API src

Found 976 results.

Related terms

Wärme-Prozess-mix-DE-Chem-Industrie-brutto-2000

Wärmeerzeugungsmix der chemischen Grundstoff Industrie nach #1. Für Grossverbraucher mit einer SKZ von durchschnittlich 0,25 wird die Wärme aus Kraft-Wärme-Kopplung (KWK) berechnet. Die Wärme wird aus Gas-Turbinenkraftwerken, Entnahmekondensationskraftwerken oder Kraftwerken mit Gegendruckturbine als Dampf entnommen und den Verbrauchern zugeleitet. Dieser Mixer beschreibt die Wärme ab Erzeuger. Verluste sind nicht enthalten (siehe Prozesskettenfortsetzung). Eine Differenzierung der Wärme findet nicht statt.

Markt für Schwefel

technologyComment of cobalt production (GLO): Cobalt, as a co-product of nickel and copper production, is obtained using a wide range of technologies. The initial life cycle stage covers the mining of the ore through underground or open cast methods. The ore is further processed in beneficiation to produce a concentrate and/or raffinate solution. Metal selection and further concentration is initiated in primary extraction, which may involve calcining, smelting, high pressure leaching, and other processes. The final product is obtained through further refining, which may involve processes such as re-leaching, selective solvent / solution extraction, selective precipitation, electrowinning, and other treatments. Transport is reported separately and consists of only the internal movements of materials / intermediates, and not the movement of final product. Due to its intrinsic value, cobalt has a high recycling rate. However, much of this recycling takes place downstream through the recycling of alloy scrap into new alloy, or goes into the cobalt chemical sector as an intermediate requiring additional refinement. Secondary production, ie production from the recycling of cobalt-containing wastes, is considered in this study in so far as it occurs as part of the participating companies’ production. This was shown to be of very limited significance (less than 1% of cobalt inputs). The secondary materials used for producing cobalt are modelled as entering the system free of environmental burden. technologyComment of natural gas production (CA-AB): Canadian data completed with german data. The uncertainty has been adjusted accordingly. Data used in original data contains no information on technology. technologyComment of natural gas production (DE): Data in environmental report contains no information on technology. technologyComment of natural gas production (RoW): The data describes an average onshore technology for natural gas to 13% out of combined oil gas production. Natural gas is assumed to 20% sour. Leakage in exploitation is estimated at 0.38% and production 0.12%. It is further assumed that about 30% of the produced water is discharged in surface water. Water emissions are differentiated between combined oil and gas production and gas production. technologyComment of natural gas production (RU): The data describes an average onshore technology for natural gas with a share of 4% out of combined oil gas production and 96% from mere natural gas production. Natural gas is assumed to 20% sour. It is assumed that about 30% of the produced water is discharged in surface water. Water emissions are differentiated between combined oil and gas production and gas production. technologyComment of natural gas production (US): US data (NREL) for emissions completed with german data. Emissions from NREL include combined production (petroleumm and gas) and off-shore production. The uncertainty has been adjusted accordingly. Data used in original data contains no information on technology. technologyComment of petroleum refinery operation (CH): Average data for the used technology. technologyComment of primary zinc production from concentrate (RoW): The technological representativeness of this dataset is considered to be high as smelting methods for zinc are consistent in all regions. Refined zinc produced