Die international operierende Wacker Chemie AG mit ihren vier Geschäftsbereichen Polysilicon, Silicones, Polymers und Biosolutions unterhält 27 Produktionsstätten in elf Ländern und beschäftigt rund 15.700 Mitarbeiter*innen. Der Geschäftsbereich Wacker Silicones betreibt am Standort Burghausen eine Methanolyseanlage zur Herstellung von Siloxanen. Die hergestellten Siloxane dienen als Ausgangspolymere für die Herstellung von Siliconen. Durch Umsetzung des innovativen Konzepts soll in Burghausen eine HCl (Chlorwasserstoff)-Wäsche entstehen und in die bestehende Anlage integriert werden. Bei der Herstellung von Siloxanen fallen wasserlösliche und schwer abbaubare, siliziumorganische Verbindungen als Nebenprodukte an und gelangen in die zentrale Abwasserreinigungsanlage des Werks. In einem patentierten, zweistufigen Verfahren der HCl-Wäsche wird der Chlorwasserstoff von den umweltbelastenden Verbindungen gereinigt und in einem Kreislauf dem Prozess wieder zugeführt. Damit werden künftig 90 Prozent der siliziumorganischen Verbindungen bereits in der Produktionsanlage entfernt, bevor sie ins Abwasser gelangen. Durch den Einsatz der HCl-Wäsche können jährlich rund 135 Tonnen siliziumorganische Verbindungen zurückgehalten werden und gelangen somit nicht ins Abwasser. Die TOC-Emissionen (Summe des gesamten organischen Kohlenstoffs in einer Probe) der betriebseigenen Kläranlage verringern sich um rund 20 Prozent. Die HCl-Wäscheanlage bildet den zentralen Bestandteil des Vorhabens und dient damit der Verbesserung der Wasserqualität. Branche: Chemische und pharmazeutische Erzeugnisse, Gummi- und Kunststoffwaren Umweltbereich: Wasser / Abwasser Fördernehmer: Wacker Chemie AG Bundesland: Bayern Laufzeit: seit 2022 Status: Laufend
Die IVH, Industriepark und Verwertungszentrum Harz GmbH mit Sitz in Hildesheim (Niedersachsen) hat über mehrere Jahre zusammen mit der Umweltdienste Kedenburg GmbH, beide Entsorgungs-/Recyclingunternehmen im Unternehmensverbund der Bettels-Gruppe, Hildesheim, und der Eisenmann Environmental Technologies GmbH, Holzgerlingen, deren NaRePAK-Verfahren zur großmaßstäblichen Umsetzung weiterentwickelt. Stoffkreisläufe zu schließen und somit die effiziente und nachhaltige Nutzung begrenzter Ressourcen zu verbessern ist die erklärte Philosophie der IVH, hier fügt sich das RiA-Verfahren nahtlos ein. In Deutschland fallen jährlich erhebliche Mengen teerhaltigen Straßenaufbruchs an. Dieser Abfallstrom besteht weit überwiegend aus mineralischen Komponenten (z.B. Gesteinskörnungen und Feinsand) und enthält neben Bitumen krebserregende polyzyklische aromatische Kohlenwasserstoffe (PAK). Letztere sind verantwortlich, dass dieser Massenstrom als gefährlicher Abfall eingestuft wird. PAK sind persistent und verbleiben ohne thermische Behandlung langfristig in der Umwelt. Die Abfallmengen sind dabei beträchtlich. Die Bundesregierung geht von einer Menge von etwa 600.000 Tonnen pro Jahr allein von Bundesautobahnen und -straßen aus, dazu kommt der Aufbruch von Landes- und Kreisstraßen, die mengenmäßig die Bundesautobahnen und -straßen weit übertreffen. Bisher wird teerhaltiger Straßenaufbruch überwiegend deponiert, wodurch die im Straßenaufbruch enthaltenen mineralischen Ressourcen dem Wertstoffkreislauf verloren gehen. Der in begrenztem Umfang alternativ mögliche Verwertungsweg: Kalteinbau in Tragschichten im Straßenbau, erfolgt ohne Entfernung der PAK und wird daher nur noch in geringem Umfang angewendet. Eine weitere Möglichkeit ist die thermische Behandlung in den Niederlanden. Dies ist nicht nur verbunden mit langen Transportwegen, auch arbeiten die niederländischen Anlagen in einem deutlich höheren Temperaturintervall – im Bereich der Kalzinierung (Kalkzersetzung) – was dazu führen kann, dass die mineralischen Bestandteile