Here we provide the dataset for COSMOS-Europe: A European network of Cosmic-Ray Neutron Soil Moisture Sensors.
The dataset contains soil moisture data from 65 cosmic-ray neutron sensors (CRNS) in Europe. The CRNS stations cover all major land use types and climate zones within Europe. Raw neutron count data from the CRNS stations were provided by 23 research institutions and processed using state-of-the-art methods.
The harmonized processing included correction of the raw neutron counts and a harmonized methodology for conversion to soil moisture based on available in situ information. In addition, information on data uncertainty was added to the dataset, which is particularly useful for remote sensing and modeling applications.
This harmonized European soil moisture dataset will help both the hydrological and climatic communities to study individual drought events, understand their causes, evaluate and improve their modeling, and estimate the extremity of current events.
Das Projekt "CLOUD" wird vom Umweltbundesamt gefördert und von Paul Scherrer Institut, Labor für Atmosphärenchemie durchgeführt. CLOUD is an acronym for Cosmics Leaving OUtdoor Droplets. CLOUD was designed to investigate the influence of galactic cosmic rays (GCRs) on ions, aerosols, cloud condensation nuclei (CCN) and clouds, with the CLOUD facility at CERN, and thereby to assess the significance of a possible ''solar indirect'' contribution to climate change. In a more general term, CLOUD aims at resolving one of the most challenging and long-standing problems in atmospheric science - to understand how new aerosol particles are formed in the atmosphere and the effect these particles have on the global atmosphere and climate. The present poor experimental understanding of aerosol nucleation and growth is preventing the inclusion of physics-based mechanisms in global models, and limiting our understanding of how a major fraction of atmospheric aerosol will influence future climate. The contribution of aerosols and clouds is recognized by the Intergovernmental Panel on Climate Change as the most important source of uncertainty in the radiative forcing of climate change, and is limiting our capability to make reliable climate projections. With the CLOUD facility at CERN we have for the first time an experimental chamber of the highest technological performance available, where the atmosphere is recreated from ultra-pure air with added water vapor, trace gases under study and, for certain experiments, aerosols. The chamber is located at the beamline (T11) at the CERN Proton Synchrotron accelerator, and is equipped with a wide range of sensitive instruments to analyze their contents via optical ports or sampling probes. The accelerator provides an adjustable and precisely measurable beam of 'cosmic rays' that closely matches natural cosmic rays in ionization density, uniformity and intensity, spanning the atmospheric range from ground level to the maximum around 15 km altitude. In contrast with experiments in the atmosphere, CLOUD will be able to compare processes when the cosmic ray beam is varied, and all experimental parameters can be precisely controlled and measured. As a result of this, CLOUD has established itself as the worlds pre-eminent experiment for these studies. Within the next 10 years, a multi-parameter experimental phase space will be mapped, involving numerous variables such as temperature, relative humidity, trace gases and their concentrations, ionization, nucleation rates, growth rates, droplet and ice particle activation, as well as liquid and ice cloud microphysics.
Das Projekt "FORCE Proposal to Investigation of Secondary Organic Aerosol Formation in the PSI Smog Chamber and at CERN" wird vom Umweltbundesamt gefördert und von Paul Scherrer Institut, Labor für Atmosphärenchemie durchgeführt. The scientific objective of CLOUD is to investigate the influence of galactic cosmic rays (GCRs) on ions, aerosols, cloud condensation nuclei (CCN) and clouds, with the CLOUD facility at CERN, and thereby to assess the significance of a possible 'solar indirect' contribution to climate change. Aerosols and clouds are recognised as representing the largest uncertainty in the current understanding of climate change. The Intergovernmental Panel on Climate Change (IPCC) estimates that changes of solar irradiance ('direct solar forcing') have made only a small (7Prozent) contribution to the observed warming. However, large uncertainties remain on other solar-related contributions, such as the effects of changes of galactic cosmic rays on aerosols and clouds. CLOUD aims to settle the important unanswered questions of the IPCC on possible cosmic ray effects on clouds and climate, and to help sharpen our understanding of the anthropogenic contribution to global warming. We have established a central CLOUD facility in the beamline T11 at the CERN Proton Synchrotron accelerator, comprising a large aerosol chamber, within which the atmosphere is recreated from ultra-pure air with added water vapour, trace gases under study and, for certain experiments, aerosols. The chamber is equipped with a wide range of sensitive instruments to analyse their contents via optical ports or sampling probes. The accelerator provides an adjustable and precisely measurable beam of 'cosmic rays' that closely matches natural cosmic rays in ionisation density, uniformity and intensity, spanning the atmospheric range from ground level to the maximum around 15 km altitude. In contrast with experiments in the atmosphere, CLOUD is able to compare processes when the cosmic ray beam is varied, and all experimental parameters can be precisely controlled and measured. More information is found at the CLOUD websites
Das Projekt "CERN-CLOUD project" wird vom Umweltbundesamt gefördert und von Paul Scherrer Institut, Labor für Atmosphärenchemie durchgeführt. CLOUD is an acronym for Cosmics Leaving OUtdoor Droplets. The scientific objective of CLOUD is to investigate the influence of galactic cosmic rays (GCRs) on ions, aerosols, cloud condensation nuclei (CCN) and clouds, with the CLOUD facility at CERN, and thereby to assess the significance of a possible 'solar indirect' contribution to climate change. Aerosols and clouds are recognised as representing the largest uncertainty in the current understanding of climate change. The Intergovernmental Panel on Climate Change (IPCC) estimates that changes of solar irradiance ('direct solar forcing') have made only a small (7Prozent) contribution to the observed warming. However, large uncertainties remain on other solar-related contributions, such as the effects of changes of galactic cosmic rays on aerosols and clouds. CLOUD aims to settle the important unanswered questions of the IPCC on possible cosmic ray effects on clouds and climate, and to help sharpen our understanding of the anthropogenic contribution to global warming. The scientific programme of CLOUD will involve the establishment of a central CLOUD facility in a beamline (T11) at the CERN Proton Synchrotron accelerator, comprising a large aerosol chamber, within which the atmosphere is recreated from ultra-pure air with added water vapour, trace gases under study and, for certain experiments, aerosols. The chamber will be equipped with a wide range of sensitive instruments to analyse their contents via optical ports or sampling probes. The accelerator provides an adjustable and precisely measurable beam of 'cosmic rays' that closely matches natural cosmic rays in ionisation density, uniformity and intensity, spanning the atmospheric range from ground level to the maximum around 15 km altitude. In contrast with experiments in the atmosphere, CLOUD will be able to compare processes when the cosmic ray beam is varied, and all experimental parameters can be precisely controlled and measured. More information is found at the CLOUD website http://cloud.web.cern.ch/cloud/.
Das Projekt "Kosmogene Radionuklide in polarem Eis" wird vom Umweltbundesamt gefördert und von Eidgenössische Anstalt für Wasserversorgung, Abwasserreinigung und Gewässerschutz, Abteilung für Umweltphysik durchgeführt. Messung kosmogener Radionuklide (10Be, 36Cl, 26Al) im GRIP Eiskern. Interpretation der Resultate mit Schwergewicht auf: Herleitung von Paleo-Niederschlagsraten, Rekonstruktion der Sonnenaktivitaet und des Geomagnetfeldes, Untersuchung des Zusammenhangs zwischen Sonnenaktivitaet und Luminositaet, Vergleich mit den 14C Daten von Baumringen. Trennung von Produktions- und Systemeffekten.