pyro-metallurgically represents less than 5% of global zinc production and less than 2% of this dataset. Electrometallurgical Smelting The main unit processes for electrometallurgical zinc smelting are roasting, leaching, purification, electrolysis, and melting. In both electrometallurgical and pyro-metallurgical zinc production routes, the first step is to remove the sulfur from the concentrate. Roasting or sintering achieves this. The concentrate is heated in a furnace with operating temperature above 900 °C (exothermic, autogenous process) to convert the zinc sulfide to calcine (zinc oxide). Simultaneously, sulfur reacts with oxygen to produce sulfur dioxide, which is subsequently converted to sulfuric acid in acid plants, usually located with zinc-smelting facilities. During the leaching process, the calcine is dissolved in dilute sulfuric acid solution (re-circulated back from the electrolysis cells) to produce aqueous zinc sulfate solution. The iron impurities dissolve as well and are precipitated out as jarosite or goethite in the presence of calcine and possibly ammonia. Jarosite and goethite are usually disposed of in tailing ponds. Adding zinc dust to the zinc sulfate solution facilitates purification. The purification of leachate leads to precipitation of cadmium, copper, and cobalt as metals. In electrolysis, the purified solution is electrolyzed between lead alloy anodes and aluminum cathodes. The high-purity zinc deposited on aluminum cathodes is stripped off, dried, melted, and cast into SHG zinc ingots (99.99 % zinc). Pyro-metallurgical Smelting The pyro-metallurgical smelting process is based on the reduction of zinc and lead oxides into metal with carbon in an imperial smelting furnace. The sinter, along with pre-heated coke, is charged from the top of the furnace and injected from below with pre-heated air. This ensures that temperature in the center of the furnace remains in the range of 1000-1500 °C. The coke is converted to carbon monoxide, and zinc and lead oxides are reduced to metallic zinc and lead. The liquid lead bullion is collected at the bottom of the furnace along with other metal impurities (copper, silver, and gold). Zinc in vapor form is collected from the top of the furnace along with other gases. Zinc vapor is then condensed into liquid zinc. The lead and cadmium impurities in zinc bullion are removed through a distillation process. The imperial smelting process is an energy-intensive process and produces zinc of lower purity than the electrometallurgical process. technologyComment of rare earth oxides production, from rare earth oxide concentrate, 70% REO (CN-SC): This dataset refers to the separation (hydrochloric acid leaching) and refining (metallothermic reduction) process used in order to produce high-purity rare earth oxides (REO) from REO concentrate, 70% beneficiated. ''The concentrate is calcined at temperatures up to 600ºC to oxidize carbonaceous material. Then HCl leaching, alkaline treatment, and second HCl leaching is performed to produce a relatively pure rare earth chloride (95% REO). Hydrochloric acid leaching in Sichuan is capable of separating and recovering the majority of cerium oxide (CeO) in a short process. For this dataset, the entire quantity of Ce (50% cerium dioxide [CeO2]/REO) is assumed to be produced here as CeO2 with a grade of 98% REO. Foreground carbon dioxide CO2 emissions were calculated from chemical reactions of calcining beneficiated ores. Then metallothermic reduction produces the purest rare earth metals (99.99%) and is most common for heavy rare earths. The metals volatilize, are collected, and then condensed at temperatures of 300 to 400°C (Chinese Ministryof Environmental Protection 2009).'' Source: Lee, J. C. K., & Wen, Z. (2017). Rare Earths from Mines to Metals: Comparing Environmental Impacts from China's Main Production Pathways. Journal of Industrial Ecology, 21(5), 1277-1290. doi:10.1111/jiec.12491 technologyComment of scandium