API src

Found 7 results.

Studien zum metabolischen Schicksal von 13C-Nonylphenol in Wasser und Sediment und entsprechenden mikrobiellen Systemen

Das Projekt "Studien zum metabolischen Schicksal von 13C-Nonylphenol in Wasser und Sediment und entsprechenden mikrobiellen Systemen" wird vom Umweltbundesamt gefördert und von RWTH Aachen University, Institut für Umweltforschung, Biologie V, Lehrstuhl für Umweltbiologie und -chemodynamik durchgeführt. The aim of this research project is to study the metabolic fate of 13C-labelled nonylphenol in water, sediment and related microbial model systems. The main use of nonylphenol is the production of NP polyethoxilates. These nonionic surfactants have different application such as the production of industrial and household detergents. The most common route of nonylphenol to enter in the environment is through the wastewater. In fact NP polyethoxilates is most used in cleaners and for this reasons is discharged directly in the sewage system. Under anaerobic conditions NP polyetoxilates is degraded to NP. Laboratories studies on NP have demonstrated that NP can be classified as endocrine disrupter compound. Isomers highly branched in the alpha position of the nonyl chain show an higher estrogenic activity and that the para position is favorite as well for estrogenic activity.So far data on the metabolic fate of NP in water and soil are limitated in literature. Several studies have been performed in the laboratories about the metabolic fate of EDC using 14C labelled compounds. But this lead to 2 disadvantages: 1) the complete identification of the metabolites was not possible using GC/MS and 2) problems related with the discharge of radioactive compounds. For the previous reasons isomers of NP (353-NP, 363-NP, 33-NP) will be synthesised and labelled with 13C on the aromatic ring. An equimolar mixture of the labelled compound with the corresponding non labelled compound will yields a characteristic double peak with approximately the same abundance in MS analyses. Taking advantages of this it will be able to follow the degradation of nonylphenol in the experiments. The metabolic fate of NP exposed to different conditions will be studied: exposed to UV light, degraded by a recombinant yeast and in aerobic and anaerobic conditions. The first line of the project is to study the metabolic fate of NP exposed under condition of photo degradation. In fact NP can be exposed to sunlight when present in the aquatic environment. UV rays are of a short wavelength and have the energy to degrade products in sunlights. A lamp that had a ratio of UV-A and UV-B quite similar to the sun light was chosen. The NP degradation will be followed in a water/sediment system and in chlorinated water. The water sediment system and chlorinated water will be spiked with the nonylphenol, than the sample will be exposed to UV light at difference distance from the lamp and for different time. Than the metabolites will be extracted and analyzed via GC/MS. The second line of the project is to study the metabolic fate of NP after degradation with a recombinant yeast. The host used will be the yeast Saccharomyces cerevisiae, because it is well known and the genome of this yeast has been completely sequenced. The yeast will be transformed with an expression vector containing one cytochrome P-450 and the yeast reductase. Etc.

Tracermessungen mit HAGAR-V während PHILEAS zur Untersuchung des Einflusses des asiatischen Monsuns auf die extratropische UTLS

Das Projekt "Tracermessungen mit HAGAR-V während PHILEAS zur Untersuchung des Einflusses des asiatischen Monsuns auf die extratropische UTLS" wird vom Umweltbundesamt gefördert und von Deutsche Forschungsgemeinschaft durchgeführt. Im Rahmen dieses Projekts wird vorgeschlagen i) in situ Messungen einer Vielzahl von Tracersubstanzen mit dem neuartigen Messgerät HAGAR-V während der HALO PHILEAS-Mission im Sommer 2023 durchzuführen sowie ii) die während dieser Mission erlangten Messdaten im Hinblick auf die wissenschaftlichen Missionsziele zu analysieren. HAGAR-V kombiniert schnelle CO2-Messungen per NDIR-Analysator mit einem 2-Kanal-GC/ECD-System für langlebige Tracer (SF6 and F12 alle 45 s; Halon-1211, F11 und F113 alle 90 s) und einem 2-Kanal-GC/MS-System zur Messung einer Reihe weiterer Tracer-Spezies alle 90 s, darunter NMHC (C2H2, iso-&n-C5H12), kurzlebige Chlorkohlenwassertoffe (CH2Cl2, CHCl3, C2Cl4), und weitere langlebige Halogenkohlenwasserstoffe (CCl4, CHCl3, HFC-125, HFC-134a, HFC-32). HAGAR-V schließt damit die wichtigsten Chlorquellengase sowie die wichtigsten sehr kurzlebigen chlorierten Spezies ein. Lokale Lebenszeiten dieser Spezies an der Tropopause in mittleren Breiten bewegen sich zwischen einigen Tagen und vielen Jahren, was zusammen mit der saisonalen Variation von CO2 in Kombination mit meteorologischen Daten und CLaMS-Simulationen verwendet wird, um Transportzeitskalen und vorwiegende Transportwege aus der asiatischen Monsun-Antizyklone (AMA) in die UTLS zu bestimmen. Die Spezies CH2Cl2 und CHCl3 sind in der AMA stark angereichert und werden zusammen mit langlebigen Tracern verwendet, um die Struktur und Vermischung der von der AMA abgestreiften Wirbeln zu untersuchen, Anteile des Luftursprungs aus der AMA und anderen Regionen abzuleiten, sowie die Auswirkungen von Luftexport aus der AMA auf die Zusammensetzung der nördlichen untersten Stratosphäre zu evaluieren. Darüber hinaus werden die Messungen von NMHC den Nachweis von frisch eingetragener Luftverschmutzung und Biomassenverbrennung ermöglichen und somit zur Untersuchung von Aerosolvorläufersubstanzen beitragen.

