Der Bausektor stellt eine bedeutende CO 2 Emissionsquelle dar, die im Zuge der Energiewende oft übersehen wird. Beton stellt den weltweit größten industriellen Materialstrom überhaupt dar und generiert jährlich globale CO 2 Emissionen von rund 2,5 Milliarden Tonnen – mehr als doppelt so viel wie der globale Flugverkehr. In Berlin und Brandenburg wurden allein im Jahr 2019 durch den Wohnungsbau betonbedingt schätzungsweise rund 250.000 Tonnen CO 2 emittiert. Gleichzeitig trägt die Bauwirtschaft wesentlich zur Ressourcenbeanspruchung bei. Mineralische Bauabfälle stellen den mit Abstand größten Abfallmassenstrom dar, der entsprechend aufbereitet als wichtige Rohstoffquelle zur Baustoffproduktion dienen könnte. Um die hohen Treibhausgas-Emissionen und Ressourcenverbräuche im Bausektor zu reduzieren, setzt das Land Berlin auf den Einsatz von nachhaltigen Baustoffen sowie auf zirkuläres Bauen. In diesem Rahmen hat sich die Berliner Senatsverwaltung für Mobilität, Verkehr, Klimaschutz und Umwelt das Ziel gesetzt, die Klimabilanz von ressourcenschonendem Recycling-Beton („RC-Beton“) weiter zu verbessern und über zwei Projektphasen hinweg das Projektkonsortium „CORE – CO 2 -reduzierter R-Beton“ bestehend aus den Unternehmen neustark AG, Heim Recycling und Berger Beton sowie dem wissenschaftlichen Partner ifeu Institut Heidelberg nennenswert finanziell unterstützt und mit öffentlichkeitswirksamen Maßnahmen begleitet. Kern des Vorhabens war die von der neustark AG entwickelte Technologie, die es erlaubt, zu RC-Gesteinskörnungen aufbereiteten Altbeton mit atmosphärischem CO 2 zu beaufschlagen. Im neustark-Prozess wird gasförmiges CO 2 über ein spezielles Injektionssystem in Kontakt mit gebrochenem Altbeton gebracht. In Verbindung mit dem im Altbeton vorhandenen Calcium wandelt sich das CO 2 dabei zu Kalkstein um, in Form von Kalzit. Das entstehende Material kann anschließend in bestimmten Betonrezepturen verwendet werden und sowohl natürliche Gesteinskörung sowie auch Zement in Teilen ersetzen. Durch die Beaufschlagung durch CO 2 und den Ersatz des CO 2 -intensiven Zements entsteht so ein ressourcenschonender RC-Baustoff, der gleichzeitig als CO 2 -Senke dient. Mit der ersten Projektphase im Dezember 2020 bis April 2021 wurde im Labormaßstab die Grundlage zur Entwicklung des Baustoffes gelegt und die dabei gewonnenen Erkenntnisse wurden aus ökologischer und ökonomischer Sicht bilanziert und bewertet. Dazu wurden durch die Heim-Gruppe gebrochener Altbeton sowie RC-Gesteinskörnungen zur Verfügung gestellt, welche durch die neustark AG mit CO 2 beaufschlagt und karbonatisiert wurden. Anschließend wurden aus diesem Material sowie aus nicht karbonatisiertem Referenzmaterial im Labor der Firma Berger Betonrezepturen mit erhöhten Recyclinggehalten und reduzierten Zementanteilen hergestellt. Dabei wurden sowohl aktuelle als auch zukünftige regulatorische Rahmenbedingungen für den RC-Beton (insbesondere Verwendung von Brechsanden 0-2 mm) beachtet. Ergänzend wurde in dieser Projektphase für die Bereitstellung von verflüssigtem CO 2 aus Berliner Biogasquellen eine Kostenrechnung erstellt und durch das ifeu Institut Heidelberg für die Gesamtlösung eine vereinfachte Ökobilanz erstellt. Die Ergebnisse der ersten Projektphase bestätigten das ökologische Potenzial des Verfahrens. In der zweiten Projektphase im Mai 2021 bis Dezember 2022 erfolgte ein erster Schritt in die praktische