oxide production, from rare earth tailings (CN-NM): See general comment. technologyComment of sulfur production, petroleum refinery operation (Europe without Switzerland): The technology level in Europe applied here represents a weighted average of BREF types II (62%), III (29%), IV (9%) refineries; API 35; sulfur content 1.03%. technologyComment of sulfur production, petroleum refinery operation (PE): The technology represents BREF type II refinery; API 25; sulfur content 0.51% technologyComment of sulfur production, petroleum refinery operation (BR): The technology represents BREF type II refinery; API 25; sulfur content 0.57% technologyComment of sulfur production, petroleum refinery operation (ZA): The technology represents a weighted average of BREF types II and III refineries; API 35; sulfur content 0.7% technologyComment of sulfur production, petroleum refinery operation (CO): The technology represents a weighted average of BREF types II and IV refineries; API 35; sulfur content 0.56% technologyComment of sulfur production, petroleum refinery operation (IN): The technology represents a weighted average of BREF types II and IV refineries; API 35; sulfur content 1.39% technologyComment of sulfur production, petroleum refinery operation (RoW): This dataset represents the prevailing technology level in Europe, this is a weighted average of BREF complexity types II (62%), III (29%), IV (9%) refineries (see BREF document, European Commission, 2015); API 35; sulfur content 1.03%. Reference(s): European Commission (2015) Best Available Techniques (BAT) Reference Document (BREF) for the Refining of Mineral Oil and Gas, Industrial Emissions Directive 2010/75/EU Integrated Pollution Prevention and control, accessible online at http://eippcb.jrc.ec.europa.eu/reference/BREF/REF_BREF_2015.pdf, February 2019 technologyComment of synthetic fuel production, from coal, high temperature Fisher-Tropsch operations (ZA): SECUNDA SYNFUEL OPERATIONS: Secunda Synfuels Operations operates the world’s only commercial coal-based synthetic fuels manufacturing facility of its kind, producing synthesis gas (syngas) through coal gasification and natural gas reforming. They make use of their proprietary technology to convert syngas into synthetic fuel components, pipeline gas and chemical feedstock for the downstream production of solvents, polymers, comonomers and other chemicals. Primary internal customers are Sasol Chemicals Operations, Sasol Exploration and Production International and other chemical companies. Carbon is produced for the recarburiser, aluminium, electrode and cathodic production markets. Secunda Synfuels Operations receives coal from five mines in Mpumalanga (see figure attached). After being crushed, the coal is blended to obtain an even quality distribution. Electricity is generated by both steam and gas and used to gasify the coal at a temperature of 1300°C. This produces syngas from which two types of reactor - circulating fluidised bed and Sasol Advanced SynthoTM reactors – produce components for making synthetic fuels as well as a number of downstream chemicals. Gas water and tar oil streams emanating from the gasification process are refined to produce ammonia and various grades of coke respectively. imageUrlTagReplacea79dc0c2-0dda-47ec-94e0-6f076bc8cdb6 SECUNDA CHEMICAL OPERATIONS: The Secunda Chemicals Operations hub forms part of the Southern African Operations and is the consolidation of all the chemical operating facilities in Secunda, along with Site Services activities. The Secunda Chemicals hub produces a diverse range of products that include industrial explosives, fertilisers; polypropylene, ethylene and propylene; solvents (acetone, methyl ethyl ketone (MEK), ethanol, n-Propanol, iso-propanol, SABUTOL-TM, PROPYLOL-TM, mixed C3 and C4 alcohols, mixed C5 and C6 alcohols, High Purity Ethanol, and Ethyl Acetate) as well as the co-monomers, 1-hexene, 1-pentene and 1-octene and detergent alcohol (SafolTM).

