EDELNASS fokussiert auf die stoffliche Verwertung von Aufwüchsen von wiedervernässten Moor-Grünland, welches heterogen in der Artenzusammensetzung ist und oft Bewirtschaftungseinschränkungen unterliegt (z.B. Erntezeitpunkt). Biomasse und ihre Standortparameter von 5 Moorstandorten in ganz Deutschland werden analysiert und hinsichtlich ihrer Anwendbarkeit in 2 Verwertungsverfahren untersucht, getestet und bewertet: (i) Umwandlung in Bioraffinerien zu den biobasierten, hochwertigen Basischemikalien HMF und Furfural und der Optimierung der Verfahren an der Universität Hohenheim. Ebenso wird Lignin als weiteres Produkt hergestellt. Das HMF kann zur Herstellung des recyclebaren, biobasierten Hochleistungskunststoff PEF weiterverarbeitet werden, woraus die Hochschule Albstadt-Sigmaringen nachhaltige Verpackungslösungen entwickelt, (ii) Das Leibniz-Institut für Agrartechnik und Bioökonomie stellt zusammen mit seinen Partnern Faserstoffe aus der Biomasse her und verarbeiten diese weiter zu Papieren und Fasergussformteilen. Kopplungspotentiale von Stoffströmen der Rohstofffraktionen zwischen den Verfahren untersucht, indem Zwischen- und Nebenprodukte der Verfahren in die jeweils anderen Prozesse eingespeist werden. Ziel der Untersuchungen ist es, neue Wertschöpfungsketten auf der Grundlage von Nasswiesen-Bewirtschaftung zu entwickeln, die eine produktive Nutzung von Nassgrünland mit dem Erreichen von Naturschutz- und Klimaschutzzielen verbindet. Für eine zukünftige Honorierung von Ökosystemdienstleistungen vernässter Moore werden Datengrundlagen erstellt: CO2-Bilanz der Verfahren und möglicher Produkte (inkl. bodenbürtiger Emissionen), Entwicklung von Artenvielfalt und Wasserqualität. Die Kosten von der Rohstoffbereitstellung bis zum Endprodukt werden analysiert, um geeignete Betriebsmodelle für die einzelnen Verfahren abzuleiten und beispielhaft in Moorregionen zu projektieren.
Für die Medizinische Hochschule Hannover hat das GeothermieZentrum Bochum gemeinsam mit der GeoDienste GmbH (Garbsen) im Zeitraum von August 2007 bis März 2008 eine Vorstudie zur Einbindung der Geothermie in das Energiekonzept des Klinikums erstellt. Im Anschluss an diese Vorstudie wurde eine Wirtschaftlichkeitsanalyse erstellt, welche die petrothermale und hydrothermale Versorgung betrachtete. Vorstudie: Die Medizinische Hochschule Hannover (MHH) wird derzeit von den Stadtwerken Hannover mit den Medien Gas, Strom und Fernwärme zur Erzeugung ihrer dreigliedrigen Energieversorgung, bestehend aus Dampf, Raumwärme und Klimakälte, versorgt. Aufgrund der hydrogeologischen Situation am Standort der MHH in Hannover wird eine Einbindung der Geothermie sowohl in den Heizkreislauf (direkte Integration über Wärmetauscher) als auch in den Kälteklimakreislauf (modular betriebene Absorptionskältemaschinen) vorgeschlagen. Ziel der Einbindung ist es konventionelle, preislich fluktuierende und primärenergetisch nachteilige Energieträger, wie in erster Linie elektrischen Strom und nachrangig Fernwärme oder Gas, durch den Einsatz der Geothermie vollständig, oder im Rahmen der Leistungsfähigkeit des geothermischen Reservoirs teilweise, zu ersetzen. Wirtschaftlichkeit, CO2-Bilanz und Versorgungssicherheit stehend dabei im Vordergrund. Die Grundlastfähigkeit der Geothermie wird in der