Das Projekt "Teilprojekt A02: Strukturbildung bei Wolken und deren Einfluss auf größere Skalen" wird vom Umweltbundesamt gefördert und von Universität Mainz, Institut für Informatik, Arbeitsgruppe Software-Technik und Bioinformatik durchgeführt. Die Strukturbildung auf der Wolkenskala wird mit zwei Methoden untersucht. Zum einen werden hochaufgelöste numerische Wolkensimulationen durchgeführt und die Resultate auf Strukturbildung hin analysiert. Zum anderen werden die grundlegenden Gleichungen mit mathematischen Methoden untersucht, um Strukturbildung zu identifizieren. In einem Syntheseschritt werden beiderlei Resultate verwendet, um Minimalmodelle zur Beschreibung von Wolkenstrukturen zu entwickeln. Diese Modelle werden schließlich zur Bestimmung der Wirkung von Wolkenstrukturen auf größerskalige Prozesse benutzt.
Das Projekt "sub project: Coordination Funds" wird vom Umweltbundesamt gefördert und von Rheinische Friedrich-Wilhelms-Universität Bonn, Institut für Geowissenschaften, Abteilung Meteorologie durchgeführt. High-quality near-real time Quantitative Precipitation Estimation (QPE) and its prediction for the next hours (Quantitative Precipitation Nowcasting, QPN) is of high importance for many applications in meteorology, hydrology, agriculture, construction, water and sewer system management. Especially for the prediction of floods in small to meso-scale catchments and of intense precipitation over cities timely, the value of high-resolution, and high-quality QPE/QPN cannot be overrated. Polarimetric weather radars provide the undisputed core information for QPE/QPN due to their area-covering and high-resolution observations, which allow estimating precipitation intensity, hydrometeor types, and wind. Despite extensive investments in such weather radars, QPE is still based primarily on rain gauge measurements since more than 100 years and no operational flood forecasting system actually dares to employ radar observations for QPE. RealPEP will advance QPE/QPN to a stage, that it verifiably outperforms rain gauge observations when employed for flood predictions in small to medium-sized catchments. To this goal state-of-the?art radar polarimetry will be sided with attenuation estimates from commercial microwave link networks for QPE improvement, and information on convection initiation and evolution from satellites and lightning counts from surface networks will be exploited to improve QPN. With increasing forecast horizons the predictive power of observation-based nowcasting quickly deteriorates and is outperformed by Numerical Weather Prediction (NWP) based on data assimilation, which fails, however, for the first hours due to the lead time required for model integration and spin-up. Thus, RealPEP will merge observation-based QPN with NWP towards seamless prediction in order to provide optimal forecasts from the time of observation to days ahead. Despite recent advances in simulating surface and sub-surface hydrology with distributed, physicsbased models, hydrologic components for operational flood prediction are still conceptual, need calibration, and are unable to objectively digest observational information on the state of the catchments. RealPEP will prove that in combination with advanced QPE/QPN physics-based hydrological models sided with assimilation of catchment state observations will outperform traditional flood forecasting in small to meso-scale catchments.
Das Projekt "Teilprojekt B 03: Quellen und Senken von Gasen in der Critical Zone: in situ-Sensoren und Isotopie" wird vom Umweltbundesamt gefördert und von Leibniz-Institut für Photonische Technologien e.V. durchgeführt. Wir erforschen, wie Gase im Boden und im Grundwasser die Umweltbedingungen und die funktionelle Biodiversität der Critical Zone widerspiegeln. Hierzu (1) erforschen wir neue Konzepte für die verstärkte Raman-Gasspektroskopie, zur simultanen online-Quantifizierung einer ganzen Reihe von Gasen im Boden, (2) setzen Messkampanien zur Bestimmung zeitlicher Änderungen der Gaszusammensetzungen und der Isotopie vor Ort im Hainich-Transekt und den Sandstein-Probestellen fort und (3) führen kontrollierte Laborexperimente durch, um Einflüsse von mikrobieller Aktivität, Substratverfügbarkeit, etc. auf die Muster in der Freisetzung und Aufnahme einer Vielfalt von Gasen und Isotopen zu analysieren.