Markt für 1-Butanol

technologyComment of hydroformylation of propylene (RER, RoW): In the oxo reaction (hydroformylation), carbon monoxide and hydrogen are added to a carbon – carbon double bond in the liquid phase in the presence of catalyst (hydrocarbonyls or substituted hydrocarbonyls of Co, Rh, or Ru). In the first reaction step aldehydes are formed with one more C-atom than the original olefins. For olefins with more than two C-atoms, isomeric aldehyde mixtures are normally obtained. In the case of propylene these consist of 1-butanal and 2-methylpropanal. imageUrlTagReplace600920a3-5103-4466-9c05-fd1d8ed0d89c There are several variations of the hydroformylation process, the differences being in the reaction conditions (pressure, temperature) as well as the catalyst system used. The classic high-pressure process exclusively used until the beginning of the 1970s operates at pressures of 20 – 30 MPa (200 – 300 bar) CO/H2 and temperatures of 100 – 180 °C. The catalyst is Co. It leads to about 75 % 1-butanol and about 25 % 2-methyl-1-propanol. The new process developments of the past few years have led to a clear shift in the range of products. The processes operating at relatively low pressures (1 – 5 MPa , 10 – 50 bar) use modified Rh-catalysts. The isomeric ratios achieved are about 92 : 8 or 95 : 5 1-butanol to 2-methyl-1-propanol. However, by the use of unmodified Rh the percentage of 2-methyl-1-propanol can be increased to about 50 %. Catalytic hydrogenation of the aldehydes leads to the formation of the corresponding alcohols. As only primary alcohols can be obtained via the oxo synthesis, it is not possible to produce 2-butanol and 2-methyl-2-propanol by this process. Reference: Hahn, H., Dämkes, G., Ruppric, N.: Butanols. In: Ullmann's Encyclopedia of In-dustrial Chemistry, Seventh Edition, 2004 Electronic Release (ed. Fiedler E., Grossmann G., Kersebohm D., Weiss G. and Witte C.). 7 th Electronic Release Edition. Wiley InterScience, New York, Online-Version under: http://www.mrw.interscience.wiley.com/ueic/articles/ technologyComment of synthetic fuel production, from coal, high temperature Fisher-Tropsch operations (ZA): SECUNDA SYNFUEL OPERATIONS: Secunda Synfuels Operations operates the world’s only commercial coal-based synthetic fuels manufacturing facility of its kind, producing synthesis gas (syngas) through coal gasification and natural gas reforming. They make use of their proprietary technology to convert syngas into synthetic fuel components, pipeline gas and chemical feedstock for the downstream production of solvents, polymers, comonomers and other chemicals. Primary internal customers are Sasol Chemicals Operations, Sasol Exploration and Production International and other chemical companies. Carbon is produced for the recarburiser, aluminium, electrode and cathodic production markets. Secunda Synfuels Operations receives coal from five mines in Mpumalanga (see figure attached). After being crushed, the coal is blended to obtain an even quality distribution. Electricity is generated by both steam and gas and used to gasify the coal at a temperature of 1300°C. This produces syngas from which two types of reactor - circulating fluidised bed and Sasol Advanced SynthoTM reactors – produce components for making synthetic fuels as well as a number of downstream chemicals. Gas water and tar oil streams emanating from the gasification process are refined to produce ammonia and various grades of coke respectively. imageUrlTagReplacea79dc0c2-0dda-47ec-94e0-6f076bc8cdb6 SECUNDA CHEMICAL OPERATIONS: The Secunda Chemicals Operations hub forms part of the Southern African Operations and is the consolidation of all the chemical operating facilities in Secunda, along with Site Services activities. The Secunda Chemicals hub produces a diverse range of products that include industrial explosives, fertilisers; polypropylene, ethylene and propylene; solvents (acetone, methyl ethyl ketone (MEK), ethanol, n-Propanol, iso-propanol, SABUTOL-TM, PROPYLOL-TM, mixed C3 and C4 alcohols, mixed C5 and C6 alcohols, High Purity Ethanol, and Ethyl Acetate) as well as the co-monomers, 1-hexene, 1-pentene and 1-octene and detergent alcohol (SafolTM).

