API src

Found 50 results.

Related terms

GEMAS – Geochemische Kartierung der Acker- und Grünlandböden Europas, Einzelelementkarten, Ce - Cer

GEMAS (Geochemical Mapping of Agricultural and Grazing Land Soil in Europe) ist ein Kooperationsprojekt zwischen der Expertengruppe „Geochemie“ der europäischen geologischen Dienste (EuroGeoSurveys) und Eurometeaux (Verbund der europäischen Metallindustrie). Insgesamt waren an der Durchführung des Projektes weltweit über 60 internationale Organisationen und Institutionen beteiligt. In den Jahren 2008 und 2009 wurden in 33 europäischen Ländern auf einer Fläche von 5 600 000 km² insgesamt 2219 Ackerproben (Ackerlandböden, 0 – 20 cm, Ap-Proben) und 2127 Grünlandproben (Weidelandböden, 0 – 10 cm, Gr-Proben) entnommen. In den Proben wurden 52 Elemente im Königswasseraufschluss, 41 Elemente als Gesamtgehalte sowie TC und TOC bestimmt. Ergänzend wurde in den Ap-Proben zusätzlich 57 Elemente in der mobilen Metallionenfraktion (MMI®) sowie die Bleiisotopenverhältnisse untersucht. Alle analytischen Untersuchungen unterlagen einer strengen externen Qualitätssicherung. Damit liegt erstmals ein qualitätsgesicherter und harmonisierter geochemischer Datensatz für die europäischen Landwirtschaftsböden mit einer Belegungsdichte von einer Probe pro 2 500 km² vor, der eine Darstellung der Elementgehalte und deren Bioverfügbarkeit im kontinentalen (europäischen) Maßstab ermöglicht. Die Downloaddateien zeigen die flächenhafte Verteilung der mit verschiedenen Analysenmetoden bestimmten Elementgehalte in Form von farbigen Isoflächenkarten mit jeweils 7 und 72 Klassen.

Implikationen der Marktregulierung im Kohlenstoffmarkt

Um den wachsenden Anforderungen an Handelsmärkte gerecht zu werden, hat die EU schrittweise eine Reihe von Regelungen im Bereich der Marktaufsicht angepasst und erweitert, die sich auch auf den EU-Emissionshandel auswirken. Die bedeutendste Änderung für den EU-Emissionshandel ist dabei die Einordnung von Emissionsrechten1 unter den Begriff der Finanzinstrumente. Dadurch wird der Emissionshandel in Zukunft grundsätzlich den in der europäischen Finanzmarktrichtlinie (MiFID II; Markets in Financial Instruments Directive) festgelegten Regularien der Finanzmarktordnung unterfallen. Neben MiFID II wurden auch die Regelungen gegen Marktmissbrauch (CRIM-MAD/MAR; Directive on Criminal Sanctions for Market Abuse/Regulation on Market Abuse) sowie Regelungen zur Verhinderung von Geldwäsche und Terrorismusfinanzierung (sogenannte 4. Anti-Geldwäsche Richtlinie) überarbeitet. Zudem wurde mit dem Erlass der Verordnung über OTCDerivate, zentrale Gegenparteien und Transaktionsregister (EMIR; European Market Infrastructure Regulation) ein umfangreiches Regelwerk zur Regulierung des Derivate-Markts geschaffen. Bis auf die 4. Anti-Geldwäsche Richtlinie sind alle Regelwerke bereits in Kraft getreten. Soweit möglich, werden die neuen Regelungen sowie ihre potentiellen Auswirkungen auf die einzelnen Marktteilnehmer und Marktplätze in diesem Papier zusammenfassend dargestellt, diskutiert und vorläufig bewertet. Die konkrete Ausgestaltung einiger insbesondere auch für den Emissionshandel relevanter Punkte der MiFID II sowie der MAR befindet sich derzeit noch in einem Konsultations- und Gesetzgebungsprozess unter Koordination der ESMA (European Securities and Markets Authority), weshalb eine abschließende Beurteilung der Änderungen des regulatorischen Rahmens in diesem Papier nur bedingt möglich ist. Die Vorschriften der MiFID II werden ab 2017 europaweit Geltung finden. Quelle: Forschungsbericht

Bindungsform von Cm(III) und Eu(III) in menschlichen Biofluiden (Speichel, Urin)

Das Projekt "Bindungsform von Cm(III) und Eu(III) in menschlichen Biofluiden (Speichel, Urin)" wird vom Umweltbundesamt gefördert und von Helmholtz-Zentrum Dresden-Roßendorf e.V., Institut für Ressourcenökologie durchgeführt.