des Straßenaufbruchs nicht mehr die notwendige Festigkeit aufweisen, um für einen Einsatz als hochwertiger Baustoff für die ursprüngliche Nutzung des Primärrohstoffes in Frage zu kommen. Darüber hinaus wird beim Kalzinierungsprozess von Kalkgestein im Gestein gebundenes CO 2 freigesetzt. Mit dem Vorhaben RiA plant die IVH an ihrem Standort in Goslar / Bad Harzburg die Errichtung einer in Deutschland erstmaligen großtechnischen Anlage zur thermischen Behandlung von teerhaltigem Straßenaufbruch. Dabei soll eine möglichst vollständige Rückgewinnung der enthaltenen hochwertigen Mineralstoffe (Gesteinskörnungen)erfolgen. Gleichzeitig werden die enthaltenen organischen Bestandteile, die in Form von Teerstoffen und Bitumen vorliegen, als Energieträger genutzt. In der innovativen Anlage sollen pro Jahr bis zu 135.000 Tonnen teerhaltiger Straßenaufbruch mittels Drehrohr thermisch aufbereitet werden. Dabei werden im Teer enthaltene besonders schädliche Stoffe wie PAK bei Temperaturen zwischen 550 Grad und 630 Grad Celsius entfernt und in Kombination mit der separaten Nachverbrennung vollständig zerstört, ohne dass das Mineralstoffgemisch zu hohen thermischen Belastungen mit der Gefahr einer ungewollten Kalzinierung ausgesetzt ist. Zurück bleibt ein sauberes, naturfarbenes Gesteinsmaterial (ohne schwarze Restanhaftungen von Kohlenstoff), das für eine höherwertige Wiederverwendung in der Bauwirtschaft geeignet ist. Die mineralischen Bestandteile des Straßenaufbruchs können so nahezu vollständig hochwertig verwendet und analog Primärrohstoffen erneut bei der Asphaltherstellung oder Betonherstellung eingesetzt werden. Die organischen Anteile im Abgas werden mittels Nachverbrennung bei 850 Grad Celsius thermisch umgesetzt und vollständig zerstört. Die dabei entstehende Abwärme wird genutzt, um Thermalöl zu erhitzen, um damit Ammoniumsulfatlösungen einer benachbarten Bleibatterieaufbereitung der IVH einzudampfen, aufzukonzentrieren und so ein vermarktungsfähiges Düngemittel herzustellen. Das Thermalöl wird dazu mit 300 Grad Celsius zu der Batterierecyclinganlage geleitet. Die Wärme ersetzt dabei andere Brennstoffe wie z. B. Erdgas. Die verbleibende Abwärme aus der Nachverbrennung wird mittels drei ORC-Anlagen zur Niedertemperaturverstromung genutzt. Es werden ca. 300 Kilowatt elektrische Energie pro Stunde erzeugt. Die beim RiA-Verfahren entstehenden Abgase werden in einer mehrstufigen Rauchgasreinigung behandelt. Die Abgase der Drehrohr-Anlage werden dazu aufwendig mittels Zyklone und nachgeschaltetem Gewebefilter entstaubt. Schwefeldioxid und Chlorwasserstoff werden mittels trockener Rauchgasreinigung nach Additivzugabe abgeschieden. Die Umwandlung von Stickstoffoxiden erfolgt mittels selektiver katalytischer Reduktion mit Harnstoff als Reduktionsmittel. Die bereits genannte Nachverbrennung zerstört verbliebene organische Reste. Die wesentliche Umweltentlastung des Vorhabens besteht in der stofflichen Rückgewinnung des ursprünglichen hochwertigen Gesteins im teerhaltigen Straßenaufbruch, also durch Herstellung eines wiederverwendbaren PAK-freien Mineralstoffgemisches von gleicher Qualität wie die ursprünglichen Primärrohstoffe. Das heißt die besonders umweltschädlichen PAKs werden nachhaltig aus dem Stoffkreislauf entfernt. Mit der Anlage können von eingesetzten 135.000 Tonnen Straßenaufbruch rund 126.900 Tonnen als Mineralstoffgemisch in Form von Gesteinskörnungen und Füller zurückgewonnen und für die Wiederverwendung bereit gestellt werden. Die Gesamtmenge von 126.900 Tonnen pro Jahr reduziert den jährlichen Bedarf von Gesteinsabbauflächen bei einer Abbautiefe von 30 Meter um rund 1.460 Quadratmeter. Bezogen auf den angenommenen Lebenszyklus von 30 Jahren wird eine Fläche von ca. 4,4 Hektar Abbaugebiet allein durch diese Anlage nicht