vorgeschlagenen Anlagenkonfiguration vollständig ausgenutzt. Im Bereich der Spitzenlastdeckung spielt die Geothermie daher keine Rolle. Die geothermisch unterstützte Dampferzeugung findet im betrachteten Szenario keinen Eingang. Dies liegt in der internen Wärmerückgewinnung im Dampferzeuger durch den Economizer zur Vorwärmung des Speise- und Verbrauchswassers begründet. Da die Geothermie bei der Dampfherstellung nur einen geringen energetischen Beitrag leisten kann und Investitionen für ihre Anbindung an das Dampferzeugersystem entstehen, wird von der Betrachtung dieser Systeme abgesehen. Übersteigt die Bereitstellung von geothermischer Energie im Heiz- oder Kühlfall die Energienachfrage, lassen sich Pufferspeicher integrieren um diese überschüssig Energie effizient zu speichern. Bei Lastspitzen kann die Energie zurückgewonnen werden. Somit erhöht sich der geothermische Anteil an der Gesamtenergiebereitstellung. Wirtschaftlichkeitsanalyse: Hier wurden 9 verschiedene Szenarien untersucht, welche sich aufgrund ihrer Art (petrothermal / hydrothermal), der Bohrtiefe (4500 / 3000 m), ihrer Schüttung (15-50 l/s), Temperatur (115 / 160 Grad C) oder Bereitstellung (Wärme / Strom+Wärme) unterscheiden. Die höheren Investitionskosten für die petrothermalen Systeme werden durch die höhere Energieausbeute (Schüttung und Temperatur) abgefangen und diese somit wirtschaftlicher als die hydrothermalen Systeme, welche sich in der Amortisationsrechnung nur aufgrund der steigenden Energiepreise nach einigen Jahren rechnen.
Sachstand des wissenschaftlichen Dienstes des Deutschen Bundestages. 6 Seiten. Auszug der ersten drei Seiten: Wissenschaftliche Dienste Sachstand Anrechnung von klimaschützenden Maßnahmen im Ausland bei der Klimabilanzierung © 2019 Deutscher Bundestag WD 8 - 3000 - 121/19[.. next page ..]Wissenschaftliche Dienste Sachstand Seite 2 WD 8 - 3000 - 121/19 Anrechnung von klimaschützenden Maßnahmen im Ausland bei der Klimabilanzierung Aktenzeichen: WD 8 - 3000 - 121/19 Abschluss der Arbeit: 29. Oktober 2019 Fachbereich: WD 8: Umwelt, Naturschutz, Reaktorsicherheit, Bildung und Forschung Die Wissenschaftlichen Dienste des Deutschen Bundestages unterstützen die Mitglieder des Deutschen Bundestages bei ihrer mandatsbezogenen Tätigkeit. Ihre Arbeiten geben nicht die Auffassung des Deutschen Bundestages, eines sei- ner Organe oder der Bundestagsverwaltung wieder. Vielmehr liegen sie in der fachlichen Verantwortung der Verfasse- rinnen und Verfasser sowie der Fachbereichsleitung. Arbeiten der Wissenschaftlichen Dienste geben nur den zum Zeit- punkt der Erstellung des Textes aktuellen Stand wieder und stellen eine individuelle Auftragsarbeit für einen Abge- ordneten des Bundestages dar. Die Arbeiten können der Geheimschutzordnung des Bundestages unterliegende, ge- schützte oder andere nicht zur Veröffentlichung geeignete Informationen enthalten. Eine beabsichtigte Weitergabe oder Veröffentlichung ist vorab dem jeweiligen Fachbereich anzuzeigen und nur mit Angabe der Quelle zulässig. Der Fach- bereich berät über die dabei zu berücksichtigenden Fragen.[.. next page ..]Wissenschaftliche Dienste Sachstand Seite 3 WD 8 - 3000 - 121/19 Inhaltsverzeichnis 1. Einleitung 4 2. Völkerrechtliche Grundlage – Kyoto-Protokoll 4 3. Anrechnung klimaschutzpolitischer Erfolge in Drittländern auf die nationale Klimabilanz 5 3.1. Clean Development Mechanism 5 3.2. Joint Implementation 5 4. Nationale Klimabilanzierung 6 5. Zusammenfassung 6