Umsetzung und die großmaßstäbliche Anwendung. Dafür wurde in der Aufbereitungsanlage für mineralische Bauabfälle der Firma Heim RC-Gesteinskörnung aus reinem Altbeton (Typ 1) mit Hilfe einer mobilen Anlage der neustark AG mit CO 2 beaufschlagt (siehe Titelbild). Die Anlage wurde aus der Schweiz angeliefert, wo bereits mehrere solcher Maschinen im kommerziellen Betrieb sind. Zudem ist es erstmalig gelungen, für diese karbonatisierte RC-Gesteinskörnung eine Zertifizierung und Zulassung als Zuschlag für die Verwendung im Transportbeton zu bekommen. Hier gilt das gleiche Regelwerk (DIN EN 12620) wie für die Verwendung von Kies oder Splitt. Diese so beaufschlagte Masse an RC-Gesteinskörnung wurde nach erfolgreicher Eignungsprüfung und Zulassung für die Herstellung von ca. 200 m 3 Transportbeton genutzt. Parallel wurde durch die vom Umweltforschungsinstitut ifeu Heidelberg durchgeführte Bilanzierung gezeigt, dass mit den entwickelten Rezepturen eine relevante Umweltentlastung erzielt werden kann und dies über alle betrachteten Umweltwirkungskategorien hinweg. Der Aufwand der Bereitstellung des CO 2 und der Beaufschlagung der RC-Gesteinskörnung steht in einem guten Verhältnis zu den damit verbundenen Umwelteinsparungen. Diese resultieren zum einen aus dem reduzierten Einsatz von Zement und zum anderen aus der über die Karbonatisierung erzielten CO 2 -Bindung. Die Berechnungen zeigen, dass im Vergleich zur Referenzprobe durch die Behandlung der RC-Gesteinskörnung die Klimawirksamkeit des RC-Betons um bis zu 20 Prozent gesenkt werden kann . Die Erfolge hinsichtlich Klima- und Ressourcenschutz sind umso größer, je höher der Anteil an RC-Gesteinskörnung in den Rezepturen und hier auch gerade der feineren Körnungen, die eine höhere Bindungsrate für CO 2 aufweisen. Das Vorhaben konnte ebenfalls zeigen, dass diese Erfolge nicht zu Lasten der Produkteigenschaften des Betons gehen. Die RC-Gesteinskörnungen als Rohstoff wie letztlich auch der Transportbeton selbst erfüllen alle Anforderungen der Regelwerke und weisen die üblichen Eigenschaften auf. Im letzten Schritt wurden die 200 m 3 Transportbeton im Oktober und November 2022 in einem Bauabschnitt der Quartiersentwicklung Friedenauer Höhe in Berlin-Friedenau, die im Joint Venture mit der OFB Projektentwicklung und Instone Real Estate realisiert wurde, eingesetzt. Der Einsatz erfolgte im Bauabschnitt V als Aufbeton auf Geschossdecken, in der Betonierung des Aufzugschachts und von Wänden. Der Einsatz des RC-Betons wurde bei einem Baustellentermin vorort am 07.10.2022 vorgestellt, zu dem u. a. im Rahmen eines gemeinsam von der Architektenkammer Berlin und der Senatsumweltverwaltung des Landes Berlin ausgerichteten Fachdialogs zum zirkulären Bauen breit eingeladen wurde. Den Teilnehmenden wurde dabei die Möglichkeit zur Besichtigung und zum fachlichen Austausch gegeben. Durch den Einsatz im Bauvorhaben in Berlin-Friedenau konnte der Nachweis erbracht werden, dass das angewandte Verfahren auch in der Praxis funktioniert und die entsprechenden Umweltentlastungen im kommerziellen Betrieb erreicht werden können. Darauf aufbauend soll der Baustoff über das erste Bauvorhaben in Berlin-Friedenau hinaus durch weitere Vorhaben in Berlin allgemein bekannt und eingeführt werden. Bei einem flächendeckenden Einsatz der im CORE-Projekt entwickelten und in der Praxis erprobten Betonrezepturen ließen sich jährlich rund 90.000 