Experten des BfS politischen Entscheidungsträgern zeitnah wirksame Maßnahmen zum Schutz der Bevölkerung empfehlen. Das Radioökologielabor ist zudem Leitstelle für Arzneimittel und deren Ausgangsstoffe sowie Bedarfsgegenstände. Im Rahmen der Leitstellentätigkeit werden beispielsweise Tees, Kräuter und Gewürze stichprobenartig untersucht. In der Analysewaage wird die Kalibrierung einer Pipette überprüft. Überwachung der radioaktiven Kontamination nach dem Reaktorunfall von Tschornobyl Auch mehr als dreieinhalb Jahrzehnte nach dem Reaktorunfall von Tschornobyl ( russ. : Tschernobyl) überwacht das Radioökologielabor die Entwicklung der radioaktiven Kontamination durch Messungen von Umwelt- und Lebensmittelproben. Im Blickpunkt stehen vor allem Lebensmittel aus dem Wald, wie etwa Pilze und Waldbeeren, die auch heute noch erhöhte Gehalte des Radionuklids Cäsium-137 aufweisen können. Ziele der Schnellmethoden Entwicklung radiochemischer Verfahren Ein weiterer Schwerpunkt des Radioökologielabors ist die Entwicklung oder Weiterentwicklung radiochemischer Verfahren zur Bestimmung von Alpha- und Betastrahlern in Lebensmitteln und Umweltmedien. Von besonderem Interesse sind hierbei Schnellmethoden, die im Rahmen des Notfallschutzes oder in Fällen der Nuklearspezifischen Gefahrenabwehr eingesetzt werden. Darüber hinaus unterstützt das Radioökologielabor Studierende an Hochschulen bei der Erstellung ihrer Abschlussarbeit (Bachelor, Master, PhD ). Ausstattung Instrumentarium des Radioökologielabors: Messgeräte zur Messung von Alpha-, Beta und Gamma- Strahlung Zur Vorbereitung und radiochemischen Aufbereitung der Proben stehen unter anderem Mühlen, Trockenschränke, Veraschungsöfen, Geräte zum Mikrowellenaufschluss, Kühlzentrifugen sowie Chemieabzüge zur Verfügung. Zur apparativen Ausstattung des Radioökologielabors gehören ferner Reinstgermanium-Detektoren zur Messung von Gammastrahlern sowie mehrere Messsysteme zur Bestimmung von Alpha- und Betastrahlern. Qualitätssicherung und Qualitätsmanagement Wie in allen Laboren des Bundesamtes für Strahlenschutz haben Qualitätsmanagement und Qualitätssicherung einen hohen Stellenwert. Das Radioökologielabor nimmt regelmäßig an Vergleichsmessungen (Ringversuchen und Leistungsprüfungen) teil. Zudem soll durch die angestrebte Akkreditierung nach DIN EN ISO/IEC 17025 (DAkkS) die hohe fachliche und technische Kompetenz des Radioökologielabors nachgewiesen werden. Das Radioökologielabor organisiert selbst Ringversuche nach § 161 StrlSchG (Strahlenschutzgesetz). Internationale Vernetzung Das Radioökologielabor ist Mitglied des internationalen Labornetzwerks ALMERA (Analytical Laboratories for the Measurement of Environmental Radioactivity) der IAEA und nimmt regelmäßig an ALMERA Leistungsprüfungen teil. Stand: 11.12.2024