<p>Mithilfe von Energie- und CO2-Bilanzen wird der Ist-Zustand bei Endenergieverbrauch, Einsatz erneuerbarer Energien und CO2-Emissionen in einer Kommune ermittelt und den unterschiedlichen Sektoren und Energieträgern zugeordnet.</p> <p>Das Bilanzierungstool BICO2 BW wurde im Jahr 2010 vom ifeu im Auftrag des Umweltministeriums Baden-Württemberg entwickelt und in einer Pilotphase an Kommunen getestet. Das Tool folgt der BISKO-Systematik (Bilanzierungssystematik Kommunal) und wird durch die KEA BW (Klimaschutz und Energieagentur Baden-Württemberg) bereitgestellt.</p> <p>(Quelle: Stadt Konstanz, Amt für Klimaschutz)</p> <p> </p>
<p>Bedingt durch seine hohe atmosphärische Konzentration ist Kohlendioxid nach Wasserdampf das wichtigste Klimagas. Die globale Konzentration von Kohlendioxid ist seit Beginn der Industrialisierung um gut 50 % gestiegen. Demgegenüber war die Kohlendioxid-Konzentration in den vorangegangenen 10.000 Jahren annähernd konstant. Konzentrationen weiterer Treibhausgase tragen ebenfalls zum Klimawandel bei.</p><p>Kohlendioxid </p><p>Durch das Verbrennen fossiler Energieträger (wie zum Beispiel Kohle und Erdöl) und durch großflächige Entwaldung wird Kohlendioxid (CO2) in der <a href="https://www.umweltbundesamt.de/service/glossar/a?tag=Atmosphre#alphabar">Atmosphäre</a> angereichert. Diese Anreicherung wurde durch die Wissenschaft unzweifelhaft nachgewiesen.</p><p>Die weltweite Kohlendioxid-Konzentration lag im Jahr 2024 bei 422,79 (<a href="https://www.umweltbundesamt.de/service/glossar/p?tag=ppm#alphabar">ppm</a>) Kohlendioxid (<a href="https://gml.noaa.gov/webdata/ccgg/trends/co2/co2_annmean_gl.txt">NOAA 2024</a>). Hinzu kommen Konzentrationen weiterer Treibhausgase, die ebenfalls zum weltweiten <a href="https://www.umweltbundesamt.de/service/glossar/k?tag=Klimawandel#alphabar">Klimawandel</a> beitragen.</p><p>Die <a href="https://www.umweltbundesamt.de/presse/pressemitteilungen/uba-misst-neue-rekordwerte-fuer-kohlendioxid">Auswertung von Messungen</a> der atmosphärischen Kohlendioxid-Konzentration für das Jahr 2015 an den Messstationen des Umweltbundesamtes Schauinsland (Südschwarzwald) und auf der Zugspitze hat gezeigt, dass in diesem Jahr die Konzentration an beiden Stationen im Jahresdurchschnitt erstmals über 400 µmol/mol (ppm) lag. Zum Vergleich: Die Kohlendioxid-Konzentration aus vorindustrieller Zeit lag bei etwa 280 µmol/mol (ppm).</p><p>Auf Deutschlands höchstem Gipfel sind die Messwerte besonders repräsentativ für die Hintergrundbelastung der Atmosphäre, da die Zuspitze häufig in der unteren freien <a href="https://www.umweltbundesamt.de/service/glossar/t?tag=Troposphre#alphabar">Troposphäre</a> liegt und somit weitestgehend unbeeinflusst von lokalen Quellen ist. Im Jahr 2024 stieg der Jahresmittelwert auf der Zugspitze auf 424,2 µmol/mol (ppm) (siehe Abb. „Kohlendioxid-Konzentration in der Atmosphäre (Monatsmittel)“).</p><p>Lange Messreihen ergeben ein zuverlässiges Maß für den globalen Anstieg der Kohlendioxid-Konzentration. Dank ihrer Genauigkeit ermöglichen sie es, den Effekt der Verbrennung fossiler Brennstoffe von natürlichen Konzentrations-Schwankungen zu unterscheiden. Auf dieser Grundlage kann die langfristige Veränderung des Kohlendioxid-Vorrats in der Atmosphäre mit Klimamodellen genauer analysiert werden.