Tonnen CO 2 einsparen. Das entspricht in etwa den jährlichen Pro-Kopf Emissionen von 10.000 Deutschen. Die im CORE-Pilotvorhaben demonstrierte Praxistauglichkeit der Technologie hat die am Projekt beteiligten Akteure überzeugt. Es bestehen bereits 10 Anlagen (verschiedener Bauarten) der Firma neustark in der Schweiz, die von deren Kunden betrieben werden und CO 2 speichern. Im Jahr 2023 hat Heim erstmalig auch in Deutschland eine entsprechende Anlageninvestition vorgenommen, so dass RC-Beton, der zusätzlich als CO 2 -Senke fungiert, nun auf dem Berliner Markt zur Verfügung steht. Der feierlichen Eröffnung am 28.09.2023 in Berlin Marzahn wohnten über 100 Gäste vor Ort bei, die an einer Führung und Demonstration der ersten CO 2 -Speicheranlage in Deutschland teilnahmen. Die Eröffnung durch neustark und HEIM wurde begleitet durch Kurzimpulse aus der Politik durch Britta Behrendt, Staatssekretärin für Klimaschutz und Umwelt der Senatsverwaltung Mobilität, Verkehr, Klimaschutz und Umwelt, Dr. Anna Hochreuter, Abteilungsleiterin der Senatsverwaltung für Wirtschaft, Energie und Betriebe sowie Dr. Rolf Bösinger, Staatssekretär des Bundesministeriums für Wohnen, Stadtentwicklung und Bauwesen. Neustark AG HEIM – Gruppe Berger Beton ifeu Heidelberg Weitere Informationen Nachhaltiges Bauen in der öffentlichen Beschaffung Nachbericht Fachdialog zirkuläres Bauen am Beispiel ressourcenschonender Beton Leitfaden für nachhaltiges Bauen des Bundesministeriums für Wohnen, Stadtentwicklung und Bauwesen PM der SenMVKU vom 07.10.2022 zum erstmaligen Einsatz von ressourcenschonendem und klimaverträglicherem Transportbeton in Berliner Bauvorhaben Friedenauer Höhe Berlin fördert ressourcenschonendes, nachhaltiges Bauen über die öffentliche Beschaffung Das Berliner Ausschreibungs- und Vergabegesetz (BerlAVG) verpflichtet öffentliche Auftraggeber der unmittelbaren Berliner Landesverwaltung bei der Vergabe von Bauleistungen ab einem geschätztem Auftragswert von 50.000 Euro ökologische Kriterien zu berücksichtigen und umweltfreundlichen und energieeffizienten Produkten, Materialien und Verfahren den Vorzug zu gegeben. Wesentliches Instrument zur Umsetzung dieser Vorgabe ist die Verwaltungsvorschrift Beschaffung und Umwelt (VwVBU). Die Federführung für die Entwicklung von Vorschlägen an den Senat zur Fortentwicklung der VwVBU liegt bei der SenMVKU. Verwaltungsvorschrift Beschaffung und Umwelt – VwVBU
Die verlinkte Webseite enthält Informationen der Website "ETOX: Informationssystem Ökotoxikologie und Umweltqualitätsziele" des Umweltbundesamtes zur ökotoxikologischen Verbindung Calcium. Stoffart: Stoffklasse.
Die verlinkte Webseite enthält Informationen der Website "ETOX: Informationssystem Ökotoxikologie und Umweltqualitätsziele" des Umweltbundesamtes zur ökotoxikologischen Verbindung Calcium, nicht pyrophor. Stoffart: Einzelinhaltsstoff. Aggregatzustand: fest. Farbe: weiß.
Die verlinkte Webseite enthält Informationen der Website "ETOX: Informationssystem Ökotoxikologie und Umweltqualitätsziele" des Umweltbundesamtes zur ökotoxikologischen Verbindung Pimelic acid, calcium salt. Stoffart: Komponentenstoff. Aggregatzustand: fest. Farbe: weiß.
Das Projekt "Wasserstoffspeicher" wird vom Umweltbundesamt gefördert und von Universität Konstanz, Fakultät für Physik durchgeführt. Neue billige, leichte Wasserstoffspeicher. Zur Zeit Untersuchung von Mg- und Ca-Verbindungen. Ca-Mg-Ni-System.
