Schwermetall-Emissionen Hochwirksame Staubminderungsmaßnahmen und die Stilllegung veralteter Produktionsstätten in den neuen Bundesländern führten seit 1990 zu einer erheblichen Minderung der verbrennungsbedingten Schwermetall-Emissionen. Entwicklung seit 1990 Die Emissionen der wichtigsten Schwermetalle (Cadmium, Blei und Quecksilber) sanken seit 1990 deutlich. Die Werte zeigen überwiegend Reduktionen von über 60 bis über 90 %. Der Großteil der hier betrachteten Reduktion erfolgte dabei in den frühen 1990-er Jahren, wobei wesentliche Reduktionen auch schon vor 1990 stattfanden. Vor allem die dabei angewandten hochwirksamen Staub- und Schwefeldioxid (SO 2 ) -Minderungsmaßnahmen führten zu einer erheblichen Verringerung der Schwermetallemissionen zunächst in den alten und, nach der Wiedervereinigung, auch in den neuen Ländern, einhergehend mit Stilllegungen veralteter Produktionsstätten. In den letzten Jahren sieht man, bis auf wenige Ausnahmen, kaum weitere Verringerungen der Schwermetall-Emissionen (siehe Abb. und Tab. „Entwicklung der Schwermetall-Emissionen“). Während die Blei-Emissionen bis zum endgültigen Verbot von verbleitem Benzin im Jahre 1997 rapide zurückgingen, folgten Zink, Kupfer und Selen im Wesentlichen der Entwicklung der Fahrleistungen im Verkehrssektor, die im langfristigen Trend seit 1990 anstieg. Entwicklung der Schwermetall-Emissionen Quelle: Umweltbundesamt Diagramm als PDF Tab: Entwicklung der Schwermetall-Emissionen Quelle: Umweltbundesamt Tabelle als PDF zur vergrößerten Darstellung Herkunft der Schwermetall-Emissionen Schwermetalle finden sich – in unterschiedlichem Umfang – in den staub- und gasförmigen Emissionen fast aller Verbrennungs- und vieler Produktionsprozesse. Die in den Einsatzstoffen teils als Spurenelemente, teils als Hauptbestandteile enthaltenen Schwermetalle werden staubförmig oder gasförmig emittiert. Die Gesamtstaubemissionen aus diesen Quellen bestehen zwar in der Regel überwiegend aus relativ ungefährlichen Oxiden, Sulfaten und Karbonaten von Aluminium, Eisen, Kalzium, Silizium und Magnesium; durch toxische Inhaltsstoffe wie Cadmium, Blei oder Quecksilber können diese Emissionen jedoch ein hohes Gefährdungspotenzial erreichen. Verursacher Die wichtigste Quelle der meisten Schwermetalle ist der Brennstoffeinsatz im Energie-Bereich. Bei Arsen, Quecksilber und Nickel hat die Energiewirtschaft den größten Anteil, gefolgt von den prozessbedingten Emissionen der Industrie, vor allem aus der Herstellung von Metallen. Cadmium stammt sogar größtenteils aus der Metall-Herstellung. Blei-, Chrom-, Kupfer- und Zink- Emissionen werden überwiegend durch den Abrieb von Bremsen und Reifen im Verkehrsbereich beeinflusst: die Trends korrelieren hier direkt mit der jährlichen Fahrleistung . Selen hingegen stammt hauptsächlich aus der Mineralischen Industrie, gefolgt von den stationären und mobilen Quellen der Kategorie Energie. Andere Quellen müssen noch untersucht werden, es wird jedoch erwartet, dass sie die Gesamtentwicklung kaum beeinflussen. Verpflichtungen Das 1998er Aarhus Protokoll über Schwermetalle unter dem CLRTAP ist Ende 2003 in Kraft getreten. Es wurde im Dezember 2012 revidiert und an den Stand der Technik angepasst. Es zielt auf drei besonders schädliche Metalle ab: Cadmium, Blei und Quecksilber. Laut einer der grundlegenden Verpflichtungen muss Deutschland seine Emissionen für diese drei Metalle unter das Niveau von 1990 reduzieren. Das Protokoll betrachtet die Emissionen aus industriellen Quellen (zum Beispiel Eisen- und Stahlindustrie, NE-Metall-Industrie), Verbrennungsprozessen (Stromerzeugung, Straßenverkehr) und aus Müllverbrennungsanlagen. Es definiert Grenzwerte für Emissionen aus stationären Quellen (zum Beispiel Kraftwerken) und verlangt die besten verfügbaren Techniken (BVT) für diese Quellen zu nutzen, etwa spezielle Filter oder Wäscher für die stationäre Verbrennung oder Quecksilber-freie Herstellungsprozesse. Das Protokoll verpflichtet die Vertragsparteien weiterhin zur Abschaffung von verbleitem Benzin. Es führt auch Maßnahmen zur Senkung von Schwermetall-Emissionen aus Produkten auf (zum Beispiel Quecksilber in Batterien) und schlägt Management-Maßnahmen für andere quecksilberhaltige Produkte wie elektrische Komponenten (Thermostate, Schalter), Messgeräte (Thermometer, Manometer, Barometer), Leuchtstofflampen, Amalgam, Pestizide und Farben vor. Viele dieser Maßnahmen wurden in Deutschland jedoch schon deutlich früher umgesetzt, so dass bereits in den frühen 90er Jahren deutliche Reduktionen der wichtigen Schwermetalle zu verzeichnen sind.
