API src

Found 4 results.

Related terms

Neue Techniken

In den letzten Jahren wurden im Bereich der Erforschung und Veränderung des Erbguts weitreichende Entwicklungen gemacht, die unter dem Begriff der „neuen Techniken“ zusammengefasst werden. Dazu gehören z. B. die CRISPR/Cas-Technik und die Oligonukleotidmutagenese (ODM bzw. OGM). Mithilfe der neuen Techniken ist es u. a. möglich, lediglich eine Base (einen Buchstaben der DNA-Sequenz) auszutauschen, kleinere oder größere Stücke künstlicher oder fremder DNA in das Erbgut einzubauen oder bestimmte Gene zu zerstören. Der Europäische Gerichtshof hat am 25.07.2018 folgendes Urteil gefällt: neue Züchtungstechniken wie Genome Editing und CRISPR sind als Gentechnik einzustufen. Nach jetzigem Erkenntnisstand und vorbehaltlich einer anderslautenden Äußerung der Europäischen Kommission oder der Gerichte sind die mit Verfahren der Mutagenese gewonnenen Organismen als genetisch veränderte Organismen auch im Sinne der Systemrichtlinie anzusehen. Das Ministerium für Umwelt, Klima, Mobilität, Agrar und Verbraucherschutz als die für das Gentechnikgesetz zuständige Behörde im Saarland empfiehlt Anwendern der neuen Techniken, vor deren Einsatz Kontakt mit dem Ministerium für Umwelt, Klima, Mobilität, Agrar und Verbraucherschutz aufzunehmen.

Teilprojekt B

Das Projekt "Teilprojekt B" wird vom Umweltbundesamt gefördert und von Justus-Liebig-Universität Gießen, Institut für Genetik, AG Dammann durchgeführt. Erstmalig werden im Projekt epigenetische Mechanismen (DNA Methylierung und Histonmodifikationen) genutzt, um eine innovative und umweltfreundliche Pflanzenschutztechnologie zu entwickeln. Mittels eines modifizierten CRISPR/Cas-Systems werden Krankheits-assoziierte Gene in Pflanzen epigenetisch editiert (EpiEdit) und damit die Resistenz von Nutzpflanzen gegenüber Pilzkrankheiten erhöht. Das Projekt greift dafür auf zwei essenzielle Vorarbeiten zurück (1) ein bereits etabliertes EpiEdit-System in der Modelpflanze Arabidopsis thaliana zur Steuerung der (De)Methylierung und somit (In)Aktivierung Krankheits-assoziierter Gene und (ii) ein genomweites DNA-Methylomprofil von mit Mehltau infizierten Gerstenpflanzen. Basierend darauf werden wir zeigen, dass eine durch EpiEdit herbeigeführte pilzliche Krankheitsresistenz eine vielversprechende Alternative zu konventionellen, chemisch-synthetischen Fungiziden darstellt. Um den Weg für zukünftige EpiEdit-Anwendungen in Kulturpflanzen zu ebnen, werden wir (1) genomweite DNA-Methylomprofile eingehend analysieren und auf Fusarium infizierte Gerstenpflanzen ausdehnen, um geeignete Zielgene für EpiEdit zu identifizieren (2) ein CRISPR/Cas-basiertes EpiEdit-System für Gerste etablieren, um die (In)Aktivierung von Krankheits-assoziierten Genen über (De)Methylierung zu realisieren. Durch die exemplarische Anwendung des EpiEdit-basierten Pflanzenschutzkonzeptes auf zwei Getreide-Pilz Pathosysteme soll die generelle Machbarkeit und Übertragbarkeit der Technologie zur Kontrolle anderer Pflanzenkrankheiten demonstriert werden. Außerdem werden im Projekt (3) dynamische Veränderungen des Epigenoms der Gerste in Reaktion auf Pilzinfektionen untersucht und stress-induzierte epigenetische Veränderungen hinsichtlich ihrer funktionellen Relevanz bewertet. Außerdem erarbeitet das Projekt das erste Gerste Multi-Omics-Pathoepigenom-Datenset.