Das Projekt "Nanofiltration zur Grundwasseraufbereitung und Sulfatabscheidung bei der Trinkwasseraufbereitung am Beispiel von kippenbelastetem Grundwasser in einem Braunkohlentagebaurevier" wird vom Umweltbundesamt gefördert und von RWTH Aachen University, Aachener Verfahrenstechnik, Lehrstuhl für Chemische Verfahrenstechnik durchgeführt. Erhöhte Konzentrationen an Sulfat im Trinkwasser können negative Auswirkungen auf die Gesundheit der Konsumenten haben und führen zu einem erhöhten Risiko für Korrosionen im Leitungsnetz. Aufgrund dessen schreibt die Trinkwasserverordnung einen Grenzwert von 240 mg/l vor. Erhöhte Konzentrationen an Sulfat im Grundwasser, die eine spezielle Aufbereitungstechnik erfordern, kommen vor allem durch den Einfluss von Tagebauaktivitäten zustande. Im ausgehobenen Kippenmaterial kommt es zur Oxidation des Pyrits, was nach der Verfüllung der Gruben zu einem Anstieg der Sulfat-, Calcium- und Schwermetallkonzentration im Grundwasser führt. In betroffenen Grundwasservorkommen in Deutschland wurden Konzentrationen von bis zu 2500 mg/l Sulfat gemessen. Die Nanofiltration ist eine mögliche Aufbereitungstechnologie, die die Grundwassernutzung in derart beeinträchtigten Standorten auch nach der Verfüllung der Gruben erlaubt. Es wird erwartet, dass die Nanofiltration im Vergleich zu den anderen in Frage kommenden Technologien Ionenaustauscher, Destillation, Elektrodialyse und Umkehrosmose vor allem bei höheren Sulfatkonzentration in der Größenordnung >1000 mg/l das wirtschaftlichste Verfahren darstellt. In dem Projekt Nanofiltration zur Sulfatabscheidung bei der Trinkwasseraufbereitung wird die Aufbereitung mittels Nanofiltration experimentell im Labor- und Pilotmaßstab untersucht. Es wird dabei schwerpunktmäßig ein Standort betrachtet, der im Einflussgebiet des Braunkohletagebaureviers Inden I liegt und derzeit Sulfatkonzentrationen von 1000-1500 mg/l in einem Trinkwasserbrunnen aufweist. Neben der Untersuchung der Nanofiltration an sich wird eine Konzentrataufbereitung mittels CaSO4-Kristallisation auf ihre Effektivität geprüft.
Das Projekt "Die Aufnahme von Calciumchlorid in Apfelfrüchte: Der Einfluss der Entwicklungsstadien der Früchte und die Mischung mit Fungiziden auf die Aufnahmeraten" wird vom Umweltbundesamt gefördert und von Universität Hannover, Institut für Gemüse- und Obstbau, Abteilung Gemüsebau durchgeführt. Die Versorgung der Apfelfrüchte mit Ca2+ ist oft unzureichend, was zu physiologischen Erkrankungen, erhöhter Atmungsaktivität und zu Anfälligkeit gegen Krankheiten führen kann. Diese Probleme lassen sich nicht durch Maßnahmen im Bereich Wurzel/Boden lösen, so daß Applikation von Calciumchlorid oder Calciumnitratlösungen auf die Früchte weltweit praktiziert werden. Zahlreiche Spritzungen werden empfohlen, um den Ca-Gehalt der Früchte meßbar zu erhöhen, und das Auftreten der Stippigkeit zu reduzieren. Trotzdem ist die Wirkung oft unzureichend und deshalb werden außerhalb Europas die Früchte nach der Ernte mit CaCl2-Lösungen infiltriert. Dieses Verfahren ist außerordentlich effektiv, darf aber in Deutschland und anderen europäischen Ländern nicht angewandt werden. Damit bleibt die Applikation von Calciumsalzlösungen durch Spritzung auf die Früchte vor der Ernte die einzige Alternative. Obwohl es hunderte von Veröffentlichungen zum Thema Stippigkeit gibt, ist die Aufnahme in Früchte bisher nie systematisch untersucht worden. Um zu klären, wann und wie häufig gespritzt werden muß, sind solche Versuche aber unerläßlich. Im Wesentlichen geht es um die Beantwortung der folgenden Fragen: (1) Wie ändert sich die Geschwindigkeit der Aufnahme von CaCl2 im Verlauf der Fruchtentwicklung? Wie viele Behandlungen sind erforderlich und welche Zeitpunkte sind optimal? (2) Welchen Einfluß haben Schorffungizide auf die Calciumaufnahme? Die Literaturrecherche ergab, daß zu diesen Fragen bisher keine systematischen und quantitativen Untersuchungen durchgeführt worden sind. Eigene Vorversuche haben ergeben, daß viele Zusatzstoffe die Calciumaufnahme drastisch reduzieren.
