Pflanzliche Öle werden als energiereiche Reservestoffe in Speicherorgane von Pflanzen eingelagert. Sie sind chemisch gesehen Ester aus Glycerin und drei Fettsäuren.
In Deutschland konzentriert sich der Ölsaatenanbau auf Raps, Sonnenblume und Lein. Im Freistaat Sachsen dominiert auf Grund der Standortbedingungen und vor allem der Wirtschaftlichkeit eindeutig der Raps. Der maximal mögliche Anbauumfang von Raps liegt aus anbautechnischer Sicht bei 25 % der Ackerfläche und ist noch nicht ausgeschöpft (Sachsen 2004: 17 %).
Für den landwirtschaftlichen Anbau kommen eine Reihe weiterer ölliefernder Pflanzenarten oder spezieller Sorten in Betracht. Interessant sind sie aus der Sicht der Verwertung insbesondere, wenn sie hohe Gehalte einzelner spezieller Fettsäuren aufweisen. Bei der Verarbeitung können dann aufwändige Aufbereitungs- und Trennprozesse eingespart und die Synthesevorleistung der Natur optimal genutzt werden. Der Anbauumfang ist jedoch meist noch sehr gering. Beispiele sind Nachtkerze und Iberischer Drachenkopf, aber auch Erucaraps und ölsäurereiche Sonnenblumensorten.
a) stoffliche Verwertung
In der stofflichen Verwertung reichen die Einsatzfelder pflanzlicher Öle von biologisch schnell abbaubaren Schmierstoffen, Lacken und Farben, über Tenside, Kosmetika, Wachse bis zu Grundchemikalien, aber auch Bitumen.
b) energetische Verwertung
Desweiteren können Pflanzenöle in Fahrzeugen, stationären oder mobilen Anlagen energetisch verwertet werden. Für den breiten Einsatz ist derzeit vor allem Biodiesel geeignet. Dieser kommt als reiner Kraftstoff zum Einsatz, seit 2004 auch in Beimischung zu Dieselkraftstoff. Eine weitere Möglichkeit eröffnet sich durch die Verwendung von reinem Rapsöl.
reTURN wird ein Verfahren zur Herstellung CO2-neutraler synthetischer Kraftstoffe demonstrieren. Dieses beinhaltet nicht nur das Potenzial signifikanter CO2-Reduktionen, sondern auch das Erzielen einer wesentlichen Effizienzsteigerung in der Produktion synthetischer Kraftstoffe und damit eine drastische Kostenreduktion. Im Verfahren werden drei etablierte Prozessschritte erstmalig in einem skalierbaren Einzelreaktor integriert, um auf Basis von rezykliertem CO2 und Biomethan aus organischen landwirtschaftlichen/ städtischen Restabfällen Synthesegas herzustellen: (1) Plasma-Verfahren mittels Biomethanpyrolyse, (2) Boudouard-Reaktion, (3) heterogene Wassergas-Shift-Reaktion mit anschließendem Quenching. Diese Kombination ermöglicht eine flexible Zusammensetzung des entstehenden Synthesegases, sodass nachfolgend verschiedene Konversionstechnologien als vierter Schritt des reTURN Verfahrens eingesetzt und damit verschiedene klimafreundliche Kraftstoffe oder Grundchemikalien produziert werden können. Das Projekt verwendet die Fischer-Tropsch-Synthese, um die gesamte Prozesskette bis hin zu den Endprodukten in einer Testanlage zu erforschen und zu erproben sowie einen Nachweis der technischen Machbarkeit und Massenmarkttauglichkeit zu erbringen. Schwerpunkte von reTURN sind der Bau und Testbetrieb des neuartigen Reaktors, begleitet von verschiedenen Forschungen am Reaktor, wie bspw. Messkampagnen und einer ökologischen Nachhaltigkeitsbetrachtung mit dem Fokus auf CO2 Äquivalenten. reTURN bietet vielfältige Verwertungsmöglichkeiten, insb. neue Geschäftsmodelle für CAPHENIA und Betreiber von Biogas- bzw. Fermentationsanlagen. Mit dem Einsatz erneuerbarer Energie entsteht zudem ein wesentliches Potenzial für eine nachhaltige Sektorenkopplung des Verkehrs- und Stromsektors. Damit stellt reTURN nicht nur ein Vehikel zur Stärkung der nationalen Vorreiterrolle im Nachhaltigkeitskontext bereit, sondern leistet auch einen entscheidenden Beitrag zum weltweiten Klimaschutz.