Teilprojekt A

Das Projekt "Teilprojekt A" wird vom Umweltbundesamt gefördert und von Universität Hohenheim, Institut für Phytomedizin, Fachgebiet Epigenetik (190e) durchgeführt. Erstmalig werden im Projekt epigenetische Mechanismen (DNA Methylierung und Histonmodifikationen) genutzt, um eine innovative und umweltfreundliche Pflanzenschutztechnologie zu entwickeln. Mittels eines modifizierten CRISPR/Cas-Systems werden Krankheits-assoziierte Gene in Pflanzen epigenetisch editiert (EpiEdit) und damit die Resistenz von Nutzpflanzen gegenüber Pilzkrankheiten erhöht. Das Projekt greift dafür auf zwei essenzielle Vorarbeiten zurück (1) ein bereits etabliertes EpiEdit-System in der Modelpflanze Arabidopsis thaliana zur Steuerung der (De)Methylierung und somit (In)Aktivierung Krankheits-assoziierter Gene und (ii) ein genomweites DNA-Methylomprofil von mit Mehltau infizierten Gerstenpflanzen. Basierend darauf werden wir zeigen, dass eine durch EpiEdit herbeigeführte pilzliche Krankheitsresistenz eine vielversprechende Alternative zu konventionellen, chemisch-synthetischen Fungiziden darstellt. Um den Weg für zukünftige EpiEdit-Anwendungen in Kulturpflanzen zu ebnen, werden wir (1) genomweite DNA-Methylomprofile eingehend analysieren und auf Fusarium infizierte Gerstenpflanzen ausdehnen, um geeignete Zielgene für EpiEdit zu identifizieren (2) ein CRISPR/Cas-basiertes EpiEdit-System für Gerste etablieren, um die (In)Aktivierung von Krankheits-assoziierten Genen über (De)Methylierung zu realisieren. Durch die exemplarische Anwendung des EpiEdit-basierten Pflanzenschutzkonzeptes auf zwei Getreide-Pilz Pathosysteme soll die generelle Machbarkeit und Übertragbarkeit der Technologie zur Kontrolle anderer Pflanzenkrankheiten demonstriert werden. Außerdem werden im Projekt (3) dynamische Veränderungen des Epigenoms der Gerste in Reaktion auf Pilzinfektionen untersucht und stress-induzierte epigenetische Veränderungen hinsichtlich ihrer funktionellen Relevanz bewertet. Außerdem erarbeitet das Projekt das erste Gerste Multi-Omics-Pathoepigenom-Datenset.

Epigenetisches Editieren von Immunitätsgenen zur Verbesserung der Krank-heitsresistenz gegen Pilzpathogene am Beispiel der Gerste (Hordeum vulgare)

Das Projekt "Epigenetisches Editieren von Immunitätsgenen zur Verbesserung der Krank-heitsresistenz gegen Pilzpathogene am Beispiel der Gerste (Hordeum vulgare)" wird vom Umweltbundesamt gefördert und von Universität Hohenheim, Institut für Phytomedizin, Fachgebiet Epigenetik (190e) durchgeführt. Erstmalig werden im Projekt epigenetische Mechanismen (DNA Methylierung und Histonmodifikationen) genutzt, um eine innovative und umweltfreundliche Pflanzenschutztechnologie zu entwickeln. Mittels eines modifizierten CRISPR/Cas-Systems werden Krankheits-assoziierte Gene in Pflanzen epigenetisch editiert (EpiEdit) und damit die Resistenz von Nutzpflanzen gegenüber Pilzkrankheiten erhöht. Das Projekt greift dafür auf zwei essenzielle Vorarbeiten zurück (1) ein bereits etabliertes EpiEdit-System in der Modelpflanze Arabidopsis thaliana zur Steuerung der (De)Methylierung und somit (In)Aktivierung Krankheits-assoziierter Gene und (ii) ein genomweites DNA-Methylomprofil von mit Mehltau infizierten Gerstenpflanzen. Basierend darauf werden wir zeigen, dass eine durch EpiEdit herbeigeführte pilzliche Krankheitsresistenz eine vielversprechende Alternative zu konventionellen, chemisch-synthetischen Fungiziden darstellt. Um den Weg für zukünftige EpiEdit-Anwendungen in Kulturpflanzen zu ebnen, werden wir (1) genomweite DNA-Methylomprofile eingehend analysieren und auf Fusarium infizierte Gerstenpflanzen ausdehnen, um geeignete Zielgene für EpiEdit zu identifizieren (2) ein CRISPR/Cas-basiertes EpiEdit-System für Gerste etablieren, um die (In)Aktivierung von Krankheits-assoziierten Genen über (De)Methylierung zu realisieren. Durch die exemplarische Anwendung des EpiEdit-basierten Pflanzenschutzkonzeptes auf zwei Getreide-Pilz Pathosysteme soll die generelle Machbarkeit und Übertragbarkeit der Technologie zur Kontrolle anderer Pflanzenkrankheiten demonstriert werden. Außerdem werden im Projekt (3) dynamische Veränderungen des Epigenoms der Gerste in Reaktion auf Pilzinfektionen untersucht und stress-induzierte epigenetische Veränderungen hinsichtlich ihrer funktionellen Relevanz bewertet. Außerdem erarbeitet das Projekt das erste Gerste Multi-Omics-Pathoepigenom-Datenset.

1