Die Fa. Cirkel GmbH & Co. KG produzierte im Jahr 2017 an vier Standorten Produkte aus Kalksandstein. Für die Produktion werden Ressourcen in Form von Roh- und Brennstoffen verbraucht. Die energie- und materialeffiziente Ausgestaltung von Produktionsprozessen ist ein wichtiger Beitrag zu den Klimaschutz- und Ressourceneinsparungsbemühungen und –zielen der Bundesregierung. Im Zuge der Errichtung eines neuen Werkes der Firmengruppe sollte mit dem Projekt durch Umsetzung verschiedenster Maßnahmen der Ressourcenverbrauch für die Herstellung von Kalksandsteinprodukten deutlich reduziert werden. Konkret wurden die folgenden technischen Ansätze verfolgt und erfolgreich umgesetzt: Einbau einer kontinuierlichen Sieblinienmessung inklusive automatischer Berechnung der Packungsdichte. Errichtung einer Multifunktionspressanlage mit Werkzeugwechselwagen zur deutlichen Reduzierung von Umrüstzeiten und kombiniertem Betrieb von Presse und Säge und daraus resultierende Reduzierung der benötigten Fertigungslinien. Vollständige Werksautomatisierung und intelligente Verschaltung der Prozessschritte. Optimierung des Wärmemanagements durch Einhausung der Härtewagen (Wärmetunnel) zum Schutz der Rohlinge vor Abkühlung vor dem Autoklavieren. Nutzung der Energie aus der Rückverdampfung zum Aufheizen der Autoklaven (Abwärmenutzung). Im Betrieb des neuen Werkes konnten im Vergleich zum bestehenden Anlagenmix durch die Umsetzung der oben beschriebenen Maßnahmen folgende Ergebnisse erzielt werden: Reduktion des Erdgasverbrauchs um ca. 50 Prozent Reduktion des Materialeinsatzes: Branntkalk (-15 Prozent), Sand (-2 Prozent) Reduktion des Stahlverbrauchs für den Anlagenbau (wegen Wegfall von Anlagenteilen) Darüber hinaus konnten im Vergleich zum Status Quo die CO 2 -Emissionen unter Berücksichtigung von Vorketten aus der Branntkalkproduktion um ca. 40 Prozent (3.000 Tonnen pro Jahr) bzw. 25 Prozent (1.700 Tonnen pro Jahr) ohne Berücksichtigung von Vorketten aus der Branntkalkproduktion reduziert werden. Die im Projekt realisierten innovativen Ansätze sind grundsätzlich auch in bestehenden Anlagen nachträglich umsetzbar. Branche: Glas und Keramik, Verarbeitung von Steinen und Erden Umweltbereich: Klimaschutz Fördernehmer: Cirkel GmbH & Co. KG Bundesland: Niedersachsen Laufzeit: 2017 - 2019 Status: Abgeschlossen
Kalkwerke können mit halbem Energieverbrauch mahlen Auch beim Mahlen von Branntkalk für die Industrie, Lebensmittel- und Stahlherstellung kann noch viel Strom gespart werden: Mit einer innovativen, energieeffizienten Mahlanlage gelang es in einem Projekt des Umweltinnovationsprogramms in der ersten Betriebsphase, 40 Prozent des Stroms einzusparen. Durch weitere Optimierungen mit dem Anlagenhersteller sollen 50 Prozent erreicht werden. Die in der Calcis Warstein GmbH & Co. KG im Sauerland 2016 in Betrieb genommene Horizontal-Schichtrollenmühle spart nicht nur Energie und ist dadurch wirtschaftlich. Sie ist auch viel leiser als die herkömmlichen Kugelmühlen und mahlt den Kalk dabei genauso gut. Die Ergebnisse des Projekts werden in die nächste Überarbeitung des BVT-Merkblattes für die Zement-, Kalk- und Magnesiumoxidindustrie einfließen.
