API src

Found 1 results.

Geometrische und elektronische Struktur von (NiFe)- und (FeFe)-Hydrogenasen: H2-Produktivität und O2-Toleranz

Das Projekt "Geometrische und elektronische Struktur von (NiFe)- und (FeFe)-Hydrogenasen: H2-Produktivität und O2-Toleranz" wird vom Umweltbundesamt gefördert und von Max-Planck-Institut für Bioanorganische Chemie durchgeführt. Teilantrag zum Gesamtantrag 'H2-Designzellen': Für das Design eines Organismus zur lichtgetriebenen Wasserstoffproduktion ist die Verwendung einer hochaktiven, thermostabilen und sauerstofftoleranten Hydrogenasekomponente von essentieller Bedeutung. In diesem Projekt soll die Grundlage für ein Verständnis solcher Hydrogenasen (sowohl des NiFe- als auch FeFe-Typs) gelegt werden durch (1) Kristallisation und Röntgenstrukturanalyse und (2) spektroskopische Untersuchungen (EPR, FTIR) der aktiven Zentren. In Kooperation mit der AG Happe ist geplant, die hochaktiven kleinen (FeFe)-Hydrogenasen aus 2 Grünalgen (Chlorococcus submarinum, Chlamydomonas moewusii) zu untersuchen, ergänzt durch entsprechende Mutanten. Mit der AG Friedrich/Lenz wollen wir die (NiFe)-Hydrogenasen aus Ralstonia eutropha und thermostabilen Knallgasbakterien (Hydrogenophilus (H.) thermoluteolus, H. hirschii) studieren. Die Gene der Hydrogenase-Untereinheiten für den Zusammenbau des aktiven Zentrums und für die Reifungsprozesse müssen dann über Transformation/Konjugation in den Modellorganismus Synechocystis übertragen werden. (1) Im ersten Jahr soll die Kristallisation aller Systeme optimiert werden. Parallel dazu erfolgt die spektroskopische Charakterisierung.(2) Im zweiten Jahr sollten die Röntgenstrukturdaten für die (NiFe)- und (FeFe)-Hydrogenase zur Verfügung stehen als Grundlage für ein Verständnis von O2-Toleranz, Stabilität und Aktivität. Parallel dazu soll für die untersuchten Hydrogenasen der Wirkmechanismus ermittelt werden.(3) Im dritten Jahr sollen Hydrogenasen im Modellorganismus Synechocystis untersucht werden. Die hier geplanten Untersuchungen sind essentiell zur Auswahl geeigneter stabiler Hydrogenasen hoher Effizienz zur Einbringung in den Modellorganismus, der dann nach entsprechenden Tests einer wirtschaftlichen Verwertung zugeführt werden kann.

1