Das Projekt "Teilvorhaben: Alterungsuntersuchungen und Verbesserung der Bindemitteleigenschaften" wird vom Umweltbundesamt gefördert und von CASEA GmbH durchgeführt. Mit der Erforschung eines geschäumten Calciumsulfatbaustoffes und der dafür geeigneten Applikationstechnolgien soll der Nachfrage nach neuen Baustoffen / Materialien und deren Einsatz entgegen gekommen werden. Zwei der vielfältigen Nutzungsmöglichkeiten sollen im Rahmen dieses Projektes erschlossen werden. Dabei handelt es sich zum einen um die Herstellung einer horizontalen Dämmschicht im Fußbodenbereich, die auch Brandschutzaufgaben erfüllen kann und unter anderem zur Kaltdachsanierung geeignet ist. Zum anderen soll der neue Schaumbaustoff der Verfüllung von sanierungsbedürftigem sulfathaltigen Mauerwerk dienen und damit erstmals einen vollkommen sulfatverträglichen Baustoff darstellen. Gipsbaustoffe unterliegen durch Einflüsse aus Lagerung, Temperatur und Luftfeuchte einer sogenannten 'Alterung', das heißt es verändern sich deren Eigenschaften über die Zeit nach der Herstellung. Im Wesentlichen davon betroffen ist die Haltbarkeit und damit die Lagerdauer. Es wurde bislang noch keine definierte Alterung von Gipsbindemitteln technisch umgesetzt. Ziel des Teilprojektes ist, diese Alterung zu erforschen und umzusetzen. Hierzu dient das umfassende Arbeitspaket des Teilvorhabens Alterungsuntersuchungen. Dazu gehören das Testen unterschiedlicher Alterungsaggregate und die ausführliche Untersuchung der entstandenen gealterten Bindemittel. Für die Überwachung der Qualitätskriterien und Verfügbarkeit für die verschiedensten Anwendungen ist CASEA ebenfalls zuständig. Die künstliche Alterung und die Abstimmung der Gipsbindemittel zielt auf die radikale Reduzierung des Wasseranspruches ab. CASEA obliegt die Durchführung der wichtigsten bindemittelseitigen Maßnahmen zum Erreichen dieses Forschungszieles. Diese Maßnahmen sind 1. die künstliche Alterung und 2. die Optimierung des Kornbandes sowie 3. die Erforschung eines Bindemittels mit erhöhter innerer Wasserbindung (EIW).
Das Projekt "Teilvorhaben: Erforschung und labortechnische Erprobung von Schaumbaustoffmischungen" wird vom Umweltbundesamt gefördert und von Materialforschungs- und -prüfanstalt an der Bauhaus-Universität Weimar durchgeführt. Im Verbundvorhaben werden neue Baustoffe / Materialien - geschäumte Calciumsulfatbaustoffe (Gipsbaustoffe) - und die dafür geeigneten Applikationstechnologien sowie deren Einsatzmöglichkeiten erforscht. Zwei der vielfältigen Einsatzmöglichkeiten sollen im Rahmen dieses Projektes erschlossen werden. Dabei handelt es sich zum einen um die Herstellung einer horizontalen Dämmschicht im Fußbodenbereich, die auch Brandschutzaufgaben erfüllen kann und unter anderem zur Kaltdachsanierung geeignet ist. Zum anderen soll der neue Schaumbaustoff der Verfüllung von sanierungsbedürftigem sulfathaltigen Mauerwerk dienen und damit erstmals einen vollkommen sulfatverträglichen Baustoff darstellen. Im Teilvorhaben werden Schaumbaustoffsysteme erforscht sowie deren Technologien zur Herstellung und Verarbeitung erarbeitet. Es ergeben sich folgende wissenschaftlich/technischen Arbeiten: Es werden Schäume für den Einsatz in Calciumsulfatbaustoffen auf der Basis von durch die Forschungspartner bereitgestellten Schaumbildnern, Schaumstabilisatoren und Schaumerzeugern erforscht. Die Zusammenführung von Schaum und Gipsleim zu einem Zweikomponentensystem zur Erzeugung von Schaumbaustoffmischungen wird erarbeitet. Sowohl die Eigenschaften von erhärteten geschäumten Gipsbaustoffen als auch die Zusammenhänge zwischen den Schaumbaustoffmischungen (Frischmörtel) und den erreichbaren Schaumbaustoffeigenschaften werden erforscht. Aus diesen Ergebnissen werden Schlussfolgerungen für die technologischen Prozesse und speziellen Anwendungen abgeleitet.
Das Projekt "AVA cleanphos" wird vom Umweltbundesamt gefördert und von Universität Hohenheim, Institut für Agrartechnik (440), Fachgebiet Konversionstechnologie und Systembewertung nachwachsender Rohstoffe (440f) durchgeführt.
Origin | Count |
---|---|
Bund | 31 |
Land | 1 |
Type | Count |
---|---|
Chemische Verbindung | 3 |
Förderprogramm | 28 |
Text | 1 |
License | Count |
---|---|
geschlossen | 4 |
offen | 28 |
Language | Count |
---|---|
Deutsch | 29 |
Englisch | 3 |
Resource type | Count |
---|---|
Keine | 26 |
Webseite | 6 |
Topic | Count |
---|---|
Boden | 21 |
Lebewesen & Lebensräume | 24 |
Luft | 21 |
Mensch & Umwelt | 32 |
Wasser | 22 |
Weitere | 32 |