Umweltinnovation im Steinbruch Im Steinbruch Mönsheim ist der abgebaute Muschelkalk stark mit anhaftendem Lehm verunreinigt. Quelle: Cathrin Fahrland Hinten mit Lehm verunreinigtes Vorsiebmaterial, vorne sauberes, aufbereitetes Muschelkalkmaterial Quelle: Cathrin Fahrland Die MSW Mineralstoffwerke Südwest GmbH & Co. KG hat mit Hilfe des Umweltinnovationsprogramms die Ressourceneffizienz ihres Steinbruchs in Mönsheim (Baden-Württemberg) von etwa 65 auf über 90 Prozent erhöht. Mit einem neuen Verfahren kann der abgebaute Kalkstein besser von anhaftendem Lehm gereinigt werden, es fällt weniger Ausschuss an. Dazu wird dem lehmhaltigen Material in einer neu errichteten Mischanlage eine geringe Menge Branntkalk zugegeben, wodurch sich der Lehm vom Stein löst und durch Sieben entfernt werden kann. Mit diesem Verfahren kann die für die Produktion von Schotter und Split (zum Beispiel für den Straßenbau) erforderliche Abbaumenge im Steinbruch Mönsheim um etwa 30 Prozent reduziert werden. Außerdem kann Haldenmaterial, das bisher auf Grund der Verunreinigungen abgelagert werden musste, wieder aufgenommen und nutzbar gemacht werden. Der Energieverbrauch verringert sich um rund 20 Prozent. Das CO 2 -Minderungspotenzial beträgt etwa 30 Tonnen pro Jahr. Die Ergebnisse des Projekts werden in die nächste Überarbeitung des BVT-Merkblattes für die Zement-, Kalk- und Magnesiumoxidindustrie einfließen.
Die MSW Mineralstoffwerke Südwest GmbH & Co. KG betreibt in Mönsheim einen Steinbruch zur Gewinnung von Muschelkalk. Jährlich produziert das Unternehmen etwa 400.000 Tonnen Kalksteinmaterial, das hauptsächlich im Straßen-, Erd- und Tiefbau sowie in der Asphaltherstellung eingesetzt wird. Das in Mönsheim gewonnene Material ist durch Lehmanhaftungen am Wertgestein verunreinigt, die für die weitere Verarbeitung und Verwendung störend sind. Mit den herkömmlichen Aufbereitungsschritten können diese Verunreinigungen nur bedingt beseitigt werden. Dies führt dazu, dass ein Teil des im Steinbruch abgebauten Materials bisher ungenutzt auf Halden abgelagert wird. Ziel des Vorhabens ist es, lehmhaltige Verunreinigungen vom abgebauten Kalkstein zu lösen und so den Ertrag der Lagerstätte zu erhöhen. Dazu wird in einer neu zu errichtenden Mischanlage dem lehmhaltigen Material Branntkalk zugegeben, wodurch sich die Lehmanteile vom Stein lösen. Diese werden mit einem relativ geringen Steinanteil bei einer Korngröße von ca. 16 Millimeter in der bestehenden separaten Siebanlage abgesiebt. Außerdem kann das Haldenmaterial, das bisher auf Grund der lehmhaltigen Verunreinigungen abgelagert werden musste, wieder aufgenommen und nutzbar gemacht werden. Mit dem Vorhaben kann die für die Produktion erforderliche Abbaumenge um etwa 30 Prozent reduziert werden. Der Energieverbrauch verringert sich um rund 20 Prozent. Das CO 2 -Minderungspotenzial beträgt ca. 30 Tonnen pro Jahr. Branche: Bergbau und Gewinnung von Steinen und Erden Umweltbereich: Ressourcen Fördernehmer: MSW Mineralstoffwerke Südwest GmbH & Co. KG Bundesland: Baden-Württemberg Laufzeit: 2015 - 2016 Status: Abgeschlossen
Die Calcis Warstein GmbH & Co. KG veredelt aus inländischen Lagerstätten Carbonatgestein. Aus diesem Gestein wird Branntkalk für den Einsatz in vielen Industriezweigen mit verschiedenen Einsatzbereichen, wie Wasseraufbereitung, chemische Industrie, Lebensmittel- und Stahlherstellung, hergestellt. Der durch das Brennen von Kalkstein erzeugte Branntkalk muss anschließend für die jeweiligen spezifischen Produktanforderungen aufbereitet, d.h. gemahlen werden. Für diesen Mahlvorgang kommen üblicherweise Kugelmühlen zum Einsatz. Mit dem Vorhaben soll erstmalig in der Kalkindustrie eine Horizontal-Schichtrollenmühle zum Einsatz kommen und die energieintensive Kugelmühle ersetzen. Horizontal-Schichtrollenmühlen werden derzeit schon erfolgreich in anderen Industriezweigen, wie der Glas- und Zementindustrie, eingesetzt. Für die Kalkindustrie eigneten sich diese Mühlen bisher aufgrund der geringen Härte des Branntkalks nicht. Es bildeten sich festgepresste Materialmassen (Schülpen), die einen zusätzlichen Zerkleinerungsvorgang erforderlich gemacht hätten. Die Technologie wurde