Markt für Methanol

technologyComment of methanol production (GLO): For normal methanol synthesis, reforming is performed in one step in a tubular reactor at 850 – 900 °C in order to leave as little methane as possible in the synthesis gas. For large methanol synthesis plants, Lurgi has introduced a two-step combination (combined reforming process) that gives better results. In the primary tubular reformer, lower temperature (ca. 800 °C) but higher pressure (2.5-4.0 MPa instead of 1.5-2.5 MPa) are applied. More recently, Lurgi developed another two-step gas production scheme. It is based on catalytic autothermal reforming with an adiabatic performer and has economical advantages for very large methanol plants. At locations where no carbon dioxide is available most of the methanol plants are based on the following gas production technologies, depending on their capacities: steam reforming for capacities up to 2000 t d-1 or combined reforming from 1800 to 2500 t d-1 (Ullmann 2001). For the energy and resource flows in this inventory a modern steam reforming process was taken as average technology. To estimate best and worst case values, also values from combined reforming and autothermal reforming were investigated. Methanol produced using a low pressure steam reforming process (ICI LPM) accounts for approximately 60% of the world capacity (Synetix 2000a). Besides steam reforming, combined reforming has gained importance due to the production of methanol in large plants at remote locations. The reaction of the steam-reforming route can be formulated for methane, the major constituent of natural gas, as follows: Synthesis gas preparation: CH4 + H2O → CO + 3 H2; ΔH = 206 kJ mol-1 CO + H2O → CO2 + H2; ΔH = - 41 kJ mol-1 Methanol synthesis: CO + 2 H2 → CH3OH; ΔH = -98 kJ mol-1 CO2 + 3 H2 → CH3OH + H2O; ΔH = -58 kJ mol-1 For an average plant the total carbon efficiency is around 75%, 81% for the synthesis gas preparation and 93% for the methanol synthesis (Le Blanc et al. 1994, p. 114). For steam reformers usually a steam to carbon ratio of 3:1 to 3.5:1 is used. As methanol production is a highly integrated process with a complicated steam system, heat recovery and often also internal electricity production (out of excess steam), there were only data of the efficiency and energy consumption of the total process available. Therefore the process was not divided into a reforming process, a synthesis process and a purification process for estimating the energy and resource flows. Also the energy and resource flows in the methanol production plants are site specific (dependent on the local availability of resources such as CO2, O2, or electricity). In this inventory typical values for a methanol plant using steam-reforming technology were used. The main resource for methanol production is natural gas, which acts as feedstock and fuel. A natural gas based methanol plant consumes typically 29-37 MJ (LHV) of natural gas per kg of methanol. This gas is needed as feedstock for the produced methanol (20 MJ kg-1 LHV) and also used as fuel for the utilities of the plant. From the converted feed, 1 kg methanol and 0.06 kg hydrogen is yielded. It was assumed that the purged hydrogen was also burned in the furnace. The only emission to air considered from burning hydrogen is NOX. The energy amount generated is not considered, because the process of the furnace is specified for natural gas as fuel. The NOX emissions of the hydrogen burning were therefore calculated separately. References: Althaus H.-J., Chudacoff M., Hischier R., Jungbluth N., Osses M. and Primas A. (2007) Life Cycle Inventories of Chemicals. ecoinvent report No. 8, v2.0. EMPA Dübendorf, Swiss Centre for Life Cycle Inventories, Dübendorf, CH. technologyComment of synthetic fuel production, from coal, high temperature Fisher-Tropsch operations (ZA): SECUNDA SYNFUEL OPERATIONS: Secunda Synfuels Operations operates the world’s only commercial coal-based synthetic fuels manufacturing facility of its kind, producing synthesis gas (syngas) through coal gasification and natural gas reforming. They make use of their proprietary technology to convert syngas into synthetic fuel components, pipeline gas and chemical feedstock for the downstream production of solvents, polymers, comonomers and other chemicals. Primary internal customers are Sasol Chemicals Operations, Sasol Exploration and Production International and other chemical companies. Carbon is produced for the recarburiser, aluminium, electrode and cathodic production markets. Secunda Synfuels Operations receives coal from five mines in Mpumalanga (see figure attached). After being crushed, the coal is blended to obtain an even quality distribution. Electricity is generated by both steam and gas and used to gasify the coal at a temperature of 1300°C. This produces syngas from which two types of reactor - circulating fluidised bed and Sasol Advanced SynthoTM reactors – produce components for making synthetic fuels as well as a number of downstream chemicals. Gas water and tar oil streams emanating from the gasification process are refined to produce ammonia and various grades of coke respectively. imageUrlTagReplacea79dc0c2-0dda-47ec-94e0-6f076bc8cdb6 SECUNDA CHEMICAL OPERATIONS: The Secunda Chemicals Operations hub forms part of the Southern African Operations and is the consolidation of all the chemical operating facilities in Secunda, along with Site Services activities. The Secunda Chemicals hub produces a diverse range of products that include industrial explosives, fertilisers; polypropylene, ethylene and propylene; solvents (acetone, methyl ethyl ketone (MEK), ethanol, n-Propanol, iso-propanol, SABUTOL-TM, PROPYLOL-TM, mixed C3 and C4 alcohols, mixed C5 and C6 alcohols, High Purity Ethanol, and Ethyl Acetate) as well as the co-monomers, 1-hexene, 1-pentene and 1-octene and detergent alcohol (SafolTM).

