API src

Found 7 results.

Teilprojekt 3 (Modul C)

Das Projekt "Teilprojekt 3 (Modul C)" wird vom Umweltbundesamt gefördert und von Universität Köln, Institut für Geophysik und Meteorologie durchgeführt. Das Projekt DEPARTURE der Fördermaßnahme MiKlip zielt auf die dekadische Vorhersagbarkeit des Klimas in der westafrikanischen Monsunregion und im Entstehungsgebiet tropischer Zyklonen im tropischen Nordatlantik ab. Bisherige Studien haben gezeigt, dass das dekadische Vorhersagepotenzial in dieser Region im weltweiten Vergleich besonders hoch ist. Somit trägt DEPARTURE eine vielversprechende Fallstudie aus den niederen Breiten zum Gesamtvorhaben von MiKlip bei. Darüber hinaus wäre eine dekadische Vorhersage des westafrikanischen Monsuns von erheblichem Nutzen für die Anrainerstaaten im subsaharischen Westafrika, wo Lebensbedingungen und Ernährungssicherheit eng mit dem Monsun verknüpft sind. Gleiches gilt für die dekadische Vorhersage von tropischen Stürmen, respektive Hurrikane, im Nordaltantik, die nicht nur eine Gefahr für die Anrainerstaaten am Golf von Mexiko darstellen, sondern sich regelmäßig auch zu außertropischen Stürmen entwickeln und nach Europa ziehen. Zur Erfassung des dekadischen Vorhersagepotenzials werden diverse Langzeitsimulationen mit drei regionalen Klimamodellen - REMO, CCLM, WRF - realisiert. Dabei werden neben der ozeanischen Randbedingung auch steigende Treibhausgaskonzentrationen, Aerosole aus der Biomasseverbrennung und Landnutzungsänderungen berücksichtigt. Aus dem Multimodellensemble der Regionalmodelle lässt sich ein robuster Vorhersageskill vor dem Hintergrund von Modellunsicherheit und interner Variabilität ermitteln.

Teilprojekt 5 (Modul C)

Das Projekt "Teilprojekt 5 (Modul C)" wird vom Umweltbundesamt gefördert und von Karlsruher Institut für Technologie (KIT), Institut für Meteorologie und Klimaforschung, Department Troposphärenforschung durchgeführt. Das Projekt DEPARTURE der Fördermaßnahme MiKlip zielt auf die dekadische Vorhersagbarkeit des Klimas in der westafrikanischen Monsunregion und im Entstehungsgebiet tropischer Zyklone im tropischen Nordatlantik ab. Bisherige Studien haben gezeigt, dass das dekadische Vorhersagepotenzial in dieser Region im weltweiten Vergleich besonders hoch ist. Somit trägt DEPARTURE eine vielversprechende Fallstudie aus den niederen Breiten zum Gesamtvorhaben von MiKlip bei. Darüber hinaus wäre eine dekadische Vorhersage des westafrikanischen Monsuns von erheblichem Nutzen für die Anrainerstatten im subsaharischen Westafrika, wo Lebensbedingungen und Ernährungssicherheit eng mit dem Monsun verknüpft sind. Gleiches gilt für die dekadische Vorhersage von tropischen Stürmen, respektive Hurricanes, im Nordatlantik, die nicht nur eine Gefahr für die Anrainerstaaten am Golf von Mexiko darstellen, sondern sich regelmäßig auch zu außertropischen Stürmen entwickeln und bis nach Europa ziehen können. Zur Erfassung des dekadischen Vorhersagepotenzials werden diverse Langzeitsimulationen mit drei regionalen Klimamodellen - REMO, CCLM, WRF - realisiert. Dabei werden neben der ozeanischen Randbedingung auch steigende Treibhausgaskonzentrationen, Aerosole aus der Biomasseverbrennung und Landnutzungsänderungen berücksichtigt. Aus dem Multimodellensemble der Regionalmodelle lässt sich ein robuster Vorhersageskill vor dem Hintergrund von Modellunsicherheit und interner Variabilität ermitteln.

Teilprojekt 4 (ModulC).