weiterentwickelt, so dass auch Branntkalk ohne die unerwünschte Schülpenbildung und in ausreichender Materialqualität in Horizontal-Schichtrollenmühlen aufbereitet werden kann. Mit dem Vorhaben können im Vergleich zum Stand der Technik (Kugelmühle) der Energieverbrauch um bis zu 40 Prozent und die Lärmemissionen um bis zu 90 Prozent gesenkt werden. Die Materialausbeute erhöht sich um bis zu vier Prozent. Außerdem können noch produktionsspezifische Hilfsmittel und die Erschütterungen im Umkreis der Anlage deutlich reduziert werden. Das CO 2 -Minderungspotenzial beträgt ca. 570 Tonnen pro Jahr. Branche: Bergbau und Gewinnung von Steinen und Erden Umweltbereich: Ressourcen Fördernehmer: Calcis Warstein GmbH & Co. KG Bundesland: Nordrhein-Westfalen Laufzeit: 2015 - 2016 Status: Abgeschlossen
Niedrigster Stand seit 2005 - Emissionshandel bewährt sich auch in der Krise Die emissionshandelspflichtigen Anlagen in Deutschland haben im Jahr 2009 insgesamt 428,2 Millionen Tonnen klimaschädliches Kohlendioxid (CO2) ausgestoßen. Damit sind die Emissionen im Vergleich zum Vorjahr um 44,3 Millionen Tonnen CO2 oder 9,4 Prozent gesunken. Das ist der niedrigste Stand seit Einführung des Europäischen Emissionshandels im Jahr 2005. Die Anlagen im Emissionshandel haben damit 2009 erneut den größten Anteil an der absoluten Minderung der Treibhausgasemissionen in Deutschland. Der Emissionshandelssektor bestätigt so den Anfang März 2010 vom Umweltbundesamt (UBA) veröffentlichten Gesamttrend für Deutschland, wonach unter anderem die Finanz- und Wirtschaftskrise zum stärksten Rückgang der Klimagasemissionen seit Gründung der Bundesrepublik geführt hat. Auch im Emissionshandel beruht der größte Teil der Minderung auf Produktionsrückgängen infolge des konjunkturellen Abschwungs im Jahr 2009. Die einzelnen Branchen sind aber nicht gleich stark betroffen. Für den überwiegenden Teil der industriellen Anlagen bedeutet dies, dass sie ihre Jahresemissionen 2009 mit den bereits Ende Februar 2009 kostenlos zugeteilten und ausgegebenen Zertifikaten vollständig ausgleichen können. „Daher besteht derzeit eine geringe Nachfrage nach Emissionszertifikaten, was sich auch im gegenwärtig moderaten Preis von 13 Euro pro Zertifikat widerspiegelt. Dies kommt den Anlagenbetreibern zugute, die für die Abgabe noch zukaufen müssen. Hierin liegt einer der großen Vorteile des Emissionshandels als marktwirtschaftliches Instrument: Er entlastet die Wirtschaft in der Krise ohne die zuvor festgelegten Klimaziele zu gefährden“, so Dr. Hans-Jürgen Nantke, Leiter der Deutschen Emissionshandelsstelle (DEHSt) im UBA . „Der Emissionshandel hatte selbst in der Krise keine nachteiligen Effekte auf Beschäftigung und Wachstum, sondern hat systemgerecht reagiert.“ Obwohl in den meisten Branchen konjunkturbedingt die Emissionen sanken, gibt es in allen Tätigkeitsfeldern Anlagen mit Mehr- und Minderemissionen gegenüber dem Vorjahr. Beispielsweise haben 225 von 532 Großfeuerungsanlagen, die im Jahr 2009 gut 101 Millionen Tonnen CO 2 ausstießen, ihre Emissionen gegenüber dem Vorjahr gesteigert - insgesamt um 11,2 Millionen Tonnen CO 2 . Im Einzelnen: Die größte absolute Minderung erbringt der Energiesektor: Die Emissionen der Großkraftwerke sanken aufgrund verminderter Auslastung um knapp 30 Millionen Tonnen CO 2 oder acht Prozent. Das ist die größte absolute Minderung in einer Branche. Bei kleineren Energieanlagen ist der relative Rückgang ähnlich minus sechs Prozent, die absolute Absenkung mit knapp 0,4 Millionen Tonnen aber geringer. In der Eisen- und Stahl-Industrie und den Kokereien sanken die CO 2 -Emissionen um 8,5 Millionen Tonnen, das sind 25 Prozent weniger als im Vorjahr und damit die größte relative Minderung überhaupt. Dabei sind die ebenfalls rückläufigen Emissionen aus der Verwertung von Kuppelgasen überwiegend den Energieerzeugern zugerechnet. Auch in der mineralverarbeitenden Industrie sind die Rückgänge erheblich, wenn auch geringer als in der Stahlindustrie. Bei der Zementherstellung wurde knapp 1,7 Million Tonnen Kohlendioxid, also acht Prozent, weniger emittiert. Die Herstellung von Branntkalk leidet unter dem Absatzrückgang bei der Stahlindustrie, entsprechend