Atmosphärisches Radionuklid-Transport-Modell (ARTM) und Dosismodell (DARTM) Das atmosphärische Ausbreitungsmodell ARTM mit Dosisprogramm DARTM wird für die Berechnung der zusätzlichen Strahlenbelastung der Bevölkerung in der Umgebung kerntechnischer Anlagen und Einrichtungen eingesetzt. Anhand von Zeitreihen meteorologischer Messungen, Umgebungsdaten sowie den Emissionsdaten über den Fortluftkamin wird die Ausbreitung radioaktiver Stoffe mit ARTM berechnet. Mit ARTM berechnete mittlere bodennahe Luftaktivität bei einer konstanten jährlichen Ableitung von einem Becquerel pro Sekunde Cäsium-137 in 160 Meter Emissionshöhe Das Atmosphärische Radionuklid -Transport-Modell, kurz ARTM, wird im Auftrag des Bundesumweltministeriums ( BMUV ) und des Bundesamtes für Strahlenschutz ( BfS ) entwickelt. Zusammen mit dem vom BfS entwickelten Dosisprogramm DARTM wird es für die Berechnung der Strahlenbelastung der Bevölkerung in der Umgebung kerntechnischer Anlagen und Einrichtungen im bestimmungsgemäßen Betrieb eingesetzt und kontinuierlich an den Stand von Wissenschaft und Technik angepasst. DARTM wurde überarbeitet und an die Allgemeine Verwaltungsvorschrift zur Ermittlung der Exposition von Einzelpersonen der Bevölkerung durch genehmigungs- oder anzeigebedürftige Tätigkeiten (AVV Tätigkeiten) angepasst. Notwendige Eingabeparameter für ARTM sind dabei Zeitreihen meteorologischer Messungen am Standort der jeweiligen kerntechnischen Anlage, Messdaten zu den über den Fortluftkamin abgeleiteten radioaktiven Stoffen sowie Umgebungsdaten zum Standort. Eingabeparameter für DARTM sind: ARTM -Ergebnisdaten, Informationen über Landnutzung, mögliche Aufenthaltszeiten. Die anhand der Aktivitätsableitungen verursachte zusätzliche Strahlenbelastung für die Bevölkerung ist seit einem Bundestagsbeschluss aus dem Jahr 1974 jährlich an das Parlament zu berichten. Ausbreitungsmodell ARTM Die aktuelle Strahlenschutzverordnung ( StrlSchV ) schreibt für die Berechnung der Exposition der Bevölkerung in der Nähe kerntechnischer Anlagen und Einrichtungen die Verwendung eines Lagrange-Partikelmodells vor. Damit ersetzt dieses Modell das bisher eingesetzte Gauß-Fahnenmodell, das ab 2020 für diesen Zweck nicht mehr verwendet werden darf. Hierzu wurde das für die Ausbreitung konventioneller Luftbeimengungen konzipierte Programmpaket AUSTAL2000 für die Ausbreitung luftgetragener radioaktiver Stoffe angepasst und weiterentwickelt ( ARTM ). Dosisprogramm DARTM Das vom BfS entwickelte Dosisprogramm DARTM berechnet die Exposition der Bevölkerung aufgrund radioaktiver Ableitungen über Luft. DARTM kann nur in Kombination mit dem atmosphärischen Ausbreitungsmodell ARTM eingesetzt werden, da DARTM Eingabedateien und Ergebnisdateien aus ARTM -Rechnungen verwendet. DARTM wurde überarbeitet. Die ältere Version von DARTM (Version 5.2.) wurde gemäß Allgemeiner Verwaltungsvorschrift (AVV) zu Paragraph 47 der Strahlenschutzverordnung von 2012 , die aber am 31. Dezember 2018 außer Kraft trat, entwickelt. Damit werden für Referenzpersonen für ein Kalenderjahr sowohl die einzelnen Organdosen als auch die Effektivdosis ermittelt. DARTM 5.2 wurde von unabhängigen Gutachtern im Rahmen eines Forschungsvorhabens verifiziert. Diese DARTM-5.2-Version ist frei verfügbar, jedoch entspricht sie nicht den realitätsnäheren Berechnungsvorgaben der repräsentativen Person. Neu: DARTM 6.1 Mit der Strahlenschutzverordnung vom 31. Dezember 2018 wurde die Allgemeine Verwaltungsvorschrift zur Ermittlung der Exposition von Einzelpersonen der Bevölkerung durch genehmigungs- oder anzeigebedürftige Tätigkeiten (AVV Tätigkeiten) überarbeitet. Die