Der WMS umfasst Schadstoffe im Wasser und im Sediment, die an Messstationen des LLUR erfasst werden. Parameter: Quecksilber, Blei, Kupfer, Nickel, Arsen, Cadmium, Chrom, Zink.
The TROPOMI instrument onboard the Copernicus SENTINEL-5 Precursor satellite is a nadir-viewing, imaging spectrometer that provides global measurements of atmospheric properties and constituents on a daily basis. It is contributing to monitoring air quality and climate, providing critical information to services and decision makers. The instrument uses passive remote sensing techniques by measuring the top of atmosphere solar radiation reflected by and radiated from the earth and its atmosphere. The four spectrometers of TROPOMI cover the ultraviolet (UV), visible (VIS), Near Infra-Red (NIR) and Short Wavelength Infra-Red (SWIR) domains of the electromagnetic spectrum. The operational trace gas products generated at DLR on behave ESA are: Ozone (O3), Nitrogen Dioxide (NO2), Sulfur Dioxide (SO2), Formaldehyde (HCHO), Carbon Monoxide (CO) and Methane (CH4), together with clouds and aerosol properties. This product displays the sulphur dioxide (SO2) concentration around the globe. Sulphur dioxide enters the atmosphere through volcanic eruptions and human-related activities. Daily observations are binned onto a regular latitude-longitude grid. This product is created in the scope of the project INPULS. The DLR INPULS project develops (a) innovative retrieval algorithms and processors for the generation of value-added products from the atmospheric Copernicus missions Sentinel-5 Precursor, Sentinel-4, and Sentinel-5, (b) cloud-based (re)processing systems, (c) improved data discovery and access technologies as well as server-side analytics for the users, and (d) data visualization services.
UV Index (UVI) as derived from TROPOMI observations. The UVI describes the intensity of the solar ultraviolet radiation. Values around zero indicate low, values greater than 10 indicate very high UV exposure on the ground. The TROPOMI instrument onboard the Copernicus SENTINEL-5 Precursor satellite is a nadir-viewing, imaging spectrometer that provides global measurements of atmospheric properties and constituents on a daily basis. It is contributing to monitoring air quality and climate, providing critical information to services and decision makers. The instrument uses passive remote sensing techniques by measuring the top of atmosphere solar radiation reflected by and radiated from the earth and its atmosphere. The four spectrometers of TROPOMI cover the ultraviolet (UV), visible (VIS), Near Infra-Red (NIR) and Short Wavelength Infra-Red (SWIR) domains of the electromagnetic spectrum. The operational trace gas products generated at DLR on behave ESA are: Ozone (O3), Nitrogen Dioxide (NO2), Sulfur Dioxide (SO2), Formaldehyde (HCHO), Carbon Monoxide (CO) and Methane (CH4), together with clouds and aerosol properties. This product is created in the scope of the project INPULS. It develops (a) innovative retrieval algorithms and processors for the generation of value-added products from the atmospheric Copernicus missions Sentinel-5 Precursor, Sentinel-4, and Sentinel-5, (b) cloud-based (re)processing systems, (c) improved data discovery and access technologies as well as server-side analytics for the users, and (d) data visualization services.
Dieser Datensatz enthält die einstweilig sichergestellten Naturschutzgebiete in der Stadt Osnabrück.
Das Digitale Feldblockkataster (DFBK) ist ein landwirtschaftliches Flächenkataster. Es enthält alle landwirtschaftlich genutzten und förderfähigen Flächen der Länder Brandenburg und Berlin mit ihrer Lage, Größe und weiteren Informationen. Das DFBK dient als Referenzsystem zur Kontrolle von flächenbezogenen Agrarförderanträgen und besteht aus Feldblöcken und Landschaftselementen. Ein Feldblock (FB) kann von einem oder mehreren landwirtschaftlichen Betrieben genutzt werden und bildet eine von dauerhaften Grenzen umgebene zusammenhängende landwirtschaftliche Fläche mit überwiegend einheitlicher Hauptbodennutzung ab. Landschaftselemente (LE) sind Landschaftsmerkmale wie z.B. Hecken, Baumreihen, Feldgehölze, Lesesteinhaufen, die sich im oder am Feldblock befinden. Enthält ein Feldblock Flächen, die nicht landwirtschaftlich nutzbar und kein förderfähiges Landschaftselement sind, so werden diese als nicht-beihilfefähige-Flächen (NBF) gekennzeichnet. Die Digitalisierung der Feldblöcke, Landschaftselemente und NBF-Flächen erfolgt auf der Grundlage von Luftbildern (Digitalen Orthophotos) in den Ämtern für Landwirtschaft der Kreise und kreisfreien Städte im Rahmen des EU-InVeKoS-Verfahrens (Integriertes Verwaltungs- und Kontrollsystem). Die hier in Form der FB und LE bereitgestellten Daten enthalten zusätzlich numerische Angaben zu Flächenanteilen in förderrelevanten Gebietskulissen (z.B. Naturschutzgebiete, NATURA2000-Gebiete und andere).