gingen die Emissionen hier um 1,8 Millionen Tonnen Kohlendioxid oder 22 Prozent zurück. Der relative Rückgang der Emissionen in der Glasindustrie beläuft sich auf nur acht Prozent, absolut sind dies 0,3 Millionen Tonnen CO 2 . In der Keramikbranche sind die Produkte unterschiedlich stark von der Konjunktur betroffen: zum einen die Ziegelindustrie durch die stetig rückläufige Bautätigkeit, zum anderen die Industriekeramik, die teilweise von der Entwicklung in der Stahlbranche abhängig ist. Auch hier ist ein Rückgang von 16 Prozent der Emissionen sicher überwiegend ein Abbild der Konjunktur als das Ergebnis klimaschonender Maßnahmen. Bei der Herstellung von Zellstoff und Papier ist der Rückgang mit 9,5 Prozent geringer und könnte sowohl mit Energieeinsparungen als auch geringerer Produktion erzielt worden sein. Die Gesamtemissionen der Raffinerien blieben auf dem Niveau des Vorjahres. Die Ursache liegt vermutlich darin, dass einige Betreiber versucht haben, durch Vollauslastung und damit verbundene Kostendegression Marktanteile zu gewinnen oder zu halten, um so die konjunkturelle Flaute zu überbrücken. Das nationale Budget des Emissionshandelssektors für die Handelsperiode 2008-2012 beträgt jährlich 451,86 Millionen Emissionszertifikate. Davon hat die DEHSt rund 390 Millionen Zertifikate kostenlos an die Anlagen ausgegeben. Unter Berücksichtigung der rund 41 Millionen Zertifikate, die zusätzlich jährlich versteigert werden, entspricht die aus dem deutschen Budget im Markt verfügbare Menge von circa 431 Millionen Zertifikaten etwa der gesamten Jahresemission in 2009 von gut 428 Millionen Tonnen CO 2 . Damit ist der Emissionshandelssektor in Deutschland im europäischen Markt eher Verkäufer als Käufer. Wird hierbei noch die Nutzung von Zertifikaten aus internationalen Klimaschutzprojekten (CDM für Projekte zwischen Industriestatten und Entwicklungsländern - JI für Projekte zwischen Industriestaaten) berücksichtigt, ergibt sich für Deutschland ein leichter Überschuss. Insgesamt sind Betreiber von 1654 Anlagen der Energiewirtschaft und der emissionsintensiven Industrie in Deutschland verpflichtet, die Emissionen jährlich zu melden. Bis zum 30. April 2010 müssen diese Betreiber die entsprechende Zertifikatsmenge bei der DEHSt abgeben und damit die Emissionen ihrer Anlagen im Jahr 2009 ausgleichen. Die Meldungen der emissionshandelspflichtigen Unternehmen für 2009 sind dem UBA bis zum 31. März 2010 übermittelt worden. Das UBA hat mit der Prüfung der zu Grunde liegenden Emissionsberichte der Unternehmen begonnen. Detaillierte Auswertungen zu den Kohlendioxid-Emissionen des Emissionshandelssektors stellt das UBA in Kürze im Internetportal der DEHSt bereit. Die geprüften Emissionen sowie die Abgaben jeder einzelnen Anlage sind ab 15. Mai 2010 in den öffentlichen Berichten des Registers einsehbar.
Hydratation von stückigem Branntkalk (CaO): Die Hydratation stückigen Branntkalks wird in der Technik als „Löschen" bezeichnet. Bei der stark exothermen Reaktion wird Kalk zu Calciumhydroxid umgesetzt CaO + H2O --> Ca(OH)2 + 65 kJ/mol. Hier wird das Trockenlöschen betrachtet, Calciumhydroxid erhält man dabei als trockenes Pulver. Durch die bei der Reaktion freiwerdende Wärme wird das überschüssige Reaktionswasser verdampft (#2). Die hier zugrundegelegten Daten beziehen sich auf eine Technologie im deutschen Raum für das Jahr 1993 (#1). Bezogen auf eine Tonne gelöschten Kalk müssen 758 kg stückiger Branntkalk in den Prozess eingebracht werden. Das zugesetzte Wasser wird per Definition als Wasserinanspruchnahme bilanziert, auch wenn es zum größten Teil in das Produkt eingeht (#1). Weitere Roh- und Hilfsstoffe werden nicht berücksichtigt. Trotz der stark exothermen Reaktion besteht ein geringer Strombedarf von 6 MJ/t gelöschten Kalk bei diesem Prozess zum Mischen und Rühren der Suspension (#1). Es werden bezogen auf die Tonne gelöschten Kalk 379 kg Hydratationswasser eingebracht. Das überschüssige Wasser aus dem Prozess verdampft (#1), Das eingesetzte Wasser geht entweder in das Produkt ein oder wird verdampft. Folglich fällt bei diesem Prozess kein Abwasser an. Reststoffe: Bei diesem Prozess, bei dem es sich lediglich um einen Mischer handelt, fallen keine Reststoffe an. Auslastung: 5000h/a Brenn-/Einsatzstoff: Baustoffe gesicherte Leistung: 100% Jahr: 2015 Lebensdauer: 20a Leistung: 1t/h Nutzungsgrad: 132% Produkt: Grundstoffe-Sonstige