reTURN wird ein Verfahren zur Herstellung CO2-neutraler synthetischer Kraftstoffe demonstrieren. Dieses beinhaltet nicht nur das Potenzial signifikanter CO2-Reduktionen, sondern auch das Erzielen einer wesentlichen Effizienzsteigerung in der Produktion synthetischer Kraftstoffe und damit eine drastische Kostenreduktion. Im Verfahren werden drei etablierte Prozessschritte erstmalig in einem skalierbaren Einzelreaktor integriert, um auf Basis von rezykliertem CO2 und Biomethan aus organischen landwirtschaftlichen/ städtischen Restabfällen Synthesegas herzustellen: (1) Plasma-Verfahren mittels Biomethanpyrolyse, (2) Boudouard-Reaktion, (3) heterogene Wassergas-Shift-Reaktion mit anschließendem Quenching. Diese Kombination ermöglicht eine flexible Zusammensetzung des entstehenden Synthesegases, sodass nachfolgend verschiedene Konversionstechnologien als vierter Schritt des reTURN Verfahrens eingesetzt und damit verschiedene klimafreundliche Kraftstoffe oder Grundchemikalien produziert werden können. Das Projekt verwendet die Fischer-Tropsch-Synthese, um die gesamte Prozesskette bis hin zu den Endprodukten in einer Testanlage zu erforschen und zu erproben sowie einen Nachweis der technischen Machbarkeit und Massenmarkttauglichkeit zu erbringen. Schwerpunkte von reTURN sind der Bau und Testbetrieb des neuartigen Reaktors, begleitet von verschiedenen Forschungen am Reaktor, wie bspw. Messkampagnen und einer ökologischen Nachhaltigkeitsbetrachtung mit dem Fokus auf CO2. reTURN bietet vielfältige Verwertungsmöglichkeiten, insb. neue Geschäftsmodelle für CAPHENIA und Betreiber von Biogas- bzw. Fermentationsanlagen. Mit dem Einsatz erneuerbarer Energie entsteht zudem ein wesentliches Potenzial für eine nachhaltige Sektorenkopplung des Verkehrs- und Stromsektors in Deutschland. Damit stellt reTURN nicht nur ein Vehikel zur Stärkung der nationalen Vorreiterrolle im Nachhaltigkeitskontext bereit, sondern leistet auch einen entscheidenden Beitrag zum weltweiten Klimaschutz.
Lignin ist ein nachwachsender Rohstoff (Bestandteil von Holz, in etwa 30 % Gewichtsanteil der Trockenmasse), der als Biopolymer aus hoch funktionalisierten, phenolischen Makromolekülen aufgebaut ist. Dieser biogene Rohstoff fällt in der Holz- und Zellstoffverarbeitenden Industrie in großen Mengen als Neben- beziehungsweise Reststoff an und wird bis heute nur wenig stofflich genutzt. Ein Großteil wird verbrannt und energetisch genutzt. Im Sinne einer ressourceneffizienten Kreislaufwirtschaft und einer bestmöglichen Wertschöpfung soll in ElektrALig ein innovativer Weg aufgezeigt werden, wie die regenerative Kohlenstoffquelle Lignin großtechnisch als chemischer Grundstoff für die Herstellung von Polymerbausteinen genutzt werden kann. In einem zweistufigen Produktionsverfahren sollen dazu die im Lignin enthaltenen aromatischen Polymerbausteine chemisch aufgeschlossen, über eine konvergente elektrochemische Umsetzung zu definierten Zielstrukturen umgesetzt und so für Anwendungen in der Produktion von Polymerharzen zugänglich gemacht werden. Zusammenarbeit der Industriepartner Mercer Rosenthal, Borregaard, Covestro und Heraeus und der Ruhr-Universität Bochum mit dem Lehrstuhl CSC und der Arbeitsgruppe Apfel als ausführenden Stellen vereint eine einzigartige Expertise im Bereich der Ausgangsstoffe, der chemischen Verfahrenstechnik, der elektrochemischen Reaktionstechnik und der Polymeranwendungen. So kann eine effiziente Strategie zur stofflichen Nutzung von Lignin umgesetzt werden, die von einem grundlegenden chemischen Verständnis des Aufbaus von technisch verfügbaren Ligninen, über konkrete Teilschritte zu einem ausgefeilten verfahrenstechnischen Konzept der strom-basierten Konversion des biogenen Rohstoffes Lignin reicht.
Gegenstand des BMWi-Verbundvorhabens 'GreenSoda' ist die Entwicklung und Demonstration eines neues CCU-Konzeptes für die Herstellung der chemischen Grundstoffe Soda (Natriumcarbonat) und Natron (Natriumhydrogencarbonat) auf der Basis von CO2 aus Produktaufbereitungsprozessen, biogenem CO2 und/oder weiteren industriellen Emissionsquellen. Als Natriumquelle wird Natronlauge verwendet, die mittels eines neuen, im Rahmen des Vorhabens zu entwickelnden und optimierenden, elektrochemischen Verfahrens aus Salzsole hergestellt wird. Zur Bereitstellung der für den Prozess benötigten Elektroenergie und Prozesswärme ist die Nutzung regenerativ erzeugter Energie bzw. Tiefer Geothermie vorgesehen. Somit werden in der Gesamtbilanz CO2-Emissionen, die mit der Herstellung auf konventionellem Wege verbunden sind, weitestgehend vermieden und der Prozess kann perspektivisch als Senke für CO2 dienen. Ein weiteres Ziel besteht darin, die bisher mit der Herstellung unvermeidlich verbundenen Abproduktprobleme zu vermeiden. Die zu entwickelnden Prozessschritte sollen anschließend adaptiert, zusammengeführt und für den Test im Technikumsmaßstab bis auf Ebene TRL 5/6 hochskaliert werden. Die prozesstechnischen Forschungs- und Entwicklungsarbeiten werden durch energetische, ökonomische und ökologische Bewertungen der einzelnen Verfahrensstufen sowie des Gesamtverfahrens flankiert.