Der Kartendienst stellt die digitalen Geodaten aus dem Bereich Naturschutz des Saarlandes dar.:Seit 1997 gibt es den „Urwald vor den Toren der Stadt“ als Naturschutzgebiet im Saarkohlenwald. Seit dieser Zeit wird auf eine wirtschaftliche Nutzung verzichtet.
Die Gesundheit wird vor allem durch die hohen Emissionen an Feinstaub und gasförmigen Kohlenwasserstoffen der Holzfeuerungen beeinträchtigt. Beim Verbrennen von Holz entstehen klima- und gesundheitsschädliche Stoffe. So heizen Sie möglichst emissionsarm. Die Verbrennung von Holz, insbesondere von Scheitholz in kleinen Holzfeuerungsanlagen wie Kamin- oder Kachelöfen ohne automatische Regelung, läuft nie vollständig ab und es entstehen neben gesundheitsgefährdenden Luftschadstoffen auch klimaschädliches Kohlendioxid, Methan, Lachgas und Ruß. Um möglichst emissionsarm und effizient zu heizen, sollte gut aufbereitetes und getrocknetes Holz aus nachhaltiger regionaler Forstwirtschaft in einer modernen Feuerstätte mit automatischer Regelung der Luftzufuhr, Katalysator und möglichst hohem Wirkungsgrad verbrannt werden. Gerade beim Verbrennen minderwertigen Holzes in alten, schlecht gewarteten Öfen und bei ungünstigen Verbrennungsbedingungen entstehen unnötig hohe Emissionen. Besonders in Ballungsräumen und in Tälern verschlechtern Holzheizungen aufgrund ihrer niedrigen Schornsteine die Luftqualität. Wie sorge ich dafür, dass mein Holzofen möglichst wenige Schadstoffe ausstößt? Bereits beim Kauf sollten Sie darauf achten, dass die Feuerstätte effizient und emissionsarm ist. Hinweise kann unser Ratgeber „Heizen mit Holz: Wenn, dann richtig!“ geben. Ältere Feuerstätten, die vor 2010 errichtet wurden, haben häufig höhere Emissionen und einen geringeren Wirkungsgrad und sollten daher ausgetauscht werden. Die verwendeten Brennstoffe müssen für das Gerät geeignet sein. Das heißt zum Beispiel, dass Kohleöfen nicht mit Holz oder Scheitholzöfen nicht mit zu großem, zu feuchtem oder zu viel Holz beheizt werden sollten. Die Bedienungsanleitung gibt Auskunft, welche Brennstoffe geeignet sind. Außerdem gibt sie Hinweise über die richtige Bedienung, um Anwendungsfehler, wie beispielsweise Überfüllen der Feuerungsanlage, zu spätes Nachlegen oder falsches Anzünden des Brennstoffes zu vermeiden. Die richtige Lagerung des Brennstoffes ist wichtig, damit das Holz unter optimaler Wärmeabgabe möglichst emissionsarm verbrennt. Frisch geschlagenes Holz enthält – je nach Jahreszeit und Holzart – zwischen 45 und 60 Prozent Wasser. Bei optimaler Trocknung sinkt dieser Wasseranteil auf 15 bis 20 Prozent. Damit das Brennholz richtig durchtrocknen kann, sollten es an einem sonnigen und luftigen Platz vor Regen und Schnee geschützt gestapelt werden und – je nach Holzart – ein bis zwei Jahre lang trocknen. Nicht zuletzt sollte der Ofen regelmäßig durch Fachleute gewartet und überwacht werden. So kann die Luftbelastung soweit wie möglich reduziert werden. Weitere Tipps für die Wahl des geeigneten Ofens und Brennmaterials, Anleitungen, wie Sie richtig heizen und Informationen zu den rechtlichen Rahmenbedingungen finden Sie in der UBA-Broschüre „Heizen mit Holz“ . Tipps zur Wärmewende in Gebäuden finden Sie in den Umwelttipps „Heizen & Bauen“ . Klimabilanz von Holzheizungen Beim Verbrennen von Holz entstehen neben gesundheitsgefährdenden Luftschadstoffen auch klimaschädliches Kohlendioxid, Methan und Lachgas. Bei der Klimabilanz von Brennholz müssen zudem Emissionen berücksichtigt