CO2-WIN: CO2 zu Propen via eMethanol

Das Projekt "CO2-WIN: CO2 zu Propen via eMethanol" wird vom Umweltbundesamt gefördert und von Covestro Deutschland AG durchgeführt. Propen ist ein essentieller Rohstoff für die chemische Industrie mit einer globalen Produktion von ca. 100 Millionen Tonnen pro Jahr. Es dient nicht nur zur Herstellung von Polypropylen sondern auch für die Herstellung von Propylenoxid. Propylenoxid ist ein wichtiger Rohstoff (Produktion ca. 6 Mio. t/a) z.B. für die Herstellung von Polyether, die für die Herstellung von Polyurethanschäumen benötigt werden. Derzeit wird Propen durch Cracken von Erdölfraktionen oder Gas sowie in zunehmendem Maße aus Methanol gewonnen, das überwiegend aus Kohle und Erdgas erzeugt wird. Hierdurch werden fossile Rohstoffe verbraucht und nach Ende der Nutzungsdauer der daraus hergestellten Produkte durch Verbrennung in klimaschädliches CO2 umgewandelt. Eine stoffliche Nutzung von CO2 als Rohstoffbasis für Propen ist derzeit noch nicht möglich. Im Projekt ProMet sollen die Grundlagen gelegt werden, um über Elektrolyse im industriell relevanten Maßstab CO2 in Methanol ('eMethanol') umzuwandeln.

Öle und Fette

Pflanzliche Öle werden als energiereiche Reservestoffe in Speicherorgane von Pflanzen eingelagert. Sie sind chemisch gesehen Ester aus Glycerin und drei Fettsäuren. In Deutschland konzentriert sich der Ölsaatenanbau auf Raps, Sonnenblume und Lein. Im Freistaat Sachsen dominiert auf Grund der Standortbedingungen und vor allem der Wirtschaftlichkeit eindeutig der Raps. Der maximal mögliche Anbauumfang von Raps liegt aus anbautechnischer Sicht bei 25 % der Ackerfläche und ist noch nicht ausgeschöpft (Sachsen 2004: 17 %). Für den landwirtschaftlichen Anbau kommen eine Reihe weiterer ölliefernder Pflanzenarten oder spezieller Sorten in Betracht. Interessant sind sie aus der Sicht der Verwertung insbesondere, wenn sie hohe Gehalte einzelner spezieller Fettsäuren aufweisen. Bei der Verarbeitung können dann aufwändige Aufbereitungs- und Trennprozesse eingespart und die Synthesevorleistung der Natur optimal genutzt werden. Der Anbauumfang ist jedoch meist noch sehr gering. Beispiele sind Nachtkerze und Iberischer Drachenkopf, aber auch Erucaraps und ölsäurereiche Sonnenblumensorten. a) stoffliche Verwertung In der stofflichen Verwertung reichen die Einsatzfelder pflanzlicher Öle von biologisch schnell abbaubaren Schmierstoffen, Lacken und Farben, über Tenside, Kosmetika, Wachse bis zu Grundchemikalien, aber auch Bitumen. b) energetische Verwertung Desweiteren können Pflanzenöle in Fahrzeugen, stationären oder mobilen Anlagen energetisch verwertet werden. Für den breiten Einsatz ist derzeit vor allem Biodiesel geeignet. Dieser kommt als reiner Kraftstoff zum Einsatz, seit 2004 auch in Beimischung zu Dieselkraftstoff. Eine weitere Möglichkeit eröffnet sich durch die Verwendung von reinem Rapsöl.