beiden wichtigsten Änderungen sind dabei: Die Berechnung wird nun für eine "repräsentative Person" und nicht wie bisher für "Referenzpersonen" durchgeführt. Die bisher konservativen Annahmen werden durch realitätsnähere Annahmen ersetzt. Dies bedingte auch die Neuentwicklung eines Dosisprogramms (DARTM 6.1), da DARTM 5.2 die Dosis bei Anwendung der AVV Tätigkeiten und der Strahlenschutzverordnung etwas zu konservativ berechnete. Das neue DARTM 6.1 wurde im Rahmen eines Forschungsvorhabens in 2023 verifiziert und steht derzeit nur für die behördliche Nutzung zur Verfügung. DARTM nutzen Wenn Sie sich für das Programm DARTM 6.1 oder das Programm DARTM 5.2 interessieren, schreiben Sie bitte eine E-Mail an artm@bfs.de und geben Sie darin an, welche(s) der Programme Sie nutzen möchten. Rechtliche Hinweise zur Software DARTM und die Hilfsprogramme LBM-ING sowie ARTM -OSM können nur für die behördliche Nutzung verwendet werden. Soweit rechtlich zulässig haftet das BfS nicht für etwaige Schäden, die beim Aufrufen oder Herunterladen von Daten durch Computerviren oder der Installation oder der Nutzung von Software verursacht wird. Im Übrigen wird auf das Impressum verwiesen. Das BfS übernimmt keine Gewähr für die Richtigkeit der durch DARTM ermittelten Werte. Die Verifizierung von DARTM 6.1 wurde im Rahmen eines Forschungsvorhabens durchgeführt. Fachlicher Hintergrund Berechnung der Exposition (Dosis) Ausbreitungsrechnungen: Lagrange-Partikelmodell Berechnung der Exposition (Dosis) Die mit der Fortluft und dem Abwasser aus Kernkraftwerken abgeleiteten radioaktiven Stoffe tragen zur Exposition der Bevölkerung bei. Daher müssen diese radioaktiven Stoffe durch die Betreiber nach Art und Aktivität ermittelt und bilanziert werden. Aus den bilanzierten Ableitungen kann dann die Exposition in der Umgebung einer kerntechnischen Anlage oder Einrichtung für die in der Strahlenschutzverordnung definierte sogenannte "repräsentative Person" berechnet werden. Die Berechnungen der Strahlenbelastung der Bevölkerung erfolgen ab 2021 für eine repräsentative Person statt für eine Referenzperson. Diese fiktive repräsentative Person verhält sich möglichst "konservativ", das heißt, alle Annahmen sind so ausgewählt, dass daraus eine höchstmögliche Exposition resultiert. Im Gegenteil zu der bisher verwendeten "Referenzperson" werden hier aber extreme oder unmögliche Lebensgewohnheiten nicht berücksichtigt. Zur Berechnung der Exposition dieser repräsentativen Person werden die Emissionsdaten der kerntechnischen Anlage oder Einrichtung mit einem Lagrange-Partikel-Modell (zum Beispiel ARTM in der Luft) und einem radioökologischen Modell (auch Dosisprogramm genannt) berechnet. Die Ausbreitungsrechnung modelliert die Transportprozesse von Radionukliden in der Luft von der Kaminmündung einer kerntechnischen Anlage. Die Berechnung der Exposition der Bevölkerung erfolgt anschließend anhand eines separaten Dosismoduls, in das die mit dem Ausbreitungsprogramm ARTM berechneten Konzentrationen und Depositionen der jeweiligen Radionuklide eingehen. Diese modulare Struktur von Ausbreitungs- und Dosismodul bringt mehrere Vorteile. So ist es beispielsweise möglich, im Zuge der Novellierung von