Study on the emission of nanoparticles in products in the life cycle and the ecological evaluation

Das Projekt "Study on the emission of nanoparticles in products in the life cycle and the ecological evaluation" wird vom Umweltbundesamt gefördert und von Institut für Umwelt & Energie, Technik & Analytik e.V. durchgeführt. Objective of the project is the assessment of the exposure of environment and human health by synthetic nanomaterials. The project includes a life cycle analysis of relevant products, an analysis of measurement equipment, and the identification of the demand for research and development. A reference study was commissioned by the Federal Environmental Agency - FKZ 3708 61 300 - in the scope of the UFOPLAN 2008, to summarise the current knowledge and research needs in the area of emission of nanoscale particles from products in the course of their life cycle as well as their possible environmental effects (relevance). For this purpose, information about nanoscale silver, titanium dioxide, carbon black, cerium oxide used in wipes, wall paint, in tires and additives in fuel, were compiled and evaluated. Possible measurement techniques and methods, for different measurement parameters and matrices, for examining the emission and characterizing nanostructures and their behaviour in the environment were summarized in a separate section. Emission of nanoscale material from products can take place at different stages in the course of its life cycle; during production, processing, transportation, when in use or during disposal of materials and products. Release generally takes place in environmental media such as air, water or soil/sediments. Nanoscale silver and titanium dioxide is mainly released into the aquatic medium. The release of silver particles has been shown when washing tissues and textiles in particular which have been impinged with nanoscale silver. It is not clear if the particles are release in the form of ions or nanoparticles. The release of TiO2 from wall paint after rain events was seen in rain water and in near by surface waters during field measurements. Laboratory studies have shown that TiO2 particles can be released through mechanical stress.It seems on the other hand that the emission of carbon black and cerium oxide mainly takes place in air. Carbon black can stem from ink, laser printers or tires. Studies have established the release of nanoscale soot particles form tires. It could not be determined if the released particles were the original particles or particles formed from secondary processes. The primary application for nanoscale cerium oxide is in polishing agents, coating products and as catalysts in e.g. diesel fuels. Cerium oxides have also been used recently for medical purposes, e.g. tested and marketed as antioxidants. Cerium oxide emission is likely for all the listed applications. This could be proven by field measurements particularly when used in fuels. It was not examined whether the released cerium oxide from diesel fumes correspond to that which was applied. There are generally very few publications for this study that deal explicitly with the emission from the materials and products which are to be examined...

Teilprojekt 2

Das Projekt "Teilprojekt 2" wird vom Umweltbundesamt gefördert und von Universität Rostock, Institut für Landnutzung (ILN), Professur Agrobiotechnologie durchgeführt. Das Projekt verbindet Pflanzen- und industrielle Biotechnologie, um den Marktwert von kommerziell angebautem Tabak zu erhöhen und für den Anbau durch Kleinbauern in Argentinien attraktiv zu machen. Dazu soll ein rentables und nachhaltiges Verfahren für die Herstellung des Biopolymers Cyanophycin (CGP), das fossile Rohstoffe ersetzen kann, als zusätzliches Beiprodukt zu Öl und Protein in kommerziellem Tabak entwickelt werden. Die Universität Rostock (UR), die die konstitutive Produktion von CGP in den Tabaksorten Burley und Virgin, etabliert hat, stellt Samen zur Verfügung, die für Feldversuche zur Optimierung von deren Anbau in Argentinien durch Bioceres (CER) genutzt werden. UR entwickelt zudem zusammen mit dem Forschungszentrum Wageningen (WFBR) ein Protokoll zur Isolation von CGP, dass genutzt wird um CGP für die Produktion neuer Biopolymere durch WFBR aufzureinigen. Parallel dazu führt UR die CGP-Synthese in den Solaris Tabak von Idroedil (IDR) ein, der auf einen hohen Samenertrag gezüchtet wurde, und kombiniert das neue Aufreinigungsprotokoll für CGP mit dem von IDR zur Isolation von Öl und Protein. UR produziert auch Samen, damit CER den neuen Solaris im Feld testen kann.