Hydratation von stückigem Branntkalk (CaO): Die Hydratation stückigen Branntkalks wird in der Technik als „Löschen" bezeichnet. Bei der stark exothermen Reaktion wird Kalk zu Calciumhydroxid umgesetzt CaO + H2O --> Ca(OH)2 + 65 kJ/mol Hier wird das Trockenlöschen betrachtet, Calciumhydroxid erhält man dabei als trockenes Pulver. Durch die bei der Reaktion freiwerdende Wärme wird das überschüssige Reaktionswasser verdampft (#2). Die hier zugrundegelegten Daten beziehen sich auf eine Technologie im deutschen Raum für das Jahr 1993 (#1). Allokation: keine Datengenese: Massenbilanz: Bezogen auf eine Tonne gelöschten Kalk müssen 758 kg stückiger Branntkalk in den Prozess eingebracht werden. Das zugesetzte Wasser wird per Definition als Wasserinanspruchnahme bilanziert, auch wenn es zum größten Teil in das Produkt eingeht (#1). Weitere Roh- und Hilfsstoffe werden nicht berücksichtigt. Energiebedarf: Trotz der stark exothermen Reaktion besteht ein geringer Strombedarf von 6 MJ/t gelöschten Kalk bei diesem Prozess zum Mischen und Rühren der Suspension (#1). Prozessbedingte Luftemissionen: Neben den über die Vorketten berücksichtigten Emissionen aus der Strombereitstellung werden keine weiteren Luftemissionen bilanziert; auch nicht die 137 kg/t Wasserdampf, die der Prozess freigesetzt (#1). Wasserinanspruchnahme: In den Prozess werden bezogen auf die Tonne gelöschten Kalk 379 kg Hydratationswasser eingebracht. Das überschüssige Wasser aus dem Prozess verdampft (#1, #2). Abwasserinhaltsstoffe: Das eingesetzte Wasser geht entweder in das Produkt ein oder wird verdampft. Folglich fällt bei diesem Prozess kein Abwasser an. Reststoffe: Bei diesem Prozess, bei dem es sich lediglich um einen Mischer handelt, fallen keine Reststoffe an. Auslastung: 5000h/a Brenn-/Einsatzstoff: Baustoffe gesicherte Leistung: 100% Jahr: 2000 Lebensdauer: 20a Leistung: 1t/h Nutzungsgrad: 132% Produkt: Grundstoffe-Sonstige
Bergbau und Aufbereitung zum Kupferkonzentrat: Die Abbaumethoden des Kupfers sind abhängig von der Zusammensetzung insbesondere dem Kupfergehalt der Erze. Während der durchschnittliche Kupfergehalt der abgebauten Erze um 1900 noch ca. 5 % betrug, liegt er heute unter 1 % (Ullmann 1986). Dabei variiert er je nach Lagerstätte zwischen 0,1 und 6 % (ETH 1995). Aufgrund der hohen Affinität des Kupfers zum Schwefel wird das Kupfer bei den meisten primären Lagerstätten in sulfidischer Form gebunden. Weit mehr als 80 % der Primärkupferproduktion werden aus sulfidischen Erzen gewonnen. Weiterhin werden in geringerem Umfang oxidische, silikatische und bituminöse Erze zur Kupferproduktion gefördert. In der vorliegenden Arbeit wird lediglich auf die Gewinnung von Primärkupfer aus sulfidischen Erzen eingegangen. Neben den Erzen werden auch Altkupfer und andere Sekundärmaterialien zur Produktion von Sekundärkupfer verwendet. Grundsätzlich lassen sich vier Abbauarten unterscheiden: der Tagebau, der Untertagebau, die in-situ-Laugung und der Abbau ozeanischer Vorkommen (derzeit noch nicht wirtschaftlich betrieben). Dabei dominiert der Tagebau die weltweite Erzgewinnung (ETH 1995). Der Untertagebau kann heute fast nur noch bei Reicherzen wirtschaftlich betrieben werden. Dem Abbau des Roherzes folgt eine Abtrennung der Gangart. Das Erz/Gangart-Verhältnis ist schon innerhalb einer Förderstätte starken Schwankungen unterworfen. Mögliche Verhältnisse liegen zwischen 1:1 und 1:12, so daß unter Umständen aufgrund dieser hohen Abweichung kupferreiche Erze mit ungünstigem Erz/Gangart-Verhältnis einen höheren Energieeinsatz beim Abbau verlangen, als Erze geringeren Kupfergehalts mit günstigerem Erz/Gangart-Verhältnis (KfA 1989). Das gängige Aufbereitungsverfahren nach dem Aufmahlen der Roherze ist die Flotation. Dabei lagern sich die Erzbestandteile an die Flotationsmittel an und werden in einer der Gangart entgegengesetzten Richtung abgeführt. Im Anschluß an die Flotation wird das Konzentrat getrocknet und kann zur Weiterverarbeitung