</p><p>Die Auswertung der Messreihe vom aktiven Vulkan Mauna Loa auf Hawaii werden zur Bestimmung des globalen Kohlendioxid-Anstiegs genutzt, da sich die Messstation in größer Höhe und weit entfernt von störenden Kohlendioxidquellen befindet. Während in den 1960er-Jahren der jährliche Anstieg auf Mauna Loa (aktiver Vulkan auf Hawaii, wo) im Mittel noch bei 0,86 µmol/mol (ppm) Kohlendioxid lag, stieg der Welttrend in den vergangenen 15 Jahren im Mittel auf 2,47 µmol/mol (ppm) pro Jahr, in Mauna Loa auf 2,5 µmol/mol (ppm) pro Jahr. Gegenüber den 1950er-Jahren wurde damit der globale Kohlendioxid-Anstieg annähernd verdreifacht.</p><p>Methan</p><p>Bis 2024 stieg die weltweite Methan-Konzentration bis etwas über 1929,7 nmol/mol (<a href="https://www.umweltbundesamt.de/service/glossar/p?tag=ppb#alphabar">ppb</a>).</p><p>An der Messstation Zugspitze wurde für 2024 ein Jahresmittelwert von 2003 nmol/mol (ppb) gemessen (siehe Abb. „Methan-Konzentration in der <a href="https://www.umweltbundesamt.de/service/glossar/a?tag=Atmosphre#alphabar">Atmosphäre</a> (Monats- und Jahresmittelwerte)“).</p><p>Lachgas</p><p>Weltweit lag die Lachgas-Konzentration im Jahr 2024 bei über 337,7 nmol/mol (<a href="https://www.umweltbundesamt.de/service/glossar/p?tag=ppb#alphabar">ppb</a>).</p><p>An der Messstation Zugspitze wurde für 2024 ein Jahresmittelwert von 338,5 nmol/mol (ppb) gemessen (siehe Abb. „Lachgas-Konzentration in der <a href="https://www.umweltbundesamt.de/service/glossar/a?tag=Atmosphre#alphabar">Atmosphäre</a> (Monatsmittelwerte)“).</p><p>Beitrag langlebiger Treibhausgase zum Treibhauseffekt</p><p>In der Summe bilden Kohlendioxid (CO2), Methan, Lachgas und die halogenierten Treibhausgase den sogenannten <a href="https://www.umweltbundesamt.de/service/glossar/t?tag=Treibhauseffekt#alphabar">Treibhauseffekt</a>: Die langlebigen Treibhausgase leisteten 2023 einen Beitrag zur globalen Erwärmung <a href="http://www.esrl.noaa.gov/gmd/aggi/aggi.html">(NOAA 2024)</a> von insgesamt 3,485 W/m² (Watt pro Quadratmeter). Verglichen mit dem Stand von 1990 ergibt dies eine Zunahme von fast 52 %. Dabei leistet atmosphärisches CO2 den vom Menschen in erheblichem Umfang mit verursachten Hauptbeitrag zur Erwärmung des Erdklimas. In Folge dieser Klimaerwärmung nimmt auch der sehr mobile und wechselnd wirkende Wasserdampf in der <a href="https://www.umweltbundesamt.de/service/glossar/a?tag=Atmosphre#alphabar">Atmosphäre</a> zu. Im Vergleich zu CO2 ist dieser zwar deutlich maßgebender für die Erwärmung, atmosphärisches CO2 bleibt aber der vom Menschen verursachte Hauptantrieb.</p><p>Wie stark die verschiedenen langlebigen Klimagase im Einzelnen zur Erwärmung beitragen, ist in der Abbildung „Beitrag zum Treibhauseffekt durch Kohlendioxid und langlebige Treibhausgase 2023“ zu sehen. Der größte Anteil dabei entfällt auf Kohlendioxid mit etwa 66 %, gefolgt von Methan mit 16 %, Lachgas mit 6%, und den halogenierten Treibhausgasen insgesamt mit 12 %.