Teilprojekt C

Das Projekt "Teilprojekt C" wird vom Umweltbundesamt gefördert und von Karlsruher Institut für Technologie (KIT), Sondervermögen Großforschung, Institut für Nukleare Entsorgung (INE) durchgeführt. Das wissenschaftliche Ziel des Verbundprojektes ist es, ein Verständnis des Langzeitverhaltens von Radionukliden in keramischen Endlagerungsmatrizes unter endlagerrelevanten Bedingungen abzuleiten. Innerhalb des Teilvorhabens B werden die am FZJ synthetisierten und mit Eu(III), Am(III) oder Cm(III) dotierten Phosphate am KIT-INE mit Hilfe der TRLFS untersucht. Es werden jeweils Excitation- und Emissionsspektren aufgenommen werden. Ferner wird die Detektion der Emissionslebensdauern die Möglichkeit eröffnen, Aussagen zur Hydratisierung des Lanthanid- bzw. Actinidions zu machen. Dadurch kann zwischen Sorption und Einbau unterschieden werden. Dabei soll der Einfluss der Kristallinität auf die Nahordnung des eingebauten Lanthanids oder Actinids betrachtet werden, um aus den Unterschieden Aussagen zur besseren oder schlechteren Auslaugung der Radionuklide treffen zu können. Ferner wird die Veränderung der Punktsymmetrie der inkorporierten dreiwertigen Ionen mit dem Dotierungsgrad spektroskopisch analysiert werden. Dies wird die Möglichkeit eröffnen, Aussagen zur maximalen Beladung der Keramiken mit Fremdionen zu machen. Ferner werden die in Jülich synthetisierten, dotierten Einkristalle an der Beamline in Argonne untersucht. Mit diesen Röntgenreflektometriemessungen wird die Struktur der Oberfläche der Kristalle bestimmt. Dadurch sollte es möglich sein, Strukturinformationen zu den in die ersten Lagen des Kristalls eingebauten Fremdionen zu erhalten.

Teilprojekt CX

Das Projekt "Teilprojekt CX" wird vom Umweltbundesamt gefördert und von Helmholtz-Zentrum Dresden-Roßendorf e.V., Institut für Ressourcenökologie durchgeführt. Das wissenschaftliche Ziel des Verbundprojektes ist es, ein Verständnis des Langzeitverhaltens von Radionukliden in keramischen Endlagerungsmatrizes unter endlagerrelevanten Bedingungen abzuleiten. Innerhalb des Teilvorhabens C werden die am FZJ synthetisierten und mit Eu(III), Am(III) oder Cm(III) dotierten Phosphate am KIT-INE mit Hilfe der TRLFS untersucht. Es werden jeweils Excitation- und Emissionsspektren aufgenommen werden. Ferner wird die Detektion der Emissionslebensdauern die Möglichkeit eröffnen, Aussagen zur Hydratisierung des Lanthanid- bzw. Actinidions zu machen. Dadurch kann zwischen Sorption und Einbau unterschieden werden. Dabei soll der Einfluss der Kristallinität auf die Nahordnung des eingebauten Lanthanids oder Actinids betrachtet werden, um aus den Unterschieden Aussagen zur besseren oder schlechteren Auslaugung der Radionuklide treffen zu können. Ferner wird die Veränderung der Punktsymmetrie der inkorporierten dreiwertigen Ionen mit dem Dotierungsgrad spektroskopisch analysiert werden. Dies wird die Möglichkeit eröffnen, Aussagen zur maximalen Beladung der Keramiken mit Fremdionen zu machen. Ferner werden die in Jülich synthetisierten, dotierten Einkristalle an der Beamline in Argonne untersucht. Mit diesen Röntgenreflektometriemessungen wird die Struktur der Oberfläche der Kristalle bestimmt. Dadurch sollte es möglich sein, Strukturinformationen zu den in die ersten Lagen des Kristalls eingebauten Fremdionen zu erhalten.

Teilprojekt A

Das Projekt "Teilprojekt A" wird vom Umweltbundesamt gefördert und von Karlsruher Institut für Technologie (KIT), Institut für Nukleare Entsorgung (INE) durchgeführt. Ziel des Vorhabens ist es einen Beitrag zur sicheren Endlagerung hochradioaktiven Abfalls zu leisten. In diesem Kontext wollen wir ein auf atomarer Skala basierendes Prozessverständnis der Wechselwirkung von Actiniden und Spaltprodukten mit endlagerrelevanten Mineralen bzw. Mineraloberflächen erlangen, um so Retentionsmechanismen auf langen Zeitskalen zu verstehen. Dazu sind innerhalb des Gesamtprojekts folgende Arbeitspakete vorgesehen: a) Dreiwertige Actinide Pu, Am, Cm (Phosphate, Carbonate, Eisen(hydr)oxide) b) Vierwertige Actiniden Th, U, Np, Pu (Silicate, Sulfate, Carbonate, Phosphate, Sulfide, Eisen(hydr)oxide, LDH-Phasen) a) Cm(III), Am(III) und Eu(III) dotierte Calcite werden synthetisiert und die Besetzung der unterschiedlichen 'sites' wird mit Hilfe der TRLFS quantifiziert. Die maximale Beladung der Sekundärphase mit Actiniden wird aus diesen Daten extrapoliert werden. Mit dreiwertigen Actiniden und Lanthaniden dotierte Calcit Einkristalle werden nach ihrer Synthese an der Beamline in Argonne untersucht. Mit diesen Röntgenreflektometriemessungen wird die Struktur der Oberfläche der Calcitkristalle bestimmt. b) Th(IV) und Np(IV) dotierte Calcite werden im MFR synthetisiert. Einbau sowie Freisetzung der Actiniden wird quantifiziert und modelliert. Der Einfluss von Fremdionen auf die Bildung der An(IV):Calcit 'solid solutions' wird mit Hilfe von SEM und AFM untersucht. Durch XAS werden die Strukturparameter der Einbauspezies bestimmt.