Teilprojekt 3: Einbindung in den MTP-Prozess

Das Projekt "Teilprojekt 3: Einbindung in den MTP-Prozess" wird vom Umweltbundesamt gefördert und von AIR LIQUIDE Forschung und Entwicklung GmbH durchgeführt. Propen ist ein essentieller Rohstoff für die chemische Industrie mit einer globalen Produktion von ca. 100 Millionen Tonnen pro Jahr. Es dient nicht nur zur Herstellung von Polypropylen sondern auch für die Herstellung von Propylenoxid. Propylenoxid ist ein wichtiger Rohstoff (Produktion ca. 6 Mio. t/a) z.B. für die Herstellung von Polyether, die für die Herstellung von Polyurethanschäumen benötigt werden. Derzeit wird Propen durch Cracken von Erdölfraktionen oder Gas sowie in zunehmendem Maße aus Methanol gewonnen, das überwiegend aus Kohle und Erdgas erzeugt wird. Hierdurch werden fossile Rohstoffe verbraucht und nach Ende der Nutzungsdauer der daraus hergestellten Produkte durch Verbrennung in klimaschädliches CO2 umgewandelt. Eine stoffliche Nutzung von CO2 als Rohstoffbasis für Propen ist derzeit noch nicht möglich. Im Projekt ProMet sollen die Grundlagen gelegt werden, um über Elektrolyse im industriell relevanten Maßstab CO2 in Methanol ('eMethanol') umzuwandeln. Zentrales Element ist der Einsatz einer als Kathode geschalteten Gasdiffusionselektrode, an der gasförmiges CO2 direkt an einem Elektrokatalysator zu Methanol (MeOH) umgewandelt werden soll. Hauptzielsetzung des Teilvorhabens der Air Liquide Forschung & Entwicklung GmbH ist die Einbindung in den bestehenden MTP (Methanol-to-Propylene)-Prozess. Hierzu muss das neue 'eMethanol' in seiner Eignung für den MTP-Prozess analytisch bewertet werden. Zudem werden durch die Kopplung von eMethanol-Herstellung und MTP-Prozess weitere Vereinfachungen erwartet. Weiterhin wird die ALFE an den Themenbereichen LCA, Prozess-Simulation und Wirtschaftlichkeitsrechnungen mitarbeiten bzw. Daten für andere Verbundpartner bereitstellen.

TP1.2: Aufschluss von verholzter Biomasse

Das Projekt "TP1.2: Aufschluss von verholzter Biomasse" wird vom Umweltbundesamt gefördert und von LXP Group GmbH durchgeführt. In diesem Vorhaben planen die Partner LXP Group GmbH (im Folgenden LXP) und das Leibniz-Institut für Agrartechnik und Bioökonomie (im Folgenden ATB) im Verbund daran zu arbeiten, die Machbarkeit der Produktion von reiner, polymerisierbarer Bernsteinsäure aus pflanzlichen Reststoffen zu erforschen. LXP ist Entwickler des neuen, patentierten LX-Verfahrens und hat dieses basierend auf festen Gärresten aus Biogasanlagen erprobt. Im hier vorgestellten Verbundprojekt ist geplant, diese Verfahrens-Demonstration gleichzeitig zu nutzen, um die Anwendbarkeit dieser neuen Technologie im Bereich der sogen. zweiten Generation (2G, Lignocellulose) bio-basierte Chemikalien nachzuweisen. Dazu ist vorgesehen, Rohstoff-Muster mit Hilfe des LX-Verfahrens und der LX-Demonstrationsanlage herzustellen und deren Hydrolyse, Fermentation und Aufreinigung zu polymerisierbarer Bernsteinsäure auch hinsichtlich der Rohstoffflexibilität zu erforschen. Die biotechnologische Herstellung von Bernsteinsäure erfolgt heutzutage auf Basis von Zuckern, die aus Pflanzen für die nahrungs- und Futtermittelproduktion stammen. Die zunehmende Umstellung der chemischen Industrie von der Petrochemie auf nachwachsende Rohstoffe führt zu unerwünschten Konkurrenzen um die landwirtschaftliche Nutzfläche, so dass bereits alternative Rohstoffquellen in Betracht gezogen werden. In der Abfallwirtschaft hat in den 90er Jahren des letzten Jahrhunderts ein Umdenken stattgefunden und so werden heutzutage Kunststoffe, Papier und Metall recycelt. Das Potenzial von biogenen Rest- und Abfallstoffen für höherwertige Anwendungen wie z.B. Materialien & Chemikalien findet in diesem Recycling jedoch kaum Beachtung. In dem vorliegenden Projekt soll eine ganz neue stoffliche Verwertung von nachwachsenden 2G Rohstoffen, die nicht in Konkurrenz zu Nahrungs- und Futtermitteln stehen, untersucht werden. Zusätzliche Effekte im Sinne einer nachhaltigen Ressourcennutzung können erzielt werden, wenn aus einem Materialstrom in mehreren Pro (Text abgebrochen)