</p><p>Obergrenze für die Treibhausgas-Konzentration</p><p>Um die angestrebte Zwei-Grad-Obergrenze der atmosphärischen Temperaturerhöhung mit einer Wahrscheinlichkeit von mindestens 66 % zu unterschreiten, müsste die gesamte <a href="https://www.umweltbundesamt.de/service/glossar/t?tag=Treibhausgas#alphabar">Treibhausgas</a>-Konzentration (Kohlendioxid, Methan, Lachgas und F-Gase) in der <a href="https://www.umweltbundesamt.de/service/glossar/a?tag=Atmosphre#alphabar">Atmosphäre</a> bis zum Jahrhundertende bei rund 450 <a href="https://www.umweltbundesamt.de/service/glossar/p?tag=ppm#alphabar">ppm</a> Kohlendioxid-Äquivalenten stabilisiert werden. Dabei ist eine kurzfristige Überschreitung dieses Konzentrationsniveaus möglich (<a href="https://www.de-ipcc.de/270.php">IPCC-Synthesebericht</a>).</p><p>2023 lag die gesamte Treibhausgas-Konzentration bei 534 ppm Kohlendioxid-Äquivalenten (siehe Abb. „Treibhausgas-Konzentration in der Atmosphäre“). Um die angestrebte Stabilisierung zu erreichen, müssen die globalen Treibhausgas-Emissionen gesenkt werden. In den meisten Szenarien des Welt-Klimarates (IPCC) entspricht dies einer Menge von weltweiten Treibhausgas-Emissionen zwischen 30 und 50 Milliarden Tonnen (Mrd. t) Kohlendioxid-Äquivalenten im Jahr 2030. Im weiteren Verlauf bis 2050 müssten die Emissionen weltweit zwischen 40 % und 70 % unter das Niveau von 2010 gesenkt werden und bis Ende des Jahrhunderts auf nahezu null sinken. Dazu sind verbindliche Zielsetzungen im Rahmen einer globalen Klimaschutzvereinbarung erforderlich.</p><p>Im Dezember 2015 vereinbarte die Staatengemeinschaft auf der 21. Vertragsstaatenkonferenz unter der <a href="https://www.umweltbundesamt.de/daten/klima/klimarahmenkonvention">Klimarahmenkonvention</a> (COP21) das <a href="https://www.umweltbundesamt.de/service/glossar/k?tag=Klimaschutz#alphabar">Klimaschutz</a>-Übereinkommen von Paris. Darin ist zum ersten Mal in einem völkerrechtlichen Abkommen verankert, dass die durchschnittliche globale Erwärmung auf deutlich unter zwei Grad begrenzt werden soll. Darüber hinaus sollen sich die Vertragsstaaten bemühen, den globalen Temperaturanstieg möglichst unter 1,5 Grad zu halten. Um dieses Ziel zu erreichen, müssen die Treibhausgas-Emissionen sobald wie möglich abgesenkt werden. In der zweiten Hälfte des Jahrhunderts soll eine globale Balance der Quellen und das Senken von Treibhausgas-Emissionen (Netto-Null-Emissionen) erreicht werden. Das bedeutet die Dekarbonisierung der Weltwirtschaft und damit einen Ausstieg aus der Nutzung fossiler Energieträger. Enorme Anstrengungen sind notwendig, um dieses Ziel zu erreichen, und zwar nicht nur in Deutschland, sondern in allen Staaten, insbesondere den Industrienationen. Zur Erreichung der Klimaziele hat Deutschland das <a href="https://www.bundesregierung.de/resource/blob/974430/1679914/e01d6bd855f09bf05cf7498e06d0a3ff/2019-10-09-klima-massnahmen-data.pdf?download=1">Klimaschutzprogramm 2030</a> verabschiedet.</p><p>Weiterführende Informationen</p><p>Auf den folgenden Seiten finden Sie weiterführende Informationen zu internationalen Klimabeobachtungssystemen:</p><p><em>Wir danken der Nationalen Administration für die Ozeane und die Atmosphäre (NOAA Global <a href="https://www.umweltbundesamt.de/service/glossar/m?tag=Monitoring#alphabar">Monitoring</a> Division) in Boulder, USA und dem Scripps Institut für Ozeanography, La Jolla, USA für die CO2-Daten des GAW Globalobservatoriums von Mauna Loa, Hawaii, sowie dem Mace Head GAW Globalobservatorium, Irland und dem AGAGE Projekt für die Lachgasdaten.</em></p>