Teilprojekt F

Das Projekt "Teilprojekt F" wird vom Umweltbundesamt gefördert und von Universität Bonn, Steinmann-Institut für Geologie, Mineralogie und Paläontologie - Endogene Prozesse durchgeführt. In Ergänzung und Erweiterung zu den geplanten Arbeiten des IMMORAD-Verbundprojekts soll das Korrosionsverhalten von Borosilikatgläsern in wässrigen Lösungen untersucht werden (als assoziiertes Mitglied). Erste Ergebnisse von Isotopentracer-Experimenten deuten darauf hin, dass entgegen der Behauptung etablierter Glaskorrosionsmodelle Borosilikatgläser in wässrigen Lösungen kongruent aufgelöst werden und nach Sättigung der Lösung mit amorpher Kieselerde diese an einer nach innen wandernden Grenzfläche aus der Lösung ausfällt. Die Hauptziele sind (1) diese Hypothese weiter durch experimentelle Arbeiten zu testen und verfeinern, (2) das Retentionsverhalten von Ce (als Surrogat für Pu) und U, (3) den Einbau von Ra im Alterationssaum bzw. anderen Alterationsphasen zu untersuchen sowie (4) eine mathematische Beschreibung des Lösungs-Fällungsmodells zu erarbeiten. Strukturelle und chemische Entwicklung der kieselerde-basierten Korrosionszonen soll als Funktion der Zeit, des pH-Wertes der Lösung sowie der Glaszusammensetzung (synthetische und archäologische Gläser) experimentell untersucht werden. Hierfür sollen Batch-Experimente, teilweise mit 30Si, 42Ca, 18O und 2H als Isotopentracer, als auch dynamische Durchfluss-Experimente durchgeführt werden. Die Ergebnisse dieser Untersuchungen (ICP-QMS, REM, EMS, Ramanspektroskopie, TEM, SAXS, LA-ICPMS, NanoSIMS) bilden die Grundlage zur Erarbeitung eines mathematischen Modells zur Modellierung der Korrosionsmechanismus.

Teilprojekt E

Das Projekt "Teilprojekt E" wird vom Umweltbundesamt gefördert und von Universität Frankfurt am Main, Institut für Geowissenschaften, Facheinheit Mineralogie, Abteilung Kristallographie durchgeführt. (a) Verständnis des Einbaus von Cm und weiteren dreiwertigen Aktiniden in endlager-relevanten Verbindungen mit DFT-basierten atomistischen Modellrechnungen in Kombination mit von uns entwickelten thermodynamischen Modellrechnungen. (b) Charakterisierung von U-haltigen Proben mit Mikrokalorimetrie und Raman-Spektroskopie. (c) Experimentelle und theoretische Untersuchungen zum Se-Einbau in endlager-relevante Phasen. Für die DFT-Modellrechnungen werden Implementationen verwendet, die ebene Wellen und Pseudopotentiale benutzen. Als Approximation für die Austausch-Korrelationswechselwirkung werden Ansätze wie die Generalisierte Gradientenapproximation mit lokalem Coulomb-Term (GGA+U) benutzt. Gitterdynamische Rechnungen basieren entweder auf 'linear response' oder 'finite displacement' Ansätzen. Eigenschaften von Mischkristallen werden mit von uns entwickelten Verfahren ('single defect' oder 'double defect' Methoden) bestimmt. Von den Verbundpartnern hergestellte Proben werden in Frankfurt bezüglich ihrer thermodynamischen und gitterdynamischen Eigenschaften charakterisiert. Mikrokalorimetrie wird mit einem Quantum Design PPMS System im Temperaturintervall von 2 - 300 K durchgeführt. Ramanspektren werden mit einem Renishaw-Spektrometer gemessen.

1 2 3 4 5