Berechnungsgrundlagen die entsprechenden Softwarepakete separat zu überarbeiten oder auch alternative Dosismodule zu integrieren. Ausbreitungsrechnungen: Lagrange-Partikelmodell ARTM ist ein sogenanntes Lagrange-Partikelmodell. Im Gegensatz zu dem bisher verwendeten Gauß-Fahnenmodell berücksichtigt dieses Modell den zeitlichen Ablauf des Wetters. Bei ARTM wird zunächst das dreidimensionale zeitabhängige Windfeld erstellt. Dieses Windfeld kann auch bei Bedarf Orographie und Bebauung berücksichtigen. Nach Erstellung der Windfelder werden je Zeitschritt Millionen Teilchen - wobei jedes Teilchen einen proportionalen Bruchteil der Fortluftmenge repräsentiert - numerisch auf das zeitabhängige Windfeld nachverfolgt und statistisch ausgewertet. Damit werden dreidimensionale Aktivitätskonzentrationsfelder sowie zweidimensionale trockene und nasse Depositionsfelder bereitgestellt. Ein Lagrange-Partikelmodell bietet in der Regel eine realitätsnähere Abbildung der Konzentrationsverteilung als ein Gauß-Fahnenmodell: Es berücksichtigt Gebäude und komplexe Gelände. Zeitabhängige Ausbreitung: Bei Windrichtung-Wechsel werden auftretende „krumme“ Trajektorien erfasst. Komplexe Ausbreitungsstrukturen können bestimmt werden. Nasse und trockene Depositionen werden berechnet. Die Gammasubmersion wird je Zeitschritt anhand der Form und Ort der Wolke (3D-Konzentrationsverteilung) bestimmt. Stand: 30.10.2024
Radioaktive Belastung von Pilzen und Wildbret Bestimmte Pilz- und Wildarten sind in einigen Gegenden Deutschlands hauptsächlich durch die Reaktorkatastrophe von Tschornobyl ( russ. : Tschernobyl) noch immer stark mit Cäsium-137 belastet. Die Kontamination von Pilzen ist sowohl vom Cäsium-137 -Gehalt in der Umgebung des Pilzgeflechts (Myzel) als auch vom speziellen Anreicherungsvermögen der jeweiligen Pilzart abhängig. Wildbret ist je nach Region und Tierart sehr unterschiedlich belastet. Wer seine persönliche Strahlendosis verringern möchte, sollte in den höher belasteten Gebieten Deutschlands auf den übermäßigen Genuss selbst erlegten Wildes und selbst gesammelter Pilze verzichten. Bodenkontamination mit Cäsium-137 im Jahr 1986 (Becquerel pro Quadratmeter) Bestimmte Pilz- und Wildarten sind in einigen Gegenden Deutschlands hauptsächlich durch die Reaktorkatastrophe von Tschornobyl ( russ. : Tschernobyl) noch immer stark mit Cäsium-137 belastet. Der Süden Deutschlands – vor allem Südbayern und der Bayerische Wald, aber auch Teile Oberschwabens – ist vom Tschornobyl-Fallout 1986 besonders betroffen. In den letzten Jahren wurden Werte von bis zu mehreren Tausend Becquerel pro Kilogramm bei Wild und bei bestimmten Speisepilzen gemessen. In Deutschland ist es nicht erlaubt, Lebensmittel mit mehr als 600 Becquerel Cäsium-137 pro Kilogramm in den Handel zu bringen. Für den Eigenverzehr gilt diese Beschränkung jedoch nicht. Pilzsammler und Jäger sollten sich daher über ihre zusätzliche Strahlendosis durch den Verzehr von Wildpilzen und Wildbret informieren. Wenn Wildbret oder wild wachsende Speisepilze in üblichen Mengen verzehrt werden, ist die zusätzliche Strahlendosis vergleichsweise gering. Wer seine persönliche Strahlendosis verringern möchte, sollte in den höher belasteten