<p>Immer mehr Unternehmen beschäftigen sich mit der Frage, wie viele Treibhausgasemissionen sie verursachen. Um ihnen dies zu erleichtern, erarbeitet das Umweltbundesamt derzeit eine Liste von Emissionsfaktoren zur Treibhausgasbilanzierung. Die Liste soll im Herbst 2025 veröffentlicht und regelmäßig aktualisiert werden. Ein Entwurf wird derzeit von ausgewählten Fachleuten erprobt und bewertet.</p><p>Immer mehr Unternehmen und andere Organisationen müssen ihre Treibhausgasemissionen ermitteln, sei es aufgrund von EU-Vorgaben zur Nachhaltigkeitsberichterstattung, Regelungen des Bundes und der Länder zur klimafreundlichen Verwaltung oder Anforderungen wichtiger Vertragspartner und Kunden. Hierzu benötigen sie passgenaue Emissionsfaktoren für die Treibhausgasbilanzierung. Zwar gibt es bereits zahlreiche Quellen, in denen entsprechende Emissionsfaktoren angegeben sind. Meist sind diese jedoch nicht zentral zugänglich, nicht vollständig und ohne ausreichende Angaben zu Methodik, Passgenauigkeit und Konsistenz der Emissionsfaktoren. Dies führt nicht nur zu zusätzlichem Aufwand, sondern auch zu sehr unterschiedlicher Qualität der Treibhausgasbilanzen.</p><p>Vor diesem Hintergrund möchte das <a href="https://www.umweltbundesamt.de/service/glossar/u?tag=UBA#alphabar">UBA</a> eine einheitliche, qualitätsgesicherte und regelmäßig fortgeschriebene Liste erstellen, die die Emissionsfaktoren für alle gängigen Brennstoffe sowie die wesentlichen klimaschädlichen Aktivitäten, Prozesse und Vorprodukte von Unternehmen zusammenfasst. Damit will das UBA nicht nur den Aufwand von Unternehmen zur Ermittlung ihrer Treibhausgasemissionen verringern, sondern auch die methodische Basis der Treibhausgasbilanzen vereinheitlichen und deren Qualität verbessern. Ein erster Entwurf der Liste wird durch ausgewählte Fachleute und Organisationen praktisch erprobt und im Hinblick auf Verständlichkeit, Praktikabilität und methodische Konsistenz bewertet. Die Rückmeldungen aus dieser Erprobung will das UBA dazu nutzen, bis zum Herbst 2025 eine fundierte und anwendungsfreundliche Emissionsfaktorenliste zu erstellen und zu veröffentlichen.</p><p>Organisationen, die an der Erprobung und Evaluation des Entwurfs der Emissionsfaktorenliste teilnehmen möchten, können dies unter probas [at] uba [dot] de erfragen.</p>
<p>In diesem Datensatz erhalten Sie die maschinenlesbaren Daten der Entwicklung der jährlichen CO2-Emissionen aus der Energie- und Klimaschutzbilanz der Stadt Münster.</p> <p>Dabei handelt es sich um die Entwicklung der absoluten und prozentualen jährlichen CO2-Emissionen in Münster in 1.000 t nach Anwendungsbereich. 100% entsprechen den Emissionen im Basisjahr 1990.</p> <p><img alt="Grafische Darstellung der CO2-Emissionen in Münster" src="https://opendata.stadt-muenster.de/sites/default/files/Energiebilanz_2022.png" /></p> <p>Die Bilanz erscheint mit zeitlichem Verzug von zwei Jahren: Also z.B. die Bilanz für 2024 erscheint Anfang des Jahres 2026. Das liegt daran, dass Rohdaten wie bspw. der bundesweite Stromfaktor erst ca. 12-15 Monate nach Ende des jeweiligen Bilanzjahres vorliegen.</p> <p>Weitere Informationen, wie z.B. den kompletten Text der aktuellen Energie- und Klimaschutzbilanz als PDF zum Download, <a href="https://www.stadt-muenster.de/klima/unser-klima-2030/vision/energie-und-klimaschutzbilanz">erhalten Sie auf den entsprechenden Seiten zum Thema Klimaschutz auf der Homepage des Amt für Grünflächen, Umwelt und Nachhaltigkeit</a>.</p> <p>Stichworte: Klimabilanz</p>