abtransportiert werden. Das Konzentrat hat in der Regel eine Kupferkonzentration zwischen 25 und 35 %. Die Datenbasis für die vorliegende Studie bildet hauptsächlich die „Sachbilanz einer Ökobilanz der Kupfererzeugung aus primären und sekundären Vorstoffen, sowie der Verarbeitung von Kupfer und Kupferlegierungen zu Halbzeug und ausgewählten Produkten“ angefertigt von der Rheinisch Westfälischen Technnischen Hochschule Aachen, Institut für Metallhüttenwesen und Elektrometallurgie (RWTH-IME 1995) im Auftrag des Deutschen Kupfer Instituts (DKI). In ihr wird der Bergbau durch vier Vertreter jeweils eines Minentyps abgebildet. Bilanziert werden je ein Tagebau sowohl mit Reicherz als auch mit Armerz und je ein Untertagebau mit Reicherz und Armerz alle im Ausland. In Deutschland wird laut Metallstatistik seit 1990 keine eigene Bergwerksproduktion mehr betrieben (Metallstatistik 1995). Das Kupferkonzentrat zur Hüttenproduktion aus primären Rohstoffen wird also zu 100 % importiert. Die vier in der Studie des RWTH-IME bilanzierten Minen stellen 15 % der weltweiten Bergwerksproduktion dar. Der Anteil der einzelnen Minen wird gewichtet nach der Produktionsmenge berücksichtigt. Eine Extrapolation auf die gesamte Weltproduktion bzw. auf einen globalen Mittelwert ist anhand dieser Daten nicht möglich. Der in der vorliegenden Studie aufgeführte Wert ist damit nur als Näherungswert zu sehen. In den kommenden Monaten wird jedoch eine Studie des Bundesamtes für Geowissenschaften und Rohstoffe (BGR) in Zusammenarbeit mit dem Umweltbundesamt (UBA) erscheinen („Stoffmengenflüsse und Energiebedarf bei der Gewinnung ausgewählter mineralischer Rohstoffe, Maßnahmenempfehlungen für eine umweltschonende nachhaltige Entwicklung“), in der versucht wird, die globalen Kupferminen summarisch zu erfassen. Nach Auskunft des BGR nach einer vorläufigen Auswertung sind die in GEMIS verwendeten Daten trotz mangelnder Repräsentativität gemessen an der relativen Fehlermöglichkeit bei der Mittelwertbildung gut. Sie sind in einer ähnlichen Größenordnung wie die von der BGR gewonnenen Daten (BGR 1996). Da bei den vier bilanzierten Abbau-Standorten kein lokaler Bezug herzustellen ist, muß der Datensatz hierzu als generisch gelten. Es wird daher auch eine fiktive Transportstrecke des nach der Förderung aufbereiteten Konzentrats nach Deutschland angenommen. Ein lokaler Bezug für den Transport des Konzentrats nach Deutschland würde auch nur für einen bestimmten Zeitraum Sinn machen, da deutsche Verarbeiter periodisch ihre spezifischen Lieferverträge neu aushandeln und die Rohstoffe aus anderen Nationen und Regionen beziehen können (BGR 1996). Da über die spezifischen Konzentrat-Lieferanten und deren Minen keine hinreichenden Informationen vorliegen, muß der generische Bezug akzeptiert werden. Allokation: keine Genese der Kennziffern Als Bezugsgröße zur Bilanzierung der beschriebenen Prozeßschritte wurde entsprechend der Methodik von GEMIS eine Tonne trockener Konzentrat-Output gewählt. Massenbilanz: In Abhängigkeit von den Gehalten des Kupfers im Erz und im Konzentrat müssen in den einzelnen Gruben unterschiedliche Mengen Erz gefördert werden, dementsprechend fallen auch unterschiedliche Mengen Abraum und Berge an. Abraum und Berge werden unter den Reststoffen ausführlicher bilanziert. Im folgenden werden die zu fördernden Mengen Erz angegeben, die pro Tonne trockenes Konzentrat an den einzelnen Abbaustätten zu extrahieren sind. Tab.: Fördermengen der einzelnen Gruben und des gewichteten Mittels der Gruben bezogen auf eine Tonne trockenes Konzentrat (RWTH-IME 1995). Tiefbau(Reicherz) Tiefbau(Armerz) Tagebau(Reicherz) Tagebau(Armerz) gewichtetesMittel Gehalt Cu kg /t Erz 32 10 12,5 5 Gehalt Cukg/t Konz 270 305 350 350 Förderung Erz t/t Konz 8,4 30,5 28 70 30,2 Für die berücksichtigten 15 % der Weltproduktion können im Mittel 30.200 kg Erz pro Tonne gewonnenen Kupferkonzentrats angenommen werden. Zusätzlich muß die Abraummenge berücksichtigt werden, die bei der Förderung anfällt, um auf die Gesamtmenge bewegten Materials schließen zu können. Sie wird unter Reststoffen genauer bilanziert. Im gewichteten Mittel fallen 55,7 t Abraum an (RWTH-IME 1995). Somit