Das Projekt "Teilprojekt 4 (ModulC)." wird vom Umweltbundesamt gefördert und von Universität Frankfurt, Institut für Atmosphäre und Umwelt, Abteilung Umweltanalytik durchgeführt. Das Projekt DEPARTURE der Fördermaßnahme MiKlip zielt auf die dekadische Vorhersagbarkeit des Klimas in der westafrikanischen Monsunregion und im Entstehungsgebiet tropischer Zyklonen im tropischen Nordatlantik ab. Bisherige Studien haben gezeigt, dass das dekadische Vorhersagepotenzial in dieser Region im weltweiten Vergleich besonders hoch ist. Somit trägt DEPARTURE eine vielversprechende Fallstudie aus den niederen Breiten zum Gesamtvorhaben von MiKlip bei. Darüber hinaus wäre eine dekadische Vorhersage des westafrikanischen Monsuns von erheblichem Nutzen für die Anrainerstatten im subsaharischen Westafrika, wo Lebensbedingungen und Ernährungssicherheit eng mit dem Monsun verknüpft sind. Gleiches gilt für die dekadische Vorhersage von tropischen Stürmen, respektive Hurricanes, im Nordaltantik, die nicht nur eine Gefahr für die Anrainerstaaten am Golf von Mexiko darstellen, sondern sich regelmäßig auch zu außertropischen Stürmen entwickeln und nach Europa ziehen. Zur Erfassung des dekadischen Vorhersagepotenzials werden diverse Langzeitsimulationen mit drei regionalen Klimamodellen - REMO, CCLM, WRF - realisiert. Dabei werden neben der ozeanischen Randbedingung auch steigende Treibhausgaskonzentrationen, Aerosole aus der Biomasseverbrennung und Landnutzungsänderungen berücksichtigt. Aus dem Multimodellensemble der Regionalmodelle lässt sich ein robuster Vorhersageskill vor dem Hintergrund von Modellunsicherheit und interner Variabilität ermitteln.

Erarbeitung von Grundlagen für den Entwurf einer Technischen Regel für den Anwendungsbereich der StörfallV: Vorkehrungen und Maßnahmen wegen der Gefahrenquellen Niederschläge und Hochwasser

Das Projekt "Erarbeitung von Grundlagen für den Entwurf einer Technischen Regel für den Anwendungsbereich der StörfallV: Vorkehrungen und Maßnahmen wegen der Gefahrenquellen Niederschläge und Hochwasser" wird vom Umweltbundesamt gefördert und von Ingenieurbüro Dr. Köppke GmbH durchgeführt. A) Problemstellung: Gem. Paragraph 3 Störfallverordnung haben Betreiber ihre Betriebsbereiche gegen umgebungsbedingte Gefahrenquellen wie Niederschläge und Hochwasser eigenverantwortlich zu schützen. Wie im Rahmen des UFOPLAN-Projekts 20348362 festgestellt, geschieht dies unzureichend. Z.T. werden nur Flusshochwässer beachtet und z.T. werden nur unzureichende Schutzmaßnahmen getroffen. Eine Zunahme der Gefährdung aufgrund des Klimawandels wird erwartet; jedoch sind für den Hochwasserschutz von Betriebsbereichen noch keine Konsequenzen abgeleitet worden. B) Handlungsbedarf (BMU; ggf. auch BfS, BfN oder UBA): Eine Technische Regel Anlagensicherheit (TRAS) ist für die Definition von entsprechenden Auslegungsanforderungen, zu treffende Sicherheitsmaßnahmen sowie Anforderungen an die Alarm- und Gefahrenabwehrplanung geeignet. C) Ziel des Vorhabens ist die Erarbeitung von Grundlagen für eine entsprechende TRAS. Die vorliegenden Kenntnisse über regionale Veränderungen der Arten-, Intensitäts- und Wahrscheinlichkeitsverteilung von Niederschlägen (z.B. REMO, WETTREG, CLM) sind zusammen zu stellen. Betriebsbereiche in Überschwemmungsgebieten, überschwemmungsgefährdeten Gebieten und sonstigen von durch Starkniederschlagsereignisse gefährdeten Gebieten sind zu ermitteln. Für die verschiedenen Erscheinungsformen von Extremniederschlägen und Hochwasser sind angemessene Auslegungsanforderungen vorzuschlagen. Diesen sind jeweils geeignete Sicherheitsanforderungen (technisch und organisatorisch) zuzuordnen. Mögliche Anforderungen an die Alarm- und Gefahrenabwehrplanung für Maßnahmen vor, während und nach einem Ereignis sind auszuarbeiten. Mindestanforderungen für die Betrachtung dieser Themen in Sicherheitskonzepten, Sicherheitsberichten sowie internen Alarm- und Gefahrenabwehrplänen sind zu formulieren. Auf dieser Grundlage sind mögliche Gliederung und Inhalte einer TRAS vorzuschlagen. Dieser Vorschlag ist mit der Kommission für Anlagensicherheit abzustimmen.