werden, die bei Holzernte, Transport und Bearbeitung entstehen. Darüber hinaus ist der Wald auch Kohlenstoffspeicher. So werden in deutschen Wäldern 1,26 Milliarden Tonnen Kohlenstoff in oberirdischer oder unterirdischer Biomasse gespeichert, die zuvor der Atmosphäre durch Photosynthese entzogen worden sind. Kommt es zu einer Verringerung des Wald- oder Baumbestandes, so kommt es auch zu einer damit einhergehenden Abnahme des Kohlenstoffspeichers sowie der Speicherleistung (neue Einbindung pro Jahr). Um den Kohlenstoff so lange wie möglich gebunden zu halten, soll Holz gemäß des Kaskadenprinzips vorrangig stofflich genutzt und erst am Ende seines Lebenszyklus der energetischen Nutzung zugeführt werden. Im Gegensatz dazu tragen u.a. Einzelraumfeuerungen, welche Scheitholz als Brennstoff verwenden, zu einer schnellen Freisetzung von Treibhausgasen an die Atmosphäre bei. Die vierte Bundeswaldinventur kam zu dem Ergebnis, dass in Deutschland zwischen 2017 und 2022 der Wald zu einer Kohlenstoffquelle wurde, d.h. es wurde mehr Kohlenstoff freigesetzt als gebunden. Um den Klimawandel und die dadurch bedingten Folgen durch Extremwetterereignisse möglichst gering zu halten, muss der Wald wieder zur Kohlenstoffsenke werden und die Senken-Leistung möglichst maximiert werden. Dazu muss weniger Kohlenstoff entnommen werden als gebunden wird. Das bedeutet, dass das klimafreundliche Rohstoff-Potenzial von Holz begrenzt ist. Darüber hinaus gibt es eine steigende Konkurrenz zwischen stofflicher und energetischer Nutzung von Holz. Bei der stofflichen Nutzung von Holz in Holzprodukten kann der Kohlenstoff lange Zeit gespeichert bleiben. Bei der energetischen Nutzung wird er stattdessen sofort in die Atmosphäre freigesetzt. Daher sollte eine energetische Nutzung am Ende einer stofflichen Nutzungskaskade erfolgen, in der der Kohlenstoff erst möglichst spät wieder in die Atmosphäre freigesetzt wird. Wer seine Heizung möglichst klimaschonend planen möchte, sollte verbrennungsfreie Technologien auswählen. Mehr zu diesem Thema finden Sie in den UBA-Umwelttipps zum Heizungstausch . Welche Luftschadstoffe können noch bei der Holzverbrennung entstehen? Bei der Verbrennung von Holz entstehen neben Treibhausgasen auch gesundheitsgefährdende Luftschadstoffe wie Feinstaub, organische Kohlenwasserstoffe wie Polyzyklisch Aromatische Kohlenwasserstoffe (PAKs), Stickoxide, Kohlenstoffmonoxid und Ruß. Feinstaub ist so klein, dass er mit dem bloßen Auge nicht sichtbar ist. Er kann beim Einatmen bis tief in die Lunge eindringen und dort Entzündungen und Stress in Zellen auslösen. Bronchitis, die Zunahme asthmatischer Anfälle oder Belastungen für das Herz-Kreislauf-System können die Folge sein. Feinstaub ist krebserregend und steht außerdem im Verdacht, Diabetes mellitus Typ 2 zu fördern. Feinstaub stellt insbesondere für Schwangere und Personen mit vorgeschädigten Atemwegen eine gesundheitliche Belastung dar. Ein neuer Kaminofen üblicher Größe (ca. 6 bis 8 kW) emittiert, wenn er bei Nennlast betrieben wird, in einer Stunde etwa 500 mg Staub. Das entspricht ca. 100 km Autofahren mit einem PKW der Abgasnorm Euro 6. Einige Kohlenwasserstoffverbindungen , wie z.B. PAKs, die bei einer Verbrennung als unverbrannte Nebenprodukte entstehen, sind geruchstragende Schadstoffe, die durch unsere Nase wahrgenommen werden können. Einige dieser PAKs sind krebserregende, erbgutverändernde und/oder fortpflanzungsgefährdende Schadstoffe.