ergibt sich eine Gesamtfördermenge von 85,9 t pro t trockenes Konzentrat . Energiebedarf: Der Energiebedarf bei der Förderung und Aufbereitung kommt durch die Abbauaggregate und die Transporte innerhalb der Mine sowie den elektrischen Energiebedarf zur Aufbereitung zustande. Für die in der Studie für das DKI untersuchten Minen wird der in der folgenden Tabelle dargestellte Energiebedarf angegeben. In GEMIS wird das gewichtete Mittel der Minen angesetzt. Tab.: Strom- und Dieselbedarf bei der Förderung und Aufbereitung der Erze zum Kupferkonzentrat bezogen auf eine Tonne trockenes Konzentrat (RWTH-IME 1995). Tiefbau(Reicherz) Tiefbau(Armerz) Tagebau(Reicherz) Tagebau(Armerz) gewichtetesMittel StrombedarfGJ/t Konz 2,29 3,73 3,36 5,73 3,54 DieselbedarfGJ/t Konz 0,67 1,26 3,37 5,32 2,70 Aus der Tabelle geht hervor, daß im Mittel mit einem Strombedarf von ca. 3,54 GJ/t trockenes Konzentrat ausgegangen werden kann. Weiterhin muß ein Dieselbedarf von 2,7 GJ/t berücksichtigt werden. Als Hilfsstoff wird dem Erz Branntkalk zugegeben. Im gewichteten Mittel sind ca. 80 kg pro Tonne trockenesKonzentrat zu berücksichtigen (RWTH-IME 1995). Betriebsstoffe: Als Betriebsstoffe bei der Förderung und Aufbereitung der Kupferkonzentrate werden von der RWTH-IME Sprengstoff und Mahlverschleiß bilanziert. Bezogen auf eine Tonne trockenes Kupferkonzentrat werden im gewichteten Mittel der Gruben 20 kg Sprengstoff eingesetzt und 14 kg Mahlverschleiß benötigt (RWTH-IME 1995). Mahlverschleiß wird in GEMIS als Aufblasstahl interpretiert. Prozeßbedingte Luftemissionen: Abgesehen von den bei der Energiebereitstellung auftretenden Luftemissionen (werden aus den vorgelagerten Prozeßketten bzw. über eine Verbrennungsrechnung erfaßt) werden keine weiteren prozeßbedingten Luftemissionen berücksichtigt. Emissionen aus der Nutzung des Sprengstoffs werden über die Prozeßkette des Sprengstoffs mitbilanziert. Wasserinanspruchnahme: Beim Abbau der Erze und deren Aufbereitung wird eine Wasserinanspruchnahme von 22 l/t trockenes Konzentrat bilanziert, die hauptsächlich durch die Aufbereitung (Flotation) verursacht wird (RWTH-IME 1995). Eigentlich ist der Wasserbedarf der Gruben mit 4-10 m³/t Roherz sehr viel größer. Allerdings wird ein Großteil des Wassers im Kreislauf geführt. Bilanziert wird daher nur der zu ersetzende Verlust (RWTH-IME 1995). Abwasserinhaltsstoffe: Weder über die Abwassermengen noch über deren Inhaltsstoffe liegen Informationen vor. Allerdings ist das nicht dahingehend zu interpretieren, daß kein belastetes Abwasser anfällt. So wird das Abwasser beispielsweise mit den ebenfalls nicht bilanzierten Flotationsmitteln belastet. Reststoffe: Als Reststoffe der Gewinnung der Erze und der Aufbereitung zum Konzentrat werden Abraum- und Bergemengen bilanziert. Diese sind in den folgenden Tabellen für die einzelnen Gruben und als gewichtetes Mittel dargestellt. Tab.: Abraummengen der einzelnen Gruben und das gewichtete Mittel der Gruben bezogen auf eine Tonne trockenes Konzentrat (RWTH-IME 1995). Tiefbau(Reicherz) Tiefbau(Armerz) Tagebau(Reicherz) Tagebau(Armerz) gewichtetesMittel Abraumt/t Konz 0 1,8 102,2 26,6 55,7 Tab.: Bergemengen der einzelnen Gruben und das gewichtete Mittel der Gruben bezogen auf eine Tonne trockenes Konzentrat (RWTH-IME 1995). Tiefbau(Reicherz) Tiefbau(Armerz) Tagebau(Reicherz) Tagebau(Armerz) gewichtetesMittel Berget/t Konz 7,8 34,8 32,2 49 30 In GEMIS werden 55,7 t Abraum und 30 t Berge bezogen auf eine Tonne trockenes Konzentrat bilanziert. Auslastung: 5000h/a Brenn-/Einsatzstoff: Ressourcen gesicherte Leistung: 100% Jahr: 2000 Lebensdauer: 20a Leistung: 1t/h Nutzungsgrad: 11,9% Produkt: Metalle - NE
Origin | Count |
---|---|
Bund | 114 |
Land | 3 |
Type | Count |
---|---|
Chemische Verbindung | 8 |
Förderprogramm | 63 |
Text | 45 |
unbekannt | 1 |
License | Count |
---|---|
geschlossen | 18 |
offen | 60 |
unbekannt | 39 |
Language | Count |
---|---|
Deutsch | 113 |
Englisch | 10 |
Resource type | Count |
---|---|
Archiv | 39 |
Datei | 39 |
Dokument | 44 |
Keine | 56 |
Webseite | 18 |
Topic | Count |
---|---|
Boden | 101 |
Lebewesen & Lebensräume | 74 |
Luft | 69 |
Mensch & Umwelt | 117 |
Wasser | 83 |
Weitere | 106 |