Gebieten Deutschlands auf den übermäßigen Genuss selbst erlegten Wildes und selbst gesammelter Pilze verzichten. Zu den höher belasteten Regionen (siehe Karte zur Bodenkontamination mit Cäsium-137 ) zählen vor allem der Bayerische Wald und die angrenzenden Gebiete, das Donaumoos südwestlich von Ingolstadt, die Umgebung von Mittenwald und das Berchtesgadener Land. Wild wachsende Speisepilze Wild wachsende Speisepilze sind artspezifisch und standortspezifisch stark unterschiedlich belastet. Maronenröhrlinge An den vom BfS untersuchten Probenahmeorten erreichten Semmelstoppelpilze, Rotbraune Semmelstoppelpilze, verschiedene Schnecklingsarten (Elfenbeinschnecklinge und Lärchen-Schnecklinge), Gelbstielige Trompetenpfifferlinge, Maronenröhrlinge, Rotbraune Scheidenstreiflinge, Seidige Ritterlinge, Dickblättrige Schwärztäublinge und Blassblaue Rötelritterlinge in den letzten drei Jahren (2021 bis 2023) Aktivitätsgehalte von mehr als 1.000 Becquerel Cäsium-137 pro Kilogramm. Die Kontamination von Pilzen ist sowohl vom Cäsium-137 -Gehalt in der Umgebung des Pilzgeflechts (Myzel) als auch vom speziellen Anreicherungsvermögen der jeweiligen Pilzart abhängig. Die Belastung einer Pilzart schwankt innerhalb eines Standorts wesentlich stärker als die Änderungen von Jahr zu Jahr. Weiterführende Informationen liefert der BfS -Bericht "Radioaktive Kontamination von Speisepilzen: Aktuelle Messwerte" . Wildbret Wildbret ist je nach Region und Tierart sehr unterschiedlich belastet. In den stärker belasteten Gebieten werden bei Wildschweinen noch heute vereinzelt Werte gemessen, die den Grenzwert für die Vermarktung von 600 Becquerel Cäsium-137 pro Kilogramm um mehr als das Zehnfache überschreiten. Die in einem Forschungsvorhaben zur aktuellen Kontaminationssituation bei Wildschweinen in Deutschland im Zeitraum 2017 bis 2020 ermittelten Spitzenwerte lagen im Bayerischen Wald bei rund 17.000 Becquerel Cäsium-137 pro Kilogramm. Die im Rahmen des bundesweiten Messprogramms IMIS erhobenen Daten erreichten im Zeitraum 2020 bis 2022 Maximalwerte für Wildschweine von rund 1.200 Becquerel Cäsium-137 pro Kilogramm, für Rehwild von rund 330 Becquerel Cäsium-137 pro Kilogramm und für Hirsche von rund 63 Becquerel Cäsium-137 pro Kilogramm. Meist wurden deutlich niedrigere Werte ermittelt. Die starken Unterschiede zwischen den Wildfleischsorten beruhen im Wesentlichen auf dem Ernährungsverhalten der jeweiligen Tierarten. Da die von Wildschweinen gefressenen, unterirdisch wachsenden Hirschtrüffel außergewöhnlich hoch belastet sind (die Werte liegen hier um mehr als das Zehnfache über den Werten von Speisepilzen), ist Wildschweinfleisch deutlich höher kontaminiert als das Fleisch anderer Wildtierarten. Belastung wird mittelfristig zurückgehen Dass die Nahrungsmittel des Waldes wesentlich höher belastet sein können als landwirtschaftliche Erzeugnisse, liegt an der unterschiedlichen Beschaffenheit von Waldböden und landwirtschaftlich genutzten Böden. Während Cäsium-137 in den oberen organischen Schichten des Waldbodens leicht verfügbar ist, wird es in Ackerböden stark an die vorhandenen Tonminerale gebunden, so dass es die Pflanzen kaum über ihre Wurzeln aufnehmen können. Radiocäsium