Teilvorhaben 6 - Untersuchungen des Klimawandels

Das Projekt "Teilvorhaben 6 - Untersuchungen des Klimawandels" wird vom Umweltbundesamt gefördert und von Helmholtz-Zentrum Geesthacht (HZG) Zentrum für Material- und Küstenforschung GmbH, Climate Service Center Germany (GERICS) durchgeführt. Der Okavango-Fluss entspringt im zentralen Hochland Angolas und mündet in Botsuana im größten Binnendelta der Welt. Er ist die zentrale Lebensader für ein Mosaik aus Waldsavannen und ausgedehnten Feuchtgebieten. Klimawandel, Bevölkerungswachstum und Übernutzung bedrohen das gesamte Ökosystem. Als Folge davon kommt es zu erheblichen Konflikten um Land- und Wassernutzung. Das Projekt 'The Future Okavango' (TFO) hat zum Ziel, das Land- und Ressourcenmanagement in den betroffenen Regionen zu verbessern.

Das zukünftige Bioklima in österreichischen touristischen Gesundheits- und Wellnessdestinationen

Das Projekt "Das zukünftige Bioklima in österreichischen touristischen Gesundheits- und Wellnessdestinationen" wird vom Umweltbundesamt gefördert und von Universität Freiburg, Meteorologisches Institut, Professur für Meteorologie und Klimatologie durchgeführt. Der Klimawandel wird auch die Gesundheits-, Tourismus- und Freizeitdestinationen in Österreich maßgeblich beeinflussen. Die Destinationen werden sich mit neuen klimatischen Verhältnissen auseinander setzen müssen, mit der Gefahr, z.B. dass das Prädikat 'Luftkurort' bzw. 'heilklimatischer Kurort' neu definiert wird oder die gesetzlichen Regelungen angepasst werden müssen. Bereits vorhandene Analysen über die Kurorte und beliebte Tourismusdestinationen in Österreich ermöglichen sehr beschränkt Klimaaussagen über zukünftige Bedingungen. Auf der Basis von hochaufgelösten zeitlichen Projektionen (auf Tagesbasis) von Klimaszenarien von regionalen Klimamodellen (z.B. REMO oder CLM für den Zeitraum 1961-2050 bzw. 2071-2100 werden die Klimaverhältnisse von österreichischen Kurorten analysiert und human-biometeorologisch/tourismusklimatisch bewertet. Hierfür werden aktuelle Ansätze und Methoden aus der Human-Biometeorologie sowie aus der Tourismus/Erholungsklimatologie verwendet. Es wird ein Bewertungsschema eingesetzt, welches die thermischen, physikalischen und ästhetischen Facetten des Klimas berücksichtigt. Faktoren wie thermische Behaglichkeit, Kältereiz, Hitzestress, Schwüle, Niederschlagsintensität und Dauer, Nebeltage, Sonnenscheindauer/Bewölkung und Windextreme werden berücksichtigt. Die hohe zeitliche Auflösung (Datengrundlage: Tagesbasis) und die Darstellung der Ergebnisse in einer Aufteilung der Monate in drei Intervalle, ermöglichen eine detaillierte Beschreibung/Bewertung des Klimas für Kurorte sowie Empfehlungen für österreichischen Kurorte und Tourismusorte. Hierbei kann das Klima-Tourismus-Informations-Schema die Grundlage dafür bilden.

Kopplung von Kohlenstoffkreislaufmodellen

Das Projekt "Kopplung von Kohlenstoffkreislaufmodellen" wird vom Umweltbundesamt gefördert und von Universität Gießen, Fachbereich 08 Biologie, Chemie und Geowissenschaften, Institut für Pflanzenökologie (Botanik II) durchgeführt. Sieben Arbeitsgruppen, die sich zu diesem Projekt zusammengeschlossen haben, entwickeln ein globales Kohlenstoff-Kreislaufmodell (CCCM), das aus Teilmodellen fuer den biosphaerischen, ozeanischen und atmosphaerischen Anteil besteht. Die Teilmodelle enthalten eine detaillierte mathematische Beschreibung der Prozesse im jeweiligen System und wurden bereits in zahlreichen Modellexperimenten getestet. Das High-Resolution Biosphere Model (HRBM)'', das in der Arbeitsgruppe von G. Esser entwickelt wurde, wird inklusive seiner Module zur Vorhersage von Landnutzungsaenderungen und Vegetationsbraenden in das CCC integriert. Es werden Module zur Vorhersage der Kreislaeufe der stabilen Kohlenstoffisotope entwickelt, die anschliessend zur Untersuchung der Verweildauer von Kohlenstoff in der terrestrischen Biosphaere eingesetzt werden. Zur Validierung des HRBM werden Vorhersagen zum saisonalen Signal, zur interannuellen Variabilitaet (z.B. infolge von El Nino-Ereignissen) und zum Anstieg der CO2-Konzentration seit vorindustrieller Zeit untersucht. Weiterhin werden Szenarienrechnungen fuer unterschiedliche zukuenftige CO2-Konzentrationen und Klimabedingungen durchgefuehrt.

1