Das Projekt "Teilprojekt A05: Die Bedeutung von Bodenfeuchte sowie ober- und unterirdischem Wasserablauf für die Vorhersagbarkeit von Konvektion" wird vom Umweltbundesamt gefördert und von Deutsches Zentrum für Luft- und Raumfahrt e.V. (DLR), Institut für Physik der Atmosphäre Oberpfaffenhofen durchgeführt. Wir untersuchen die Hypothese, ob die Vorhersagbarkeit konvektiver Niederschläge durch eine ausgefeiltere Berücksichtigung hydrologischer Bodenprozesse in numerischen Wettervorhersagen erhöht werden kann. Kombiniert mit einer stochastischen Grenzschichtparameterisierung wird dieser Ansatz benutzt, um die Variabilität von Boden-Atmosphäre-Flüssen, die von lateralen Wasserabflüssen bedingt sind, zu bewerten. Das wird eine Abschätzung des Einflusses einer verbesserten Formulierung der Bodenfeuchte auf die Atmosphäre erlauben.
Das Projekt "Teilprojekt B04: Strahlungsbedingte Erwärmungs- und Abkühlungsraten in Wolken und ihr Einfluss auf die Dynamik" wird vom Umweltbundesamt gefördert und von Ludwig-Maximilians-Universität München, Meteorologisches Institut durchgeführt. Der Einfluss dreidimensionaler strahlungsbedingter Erwärmungs- und Abkühlungsraten wird systematisch mit Hilfe eines analytischen Wolkenmodells, eines Grobstrukturmodells und eines numerischen Wettervorhersagemodells untersucht. Neue Parametrisierungen werden für die beiden Skalen entwickelt, um zu quantifizieren, wie diese Prozesse die Wolkenbildung, die Wolkenmikrophysik und schließlich die Dynamik beeinflussen. Diese Untersuchungen werden dazu beitragen, das Verständnis der Strahlungs-Wolken-Wechselwirkung deutlich zu verbessern und die Strahlungsprozesse als diabatische Wärmequelle und -senke in der Atmosphäre zu quantifizieren.
Das Projekt "Teilprojekt C02: Vorhersage von Trocken- und Feuchtperioden des Westafrikanischen Monsuns" wird vom Umweltbundesamt gefördert und von Universität Köln, Institut für Geophysik und Meteorologie durchgeführt. Ziel dieses Projektes ist ein verbessertes Verständnis der Prozesse, welche die Vorhersagbarkeit von Niederschlag auf Zeitskalen von Tagen bis Wochen in der Westafrikanischen Monsunregion erhöhen oder reduzieren. Innovative Aspekte und besondere Herausforderungen im Projekt liegen in der Identifikation von geeigneten Metriken zur Definition von rein tropischen, rein extratropischen sowie gemischten Wetterregimen über Westafrika in der Vor-, Haupt- und Nachmonsunzeit sowie in der Anwendung von Nachbearbeitungsverfahren von Ensemblevorhersagen in tropischen anstatt mittleren Breiten.
Das Projekt "Teilprojekt A01: Klima der Gegenwart und Vergangenheit: Untersuchung der Wasserverfügbarkeit in der Atacama Wüste (Chile) anhand kombinierter in-situ, boden- und satellitengestützter Beobachtungen" wird vom Umweltbundesamt gefördert und von Universität Köln, Institut für Geophysik und Meteorologie, Bereich Meteorologie, Arbeitsgruppe Integrierte Fernerkundung durchgeführt. Ziel ist es ein Netzwerk meteorologischer Stationen in der Atacama zu etablieren. Diese Arbeit wird aktiv von unseren Partnern in Chile unterstützt. Gegenwärtig gibt es nur vereinzelt meteorologische Stationen am Küstenstreifen und fast keine im Kern der Atacama Wüste. Ein weiteres Ziel ist die bodengestützten Observationen mit Fernerkundungsdaten zu vereinen. Beide Datensätze werden als Test für die Zuverlässigkeit von Klimamodellen dienen, die das heutige Klima beschreiben. Auf Basis dieser Tests werden Klimamodelle für das Klima in der Vergangenheit entwickelt. Letztere würden mit Klimaproxydaten anderer Teilprojekte verifiziert werden.