in Anspruch genommen. Zusätzlich wird in gleichem Maße wertvoller Deponieraum bei knappen Deponiekapazitäten eingespart. Bei erfolgreicher Demonstration der technischen und wirtschaftlichen Realisierbarkeit im industriellen Maßstab, lässt sich diese Technik dezentral auf verschiedene Standorte in Deutschland übertragen. Damit wird dem in der Kreislaufwirtschaft propagierten Näheprinzip entsprochen, das heißt die Transportwege und die damit verbundenen Umweltauswirkungen werden weiter reduziert. Auch der nach Region unterschiedlichen Gesteinsarten wird dabei Rechnung getragen. Branche: Wasser, Abwasser- und Abfallentsorgung, Beseitigung von Umweltverschmutzungen Umweltbereich: Ressourcen Fördernehmer: IVH, Industriepark und Verwertungszentrum Harz GmbH Bundesland: Niedersachsen Laufzeit: seit 2024 Status: Laufend
Änderung des Betriebs des HKW Tiefstack (Anlage zur Erzeugung von Strom, Dampf, Warmwasser, Prozesswärme oder erhitztem Abgas durch den Einsatz von Brenn-stoffen in einer Verbrennungseinrichtung einschließlich zugehöriger Dampfkessel mit einer Feuerungswärmeleistung von 50 MW oder mehr) durch Anpassung der Emissionsgrenzwerte von Fluorwasserstoff und Chlorwasserstoff
Die GHC Gerling, Holz & Co. Handels GmbH betreibt auf ihrem Betriebsgelände am Chemiestandort Leuna eine Anlage zur destillativen Reinigung und Abfüllung von Schwefelwasserstoff. Gegenstand des Änderungsvorhabens ist die geplante Erweiterung der Lagerung um - bis zu 90 t Chlorwasserstoff - bis zu 90 t Chlor - bis zu 90 t Ammoniak in ortsbeweglichen Druckgeräten auf der Freilagerfläche der Schwefelwasserstoffanlage. Die Stoffe Chlor, Ammoniak und Chlorwasserstoff werden ausschließlich passiv gelagert.
Die Firma Wacker Chemie AG, Werk Burghausen, beabsichtigt, die Anlage zur Herstellung und Lagerung von gasförmigem Chlorwasserstoff und zur Herstellung von Salzsäure (Anlage G 15 - HCl-Synthese) durch das Vorhaben (1009) - Errichtung und Betrieb Hochregallager für HCl-Druckgebinde, LP2325 - wesentlich zu ändern. Für das Vorhaben wurde beim Landratsamt Altötting eine immissionsschutzrechtliche Genehmigung nach § 16 Abs. 1 und 2 BImSchG i. V. m. §§ 1 Abs. 1, 2 Abs. 1 der 4. BImSchV und Nr. 4.1.12 des Anhangs 1 zur 4. BImSchV beantragt. Im Rahmen des Genehmigungsverfahrens wurde gemäß §§ 7, 9 UVPG i. V. m. Nr. 4.2 der Anlage 1 zum UVPG eine allgemeine Vorprüfung des Einzelfalls durchgeführt.
Die Firma Wacker Chemie AG, Werk Burghausen, beabsichtigt, die Anlage zur Herstellung und Lagerung von gasförmigem Chlorwasserstoff und zur Herstellung von Salzsäure (Anlage G 15 - HCl-Synthese) durch das Vorhaben (1005) - Erweiterung Reinst-HCl-Erzeugung mit Mengenerhöhung - wesentlich zu ändern. Für das Vorhaben wurde beim Landratsamt Altötting eine immissionsschutzrechtliche Genehmigung nach § 16 Abs. 1 und 2 BImSchG i. V. m. §§ 1 Abs. 1, 2 Abs. 1 der 4. BImSchV und Nr. 4.1.12 des Anhangs 1 zur 4. BImSchV beantragt. Im Rahmen des Genehmigungsverfahrens wurde gemäß §§ 7, 9 UVPG i. V. m. Nr. 4.2 der Anlage 1 zum UVPG eine allgemeine Vorprüfung des Einzelfalls durchgeführt.
Die Firma Wacker Chemie AG, Werk Burghausen, beabsichtigt, die Anlage zur Herstellung und Lagerung von gasförmigem Chlorwasserstoff und zur Herstellung von Salzsäure (Anlage G 15 - HCl-Synthese) durch das Vorhaben (045) - Errichtung und Betrieb des HCl-Puffertanks AB41 und der Tube-Trailer-Abfüllung - wesentlich zu ändern. Für das Vorhaben wurde beim Landratsamt Altötting eine immissionsschutzrechtliche Genehmigung nach § 16 Abs. 1 und 2 BImSchG i. V. m. §§ 1 Abs. 1, 2 Abs. 1 der 4. BImSchV und Nr. 4.1.12 des Anhangs 1 zur 4. BImSchV beantragt. Im Rahmen des Genehmigungsverfahrens wurde gemäß §§ 7, 9 UVPG i. V. m. Nr. 4.2 der Anlage 1 zum UVPG eine allgemeine Vorprüfung des Einzelfalls durchgeführt.