<p>Im Rahmen der Open-Data-Initiative der Stadtverwaltung Münster erhalten Sie auf dieser Seite maschinenlesbare Daten aus der Energie- und Klimaschutzbilanz der Stadt Münster.</p> <p>Die unten verlinkte Excel-Datei enthält Informationen zum Endenergieverbrauch nach Sektoren. Angegeben werden die Daten in Form des absoluten jährlichen Energieverbrauchs in Gigawattstunden (GWh). Außerdem wird aufgeschlüsselt nach Sektoren (Private Haushalte, Gewerbe + Sonstiges, Industrie, Verkehr).</p> <p>Enthalten sind die Werte von 1990-2022.</p> <p>Die Bilanz erscheint mit zeitlichem Verzug: Also z.B. die Bilanz für 2021 erscheint Anfang des Jahres 2023. Das liegt daran, dass Rohdaten wie bspw. der bundesweite Stromfaktor erst ca. 12-15 Monate nach Ende des jeweiligen Bilanzjahres vorliegen.</p> <p>Weitere Informationen zu den Daten erhalten Sie auf folgenden Seiten:</p> <ul> <li>Kompletter Text der aktuellen Energie- und Klimaschutzbilanz als PDF zum Download auf der <a href="https://www.stadt-muenster.de/klima/unser-klima-2030/vision/energie-und-klimaschutzbilanz">Seite zum Thema Klimaschutz auf der Homepage des Amt für Grünflächen, Umwelt und Nachhaltigkeit</a>.</li> <li>Bericht zur Energie- und Klimabilanz 2020 <a href="https://www.stadt-muenster.de/sessionnet/sessionnetbi/vo0050.php?__kvonr=2004050284">im Ratsinformationssystem der Stadt Münster auf der Seite zur Sitzung des Ausschuss für Umweltschutz, Klimaschutz und Bauwesen vom 29.03.2022</a>.</li> </ul>
<p>In einer Treibhausgasbilanz werden die gesamten Treibhausgasemissionen eines Jahres innerhalb eines definierten Bilanzierungsbereiches erfasst. Bilanzierungsbereiche sind beispielsweise das nationale Treibhausgasinventar auf Bundesebene, die Bilanzen der Bundesländer, Unternehmensbilanzen oder eben auch kommunale Treibhausgasbilanzen. Die Bonner Bilanzierung erfolgt nach dem „Bilanzierungsstand Kommunal“ (BISKO), der alle Treibhausgasemissionen auf dem Stadtgebiet in den Bereichen Private Haushalte, Wirtschaft (Handel/Dienstleistungen/Verwaltung und produzierendes Gewerbe) und Verkehr erfasst. Der Datensatz enthält die vollständige Zeitreihe ab 1990 mit der aktuellen Fortschreibung für das Jahr 2021.</p>
| Origin | Count |
|---|---|
| Bund | 569 |
| Kommune | 11 |
| Land | 92 |
| Zivilgesellschaft | 14 |
| Type | Count |
|---|---|
| Agrarwirtschaft | 1 |
| Ereignis | 7 |
| Förderprogramm | 414 |
| Gesetzestext | 1 |
| Hochwertiger Datensatz | 1 |
| Lehrmaterial | 1 |
| Text | 154 |
| Umweltprüfung | 19 |
| unbekannt | 68 |
| License | Count |
|---|---|
| geschlossen | 219 |
| offen | 445 |
| unbekannt | 2 |
| Language | Count |
|---|---|
| Deutsch | 636 |
| Englisch | 121 |
| Resource type | Count |
|---|---|
| Archiv | 3 |
| Bild | 5 |
| Datei | 30 |
| Dokument | 102 |
| Keine | 333 |
| Webseite | 254 |
| Topic | Count |
|---|---|
| Boden | 569 |
| Lebewesen und Lebensräume | 622 |
| Luft | 517 |
| Mensch und Umwelt | 666 |
| Wasser | 481 |
| Weitere | 594 |