Dieser Datensatz enthält Information zu gas- und partikelförmigen Schadstoffen. Aktuelle Messwerte sind verfügbar für die Schadstoffe: Cadmium im Feinstaub (Cd), Feinstaub (PM₁₀), Kohlenmonoxid (CO), Blei im Feinstaub (Pb), Nickel im Feinstaub (Ni). Verfügbare Auswertungen der Schadstoffe sind: Tagesmittel, Ein-Stunden-Mittelwert, Ein-Stunden-Tagesmaxima, Acht-Stunden-Mittelwert, Acht-Stunden-Tagesmaxima, Tagesmittel (stündlich gleitend). Diese werden mehrmals täglich von Fachleuten an Messstationen der Bundesländer und des Umweltbundesamtes ermittelt. Schon kurz nach der Messung können Sie sich hier mit Hilfe von deutschlandweiten Karten und Verlaufsgrafiken über aktuelle Messwerte und Vorhersagen informieren und Stationswerte der letzten Jahre einsehen. Neben der Information über die aktuelle Luftqualität umfasst das Luftdatenportal auch zeitliche Verläufe der Schadstoffkonzentrationen, tabellarische Auflistungen der Belastungssituation an den deutschen Messstationen, einen Index zur Luftqualität sowie Jahresbilanzen für die einzelnen Schadstoffe.
Dieser Datensatz enthält Information zu gas- und partikelförmigen Schadstoffen. Aktuelle Messwerte sind verfügbar für die Schadstoffe: Feinstaub (PM₁₀), Kohlenmonoxid (CO), Blei im Feinstaub (Pb), Arsen im Feinstaub (As). Verfügbare Auswertungen der Schadstoffe sind: Tagesmittel, Ein-Stunden-Mittelwert, Ein-Stunden-Tagesmaxima, Acht-Stunden-Mittelwert, Acht-Stunden-Tagesmaxima, Tagesmittel (stündlich gleitend). Diese werden mehrmals täglich von Fachleuten an Messstationen der Bundesländer und des Umweltbundesamtes ermittelt. Schon kurz nach der Messung können Sie sich hier mit Hilfe von deutschlandweiten Karten und Verlaufsgrafiken über aktuelle Messwerte und Vorhersagen informieren und Stationswerte der letzten Jahre einsehen. Neben der Information über die aktuelle Luftqualität umfasst das Luftdatenportal auch zeitliche Verläufe der Schadstoffkonzentrationen, tabellarische Auflistungen der Belastungssituation an den deutschen Messstationen, einen Index zur Luftqualität sowie Jahresbilanzen für die einzelnen Schadstoffe.