Carbon and Chorine Isotope Effect Study to Investigate Chlorinated Ethylene Dehalogenation Mechanisms

Das Projekt "Carbon and Chorine Isotope Effect Study to Investigate Chlorinated Ethylene Dehalogenation Mechanisms" wird vom Umweltbundesamt gefördert und von Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt GmbH in der Helmholtz-Gemeinschaft Deutscher Forschungszentren e.V., Institut für Grundwasserökologie durchgeführt. Chlorinated ethylenes are prevalent groundwater contaminants. Numerous studies have addressed the mechanism of their reductive dehalogenation during biodegradation and reaction with zero-valent iron. However, despite insight with purified enzymes and well-characterized chemical model systems, conclusive evidence has been missing that the same mechanisms do indeed prevail in real-world transformations. While dual kinetic isotope effect measurements can provide such lines of evidence, until now this approach has not been possible for chlorinated ethylenes because an adequate method for continuous flow compound specific chlorine isotope analysis has been missing. This study attempts to close this prevalent research gap by a combination of two complementary approaches. (1) A novel analytical method to measure isotope effects for carbon and chlorine. (2) A carefully chosen set of well-defined model reactants representing distinct dehalogenation mechanisms believed to be important in real-world systems. Isotope trends observed in biotic and abiotic environmental dehalogenation will be compared to these model reactions, and the respective mechanistic hypotheses will be confirmed or discarded. With this hypothesis-driven approach it is our goal to elucidate for the first timdehalogenation reactions.

Improving the verification of non-CO2 greenhouse gas emissions in Europe by the Rn-222 tracer method

Das Projekt "Improving the verification of non-CO2 greenhouse gas emissions in Europe by the Rn-222 tracer method" wird vom Umweltbundesamt gefördert und von Universität Basel, Department Umweltwissenschaften, Humangeographie , Stadt- und Regionalforschung durchgeführt. Non-CO2 greenhouse gases (CH4, N2O, SF6, halocarbons) are responsible for 37 Prozent of the anthropogenic contribution to global warming. Some of these gases (N2O, SF6, chlorinated and brominated halocarbons) are in addition destructive to the stratospheric ozone layer. Regional emission estimates of non-CO2 greenhouse gases are currently much more uncertain than for CO2. Mostly, they are based on 'bottom-up' approaches relying on inventories of known sources and expected emission functions. The 222Rn flux map of Europe produced in the preceding project permits today a more reliable real-world assessment by the 222Rn tracer method, a so-called 'top-down' approach. In previous studies, source strength of 222Rn has been a major uncertainty. Substantial reduction of uncertainty has been achieved so far and further improvements are aimed for in the present project. Future improvements include in particular a better temporal resolution of the 222Rn flux map. Current developments within the EU-driven European Radiological Data Exchange Platform (EURDEP) open the possibility for quasi real-time updates of the European 222Rn source term. The source strength of 222Rn is a key parameter for estimating the source strength of any gas of interest, based on concentration differences observed in the atmospheric boundary layer over time in both, the gas of interest and 222Rn. There are two ways to obtain concentration differences over time. One is during pollution events at otherwise remote 'background' stations. This approach is followed in an associated project at Jungfraujoch (main applicant: Stefan Reimann, EMPA), where we will contribute the 222Rn related parameters. The other approach is to obtain concentration differences during changes in mixing layer height as observed during nocturnal inversions. This aproach will be applied to the measurement of non-CO2 greenhouse gases in the central part of Eastern Europe (Hungary). Emissions from this region just east of the Alpine Ridge are highly uncertain and can not be detected at Jungfraujoch using the first approach.