Das Projekt "Teilprojekt C04: Kopplung von planetaren Rossby-Wellenzügen mit lokalen extremen Hitzewellen über Europa" wird vom Umweltbundesamt gefördert und von Universität Köln, Institut für Geophysik und Meteorologie durchgeführt. Mithilfe von klimatologischen Daten werden Hitzewellen über Europa definiert und charakterisiert. Die Verbindung zwischen Rossbywellenpaketen in der oberen Troposphäre, dem extratropischen Wellenleiter und Hitzewellen wird mit Hilfe einer Wavelet-Analyse sowie mit einer Diagnostik, die auf linearer Wellentheorie beruht, untersucht. Komplementär dazu wird die Rolle von lokalen Prozessen (zum Beispiel in der Grenzschicht) für das Auftreten und die Stärke von Hitzewellen quantifiziert. Zusammengenommen sollen die Untersuchungen die Frage klären, welche Prozesse und welche Skalen die Vorhersagbarkeit von Hitzewellen am stärksten beeinflussen.
Das Projekt "Teilprojekt B07: Identifizierung von robusten Wolkenstrukturen durch inverse Methoden" wird vom Umweltbundesamt gefördert und von Johannes Gutenberg-Universität Mainz, Institut für Physik der Atmosphäre durchgeführt. Untersucht wird die Auswirkung der Variation von Kenngrößen in Wolkenparameterisierungen sowie von Umgebungsbedingungen auf die Wolkenentwicklung, im dem Hauptaugenmerk auf Eigenschaften, die sich als robust erweisen. Unsicherheiten in den Wolkenparametern werden mit einem Bayesischen Ansatz untersucht. Zur Bestimmung des Einflusses variabler Umgebungsbedingungen werden sich ergänzende inverse Methoden benutzt. In einer Synthese wird zuletzt die Variabilität von Wolken und deren robusten Eigenschaften in Abhängigkeit von den Modellparametern und den Umgebungsbedingungen bestimmt.
Das Projekt "Teilprojekt B03: Relativer Einfluss von Heterogenitäten des Bodens und des Aerosols auf die Auslösung hochreichender Konvektion" wird vom Umweltbundesamt gefördert und von Karlsruher Institut für Technologie (KIT), Institut für Meteorologie und Klimaforschung, Department Troposphärenforschung durchgeführt. Es wird der relative Einfluss von Heterogenitäten des Bodens und des Aerosols auf die Wolkenentstehung und den nachfolgenden Niederschlag untersucht. Dazu werden konvektionserlaubenden Simulationen für mehrere konvektive Fälle über Deutschland unter Verwendung eines fortschrittlichen mikrophysikalischen Zwei-Momenten-Schemas durchgeführt. Sensitivitätsstudien mit modifizierten Bodeneigenschaften und verändertem Aerosolgehalt werden dazu verwendet, die Parameter oder Prozesse zu identifizieren, die bei bestimmten meteorologischen Situationen von entscheidender Wichtigkeit sind.
Origin | Count |
---|---|
Bund | 47 |
Type | Count |
---|---|
Förderprogramm | 47 |
License | Count |
---|---|
offen | 47 |
Language | Count |
---|---|
Deutsch | 46 |
Englisch | 43 |
Resource type | Count |
---|---|
Keine | 29 |
Webseite | 18 |
Topic | Count |
---|---|
Boden | 33 |
Lebewesen & Lebensräume | 21 |
Luft | 42 |
Mensch & Umwelt | 47 |
Wasser | 28 |
Weitere | 47 |