Vergasung von haus- und Industriemuell nach dem swf-Funk-Verfahren

Das Projekt "Vergasung von haus- und Industriemuell nach dem swf-Funk-Verfahren" wird vom Umweltbundesamt gefördert und von Saarberg-Fernwärme GmbH durchgeführt. Durch die Verwirklichung und den Betrieb eines im Konzept Vorgeschlagenen Muellvergasungsverfahrens werden die Bedingungen Ermittelt, unter denen sich ein Gemisch aus haus- und Industriemuell zu wieder Einsetzbaren Substanzen (heizgas, Chemierohstoffe) umsetzen laesst ohne eine Spuerbare Umweltbelastung zu Verursachen.

Chemisch-technische Nutzung pflanzlicher Oele

Das Projekt "Chemisch-technische Nutzung pflanzlicher Oele" wird vom Umweltbundesamt gefördert und von Fachagentur Nachwachsende Rohstoffe e.V. durchgeführt. Objective: Vegetable oils are among the most prominent biological raw materials for non food uses at the moment: The world production of natural fats and oils amounts to 96 million tons. Around 12 million tons are used in different non-food applications, such as surfactants, lubricants, paints, coatings or biofuels. In Western Europe, official and industrial sources estimate that between 1,7 and 2,7 million tons of natural fats and oils are used in the chemical-technical sector. The European Union is one of the main oilseed producers and crushers in the world. Non-food production on set-aside land amounted to 650.000 ha oilseeds in 1996. The European Commission and several Member States have realized the importance of this sector and support research and development activities in the whole production and processing chain of vegetable oils. However, European vegetable oils have only a minor share of the current industrial utilisation To find new market outlets for these oils in existing and new applications, requires a better co-ordination of research efforts and more exchange of information on a European level. This project has the following objectives: 1. Linkage of R&D activities on national and EU level related to the production and utilisation of vegetable oils in the chemical-technical sector. 2. Identification of industrial needs in this sector, in an effort to increase the utilisation of European vegetable oils in established and new applications. 3. Determination of ecological benefits of vegetable oil based products, in relation to petrochemical products. 4. Definition of future research needs in the field of chemical-technical utilisation of vegetable oils. The major means to achieve the objectives will be sectoral workshops, including experts from all European countries, as well as coordinators from relevant EU and nationally funded projects. The following sector groups, consisting of experts from universities, research institutes and industry, are envisaged: - New applications for vegetable oils (e.g. Plastics). - Valorisation of by-products, especially glycerol. - Genetic engineering, biotechnology and industrial oilseed crops. Results of these workshops will be published as working papers. In addition, the project will be promoted on Internet and linked with other EU funded networks, such as NF-2000 and IENICA.

1 2 3 4 596 97 98