Improving the verification of non-CO2 greenhouse gases

Das Projekt "Improving the verification of non-CO2 greenhouse gases" wird vom Umweltbundesamt gefördert und von Universität Basel, Umweltgeowissenschaften durchgeführt. Non-CO2 greenhouse gases (CH4, N2O, SF6, halocarbons) are responsible for 37 Prozent of the anthropogenic contribution to global warming. Some of these gases (N2O, SF6, chlorinated and brominated halocarbons) are in addition destructive to the stratospheric ozone layer. Regional emission estimates of non-CO2 greenhouse gases are currently much more uncertain than for CO2. Mostly, they are based on 'bottom-up' approaches relying on inventories of known sources and expected emission functions. The 222Rn flux map of Europe produced in the preceding project permits today a more reliable real-world assessment by the 222Rn tracer method, a so-called 'top-down' approach. In previous studies, source strength of 222Rn has been a major uncertainty. Substantial reduction of uncertainty has been achieved so far and further improvements are aimed for in the present project. Future improvements include in particular a better temporal resolution of the 222Rn flux map. Current developments within the EU-driven European Radiological Data Exchange Platform (EURDEP) open the possibility for quasi real-time updates of the European 222Rn source term. The source strength of 222Rn (FRn) is a key parameter for estimating the source strength of any gas of interest (Fx), based on concentration differences observed over time in both, gas X (Dx) and 222Rn (DRn): Fx = FRn Dx DRn-1 There are two approaches to obtain values for Dx and DRn . One is during pollution events at otherwise remote 'background' stations. This approach is followed in an associated project at Jungfraujoch (main applicant: Stefan Reimann, EMPA), where we will contribute the parameters FRn and DRn. The other approach to obtain values for Dx and DRn relies on changes in mixing layer height as observed during nocturnal inversions and will be applied to the measurement of non-CO2 greenhouse gases in the central part of Eastern Europe (Hungary). Emissions from this region just east of the Alpine Ridge are highly uncertain and can not be detected at Jungfraujoch using the first approach.

Effect of diffusive/dispersive processes on stable isotope ratios of organic contaminants in aquifer systems

Das Projekt "Effect of diffusive/dispersive processes on stable isotope ratios of organic contaminants in aquifer systems" wird vom Umweltbundesamt gefördert und von Technical University of Denmark, Department of Environmental Engineering durchgeführt. Groundwater contamination by organic compounds represents a widespread environmental problem. The heterogeneity of geological formations and the complexity of physical and biogeochemical subsurface processes, often hamper a quantitative characterization of contaminated aquifers. Compound specific stable isotope analysis (CSIA) has emerged as a novel approach to investigate contaminant transformation and to relate contaminant sources to downgradient contamination. This method generally assumes that only (bio)chemical transformations are associated with isotope effects. However, recent studies have revealed isotope fractionation of organic contaminants by physical processes, therefore pointing to the need of further research to determine the influence of both transport and reactive processes on the observed overall isotope fractionation. While the effect of gasphase diffusion on isotope ratios has been studied in detail, possible effects of aqueous phase diffusion and dispersion have received little attention so far.The goals of this study are to quantify carbon (13C/12C) and, for chlorinated compounds, chlorine (37Cl/35Cl) isotope fractionation during diffusive/dispersive transport of organic contaminants in groundwater and to determine its consequences for source allocation and assessment of reactive processes using isotopes. The proposed research is based on the combination of high-resolution experimental studies, both at the laboratory (i.e. zero-, one- and two-dimensional systems) and at the field scales, and solute transport modeling. The project combines the expertise in the field of contaminant transport with the expertise on isotope methods in contaminant hydrogeology.

Development of rehabilitation technologies and approaches for multipressured degraded waters and the integration of their impact on river basin management (AQUAREHAB)

Das Projekt "Development of rehabilitation technologies and approaches for multipressured degraded waters and the integration of their impact on river basin management (AQUAREHAB)" wird vom Umweltbundesamt gefördert und von Vlaamse Instelling voor Technologisch Onderzoek durchgeführt. Die EU-Wasserrahmenrichtlinie hebt die Bedeutung des Einzugsgebiets (catchment) für ein zukunftsweisendes Management der Wasserressourcen hervor. Mit AQUAREHAB werden Methoden und Technologien entwickelt und vernetzt, die auf eine effiziente und abgestimmte Sanierung verschiedener Schadstoffherde innerhalb eines Einzugsgebiets zielen. Neunzehn akademische und industrielle Partner aus 12 Nationen arbeiten gemeinsam in 9 Teilprojekten an Lösungen für diese Zielsetzung.

1