wandert nur langsam in tiefere Schichten des Waldbodens. Aufgrund der Tiefenverlagerung und des radioaktiven Zerfalls werden die Aktivitätswerte in Pilzen und Wildbret in den nächsten Jahren allmählich zurückgehen. Eine genaue Prognose ist nur möglich, wenn neben der lokalen Bodenkontamination die ökologischen Bedingungen des jeweiligen Standortes bekannt sind. Medien zum Thema Mehr aus der Mediathek Radioaktivität in der Umwelt In Broschüren, Videos und Grafiken informiert das BfS über radioaktive Stoffe im Boden, in der Nahrung und in der Luft. Stand: 10.09.2024
Radioaktives Cäsium in Wildpilzen: Verzehr-Menge entscheidend Ausgabejahr 2024 Datum 10.09.2024 Wildpilze können radioaktives Cäsium enthalten. Quelle: pikselstock/stock.adobe.com Fast 40 Jahre nach der Reaktorkatastrophe von Tschornobyl (russ. Tschernobyl) stellen sich im Spätsommer und Herbst viele noch immer die Frage: Darf man eigentlich wieder Pilze sammeln? Die Antwort aus Sicht des Strahlenschutzes: Ja, Sie dürfen. In einigen Regionen Deutschlands können Wildpilze zwar noch erhöhte Werte an radioaktivem Cäsium-137 aufweisen. Für die Strahlendosis durch Pilzmahlzeiten ist aber auch die Menge entscheidend: Ein maßvoller Verzehr sei überall in Deutschland unbedenklich, wie das Bundesamt für Strahlenschutz ( BfS ) anlässlich der Veröffentlichung seines aktuellen Pilzberichts erläuterte. Vor allem im Bayerischen Wald und den angrenzenden Gebieten, im Donaumoos südwestlich von Ingolstadt, in der Region Mittenwald und im Berchtesgadener Land können nach Angaben des Bundesamtes noch einige Pilzarten den Grenzwert für Cäsium-137 überschreiten. Dieser Grenzwert gilt für Pilze im Handel, jedoch nicht für selbst gesammelte Pilze. Er liegt bei 600 Becquerel Cäsium-137 pro Kilogramm Frischmasse. Hohe Cäsium-137 -Werte gehen in erster Linie auf den Reaktorunfall von Tschornobyl im Jahr 1986 zurück. Damals verteilten sich mit der Luft große Mengen radioaktiver Stoffe über Europa. In den genannten Regionen lagerte sich im deutschlandweiten Vergleich besonders viel Cäsium-137 ab. Darüber hinaus enthalten Wildpilze auch Cäsium-137 , das bei den oberirdischen Kernwaffentests des 20. Jahrhunderts freigesetzt wurde. Messwerte variieren stark In seinem Pilzbericht veröffentlicht das BfS jährlich aktuelle Messwerte. Dafür untersuchen die Fachleute wildwachsende Speisepilze von ausgewählten Standorten auf ihren Gehalt an Cäsium-137 . Je nach Pilzart und Cäsium- Kontamination des Bodens am Sammelort zeigen sich dabei deutliche Unterschiede. Als Spitzenreiter stachen bei den Messungen der vergangenen drei Jahre (2021-2023) Semmelstoppelpilze und Rotbraune Semmelstoppelpilze heraus. Einzelne Proben dieser Pilze enthielten über 4.000 Becquerel Cäsium-137 pro Kilogramm Frischmasse. Werte über 1.000 Becquerel Cäsium-137 pro Kilogramm wies das BfS an den untersuchten Standorten bei verschiedenen Schnecklingsarten, Gelbstieligen Trompetenpfifferlingen, Maronenröhrlingen, Rotbraunen Scheidenstreiflingen, Seidigen Ritterlingen, Dickblättrigen Schwärztäublingen und Blassblauen Rötelritterlingen nach. Maßvoller Verzehr führt nur zu geringer Strahlendosis Dr. Inge Paulini "Auch wenn manche selbst gesammelten Pilze