Cadmium verdient unter den Schwermetallen besondere Beachtung, da seine Toxizität für Tiere und Menschen erheblich größer als die anderer Schwermetalle ist. Als Akkumulationsgift wird es im Körper angereichert und kann dort über Jahrzehnte verbleiben. Auf Grund seiner chemischen Verwandtschaft zum Zink kommt es fast ausschließlich mit diesem vor, insbesondere in allen zinkführenden Mineralen (u. a. Zinkblende, Galmei) und Gesteinen. Die durchschnittliche Cd-Konzentration der Gesteine der oberen kontinentalen Erdkruste (Clarkewert) beträgt 0,1 mg/kg, in Böden finden sich Gehalte in der Regel 0,50 mg/kg. Im Gegensatz zu As und anderen Schwermetallen (z. B. Cr, Ni) ist in den oberflächennah anstehenden sächsischen Hauptgesteinstypen keine geochemische Spezialisierung auf Cd nachweisbar. Die petrogeochemische Komponente liegt im Bereich des Clarkwertes um 0,1 mg/kg. In den Erzlagerstätten ist Cd vor allem an die Zinkerze der polymetallischen hydrothermalen Gänge und teilweise an die Skarnlagerstätten und stratigen-stratiformen Ausbildungen gebunden (chalkogene Komponente). Seit Beginn der Industrialisierung gelangt Cadmium über die Emissionen der Buntmetallhütten, die Verbrennung von Kohlen und Erdöl und in jüngerer Zeit über Galvanotechnik, Müllverbrennung, Düngemittel, Klärschlämme und Komposte anthropogen in die Umwelt. Während in den Oberböden Nord- und Mittelsachsens niedrige Gehalte dominieren (Cd-arme periglaziäre sandige bis lehmige Substrate; Löss), kommt es in den Verwitterungsböden über Festgesteinen zu einer relativen Anreicherung. Eine Abhängigkeit vom Tongehalt ist insofern festzustellen, dass die sandigen Substrate gegenüber lehmigen Substraten etwas niedrigere Cd-Gehalte aufweisen. Auf Acker- und Grünlandstandorten sind im Vergleich zu den Waldstandorten im Oberboden höhere Cd-Gehalte anzutreffen, da infolge der sehr niedrigen pH-Werte unter Forst eine Cd-Mobilisierung und Verlagerung in größere Bodentiefen stattfindet. Besonders hohe Cd-Belastungen befinden sich im Freiberger Raum, die durch die geogene Cd-Anreicherung bei der Bildung buntmetallführender Erzgänge aber vor allem anthropogen durch die Verhüttung von Zinkerzen verursacht werden. Die höchsten Gehalte sind in den Oberböden in unmittelbarer Nähe der Hüttenstandorte sowie in geringeren Konzentrationen östlich davon (in Hauptwindrichtung) festzustellen. Andere Lagerstättengebiete mit Zinkverzungen im Westerzgebirge und in der Erzgebirgsnordrandzone weisen nur schwach erhöhte Gehalte auf. Eine besondere Stellung bei der Belastung mit Cadmium nehmen die Auenböden der Freiberger und der Vereinigten Mulde ein. Durch die Abtragung von Böden mit geogen verursachten Anreicherungen im Einzugsgebiet und den enormen anthropogenen Zusatzbelastungen durch die Erzaufbereitung und die Hüttenindustrie, kommt es bei Ablagerung der Flusssedimente und Schwebanteile in den Überflutungsbereichen zu hohen Cd-Anreicherungen. In den Auenböden der Elbe und Zwickauer Mulde treten dagegen deutlich niedrigere Gehalte auf. Die geogenen und anthropogenen Prozesse führen im Freiberger Raum und in den Auenböden der Freiberger und Vereinigten Mulde zu flächenhaften Überschreitungen der Prüf- und Maßnahmenwerte der Bundes-Bodenschutz- und Altlastenverordnung (BBodSchV) für Cadmium.
Origin | Count |
---|---|
Bund | 12959 |
Europa | 4 |
Kommune | 189 |
Land | 10055 |
Schutzgebiete | 8 |
Unklar | 2 |
Wirtschaft | 7 |
Wissenschaft | 192 |
Zivilgesellschaft | 290 |
Type | Count |
---|---|
Bildmaterial | 10 |
Chemische Verbindung | 412 |
Ereignis | 59 |
Förderprogramm | 9275 |
Gesetzestext | 16 |
Kartendienst | 3 |
Lehrmaterial | 1 |
Messwerte | 9481 |
Strukturierter Datensatz | 75 |
Taxon | 17 |
Text | 2228 |
Umweltprüfung | 90 |
WRRL-Maßnahme | 6 |
unbekannt | 1422 |
License | Count |
---|---|
geschlossen | 6648 |
offen | 15521 |
unbekannt | 556 |
Language | Count |
---|---|
Deutsch | 21905 |
Englisch | 2411 |
andere | 2 |
Resource type | Count |
---|---|
Archiv | 3977 |
Bild | 202 |
Datei | 1476 |
Dokument | 2128 |
Keine | 11512 |
Multimedia | 5 |
Unbekannt | 62 |
Webdienst | 1337 |
Webseite | 10155 |
Topic | Count |
---|---|
Boden | 15683 |
Lebewesen & Lebensräume | 16628 |
Luft | 14162 |
Mensch & Umwelt | 22720 |
Wasser | 16132 |
Weitere | 21689 |