Gefahrstoffe mit dem Gefahrenmerkmal EUH029 ("Bilden im Kontakt mit Wasser giftige Gase") unterliegen der Störfall-Verordnung. Es wurde eine Kohorte von 30 Stoffen mit diesem Gefahrenmerkmal, die in der Praxis eine gewisse Bedeutung erlangt haben, analysiert. Das mit Abstand häufigste Hydrolyseprodukt (62%) ist Chlorwasserstoff, gefolgt von Phosphin mit 14%, und vereinzelt Fluorwasserstoff, Schwefelwasserstoff, Schwefeldioxid, Ammoniak, Stickoxide und Cyanwasserstoff. Die höchsten Gefahrenpotentialwerte werden für das Hydrolyseprodukt Phosphin gefolgt von Schwefeldioxid und Chlorwasserstoff ermittelt. Phosphin wird in der Kohorte ausschließlich aus Feststoffen generiert, Chlorwasserstoff und Schwefeldioxid hauptsächlich aus Flüssigkeiten. Zur standardisierten Berücksichtigung des Gefahrenpotentials dieser Stoffkategorie erscheint es notwendig hinsichtlich der Hydrolyseprodukte zu unterscheiden. Für die Abschätzung angemessener Sicherheitsabstände ist konservativ von einer 100% igen Umsetzung des Ausgangsstoffs in das Hydrolyseprodukt auszugehen und unter Berücksichtigung der stöchiometrischen Zusammenhänge die relevanten Mengen zu ermitteln und die Abstandsberechnung nach den "Handlungsempfehlungen..." vorzunehmen. Für phosphinentwickelnde (feste) Substanzen wird pauschal die Abstandskategorie VII-VIII (1000m - 1500m), für chlorwasserstoffentwickelnde (feste) Substanzen die Abstandskategorien III-IV (300m - 400m) als abdeckend vorgeschlagen. Für flüssige Stoffe aus denen Chlorwasserstoff generiert werden kann erscheint die Einhaltung eines Sicherheitsabstandes von 500m - 750 m in erster Näherung abdeckend. Quelle: Forschungsbericht
Emissonskataster Hausbrand und Kleingewerbe 1997 für die Untersuchungsgebiete Dillingen/Saarlouis, Völklingen, und Saarbrücken mit Emissionen für Kohlendioxid, Kohlenmonoxid, Schwefeldioxid, Stickstoffoxide, Distickstoffmonoxid, Staub, Chlorwasserstoff, Blei, Cadmium, Zink, Quecksilber, Methan, flüchtige Kohlenwasserstoffe und Dioxine
H-FCKW R22-Herstellung durch Umsetzung von Chloroform (CHCl3) mit Fluorwasserstoff nach folgender Gleichung: CHCl3 + 2 HF à CHClF2 (R22) + 2 HCl Die Daten gelten für Deutschland Anfang 90er Jahre. Allokation: Die Allokation der benötigten Chemikalien, der Energie und Emissionen der einzelnen Koppelprodukte erfolgt nach #1 über die obige Gleichung und den erzielbaren Marktpreis, d.h die Belastung der Umwelt wird im Verhältnis ihrer Marktpreise aufgeschlüsselt. Analog zu #1 werden in GEMIS nur die anteiligen Belastungen für R22 aufgenommen (d.h. es werden keine Gutschriften für Chlorwasserstoff erteilt). Genese der Daten: Die Kennziffern für den Einsatz von Chloroform (CHCl3), Fluorwasserstoff (HF), Heizöl EL (100 kW Heizung) und elektrischer Energie (Mittelspannung) stammen alle von #1 und basieren auf Herstellerangaben. Zu prozeßspezifischen Emissionen wurden von den betreffenden Firmen keine Angaben gemacht. Auslastung: 5000h/a Brenn-/Einsatzstoff: Grundstoffe-Chemie gesicherte Leistung: 100% Jahr: 2000 Lebensdauer: 20a Leistung: 1t/h Nutzungsgrad: 71,9% Produkt: Grundstoffe-Chemie
Origin | Count |
---|---|
Bund | 163 |
Land | 7 |
Type | Count |
---|---|
Chemische Verbindung | 9 |
Förderprogramm | 149 |
Text | 5 |
Umweltprüfung | 5 |
unbekannt | 2 |
License | Count |
---|---|
geschlossen | 18 |
offen | 147 |
unbekannt | 5 |
Language | Count |
---|---|
Deutsch | 156 |
Englisch | 21 |
Resource type | Count |
---|---|
Archiv | 4 |
Datei | 4 |
Dokument | 9 |
Keine | 152 |
Webseite | 9 |
Topic | Count |
---|---|
Boden | 142 |
Lebewesen & Lebensräume | 139 |
Luft | 150 |
Mensch & Umwelt | 170 |
Wasser | 143 |
Weitere | 156 |