immer noch den Grenzwert überschreiten können, der für den Verkauf von Pilzen zum Beispiel auf dem Markt oder im Supermarkt gilt: Solange man sie in Maßen verzehrt, führen sie nur zu einer geringen zusätzlichen Strahlendosis" , erläutert BfS -Präsidentin Inge Paulini. "Denn neben der Höhe der Cäsium-Kontamination der Pilze spielt die Menge, die man isst, eine wesentliche Rolle." Welche zusätzliche Strahlendosis man als akzeptabel erachte, sei eine ganz persönliche Entscheidung, betont die Behördenchefin. Eine Beispielrechnung könne dabei helfen: "Eine erwachsene Person, die jede Woche eine Mahlzeit aus 200 Gramm Pilzen mit 2.000 Becquerel Cäsium-137 pro Kilogramm verzehrt, erhält pro Jahr eine zusätzliche Strahlendosis von 0,27 Millisievert. Das ist etwa so viel wie bei rund 20 Flügen von Frankfurt am Main nach Gran Canaria." Auf potenziell hoch belastete Pilzarten kann man verzichten "Wer seine zusätzliche Strahlendosis durch selbst gesammelte Pilze möglichst klein halten möchte, sollte in den von Tschornobyl besonders betroffenen Gebieten Deutschlands auf potenziell stark belastete Pilzarten verzichten" , rät Paulini. "Es gibt viele schmackhafte Alternativen." Zum Beispiel blieben im Untersuchungszeitraum selbst an den am stärksten kontaminierten Probenahme-Orten alle Messwerte der folgenden Arten unter 5 Becquerel pro Kilogramm Frischmasse: Braunschuppiger Riesenchampignon, Dunkelfaseriger Champignon, Hasenröhrling, Judasohr und Riesenporling. Bodenkontamination mit Cäsium-137 im Jahr 1986. Die aktuellen Werte lassen sich durch Multiplikation der Zahlen mit 0,41 ermitteln. Messwerte weiterer Pilzarten kann man im Pilzbericht des BfS nachlesen. Er informiert außerdem darüber, welche Regionen Deutschlands heute noch vom Reaktorunfall von Tschornobyl besonders betroffen sind. Der Bericht steht unter www.bfs.de/pilzbericht im Digitalen Online Repositorium und Informations-System – kurz DORIS – des BfS zum Download bereit. Kaum Cäsium-137 in Zuchtpilzen Alle Pilze im Handel müssen den Grenzwert von 600 Becquerel Cäsium-137 pro Kilogramm einhalten. Pilze aus gewerblichen Pilzzuchten wie Champignons, Austernseitlinge und Shiitake enthalten generell wenig Cäsium-137 . Sie werden auf Substraten angebaut, die kaum radioaktives Cäsium aufweisen. Cäsium-137 ist ein radioaktives Isotop des Elements Cäsium, das nicht natürlich vorkommt. Es entsteht unter anderem bei der Kernspaltung in Kernkraftwerken . Seine Halbwertszeit beträgt etwa 30 Jahre. Das bedeutet, dass sich die Menge an Cäsium-137 , die sich 1986 in Deutschland am Boden ablagerte, bis heute mehr als halbiert hat. Stand: 10.09.2024
Origin | Count |
---|---|
Bund | 215 |
Land | 65 |
Wissenschaft | 1 |
Type | Count |
---|---|
Chemische Verbindung | 2 |
Ereignis | 2 |
Förderprogramm | 26 |
Messwerte | 42 |
Text | 160 |
unbekannt | 38 |
License | Count |
---|---|
geschlossen | 215 |
offen | 51 |
unbekannt | 4 |
Language | Count |
---|---|
Deutsch | 267 |
Englisch | 4 |
Resource type | Count |
---|---|
Bild | 2 |
Datei | 14 |
Dokument | 16 |
Keine | 212 |
Webseite | 36 |
Topic | Count |
---|---|
Boden | 198 |
Lebewesen & Lebensräume | 175 |
Luft | 93 |
Mensch & Umwelt | 270 |
Wasser | 128 |
Weitere | 270 |