s/critical-load/critical load/gi
Die Konzentrationen vieler Luftinhaltsstoffe sind aufgrund vielfältiger menschlicher Aktivitäten in den letzten Jahren beträchtlich angestiegen. Als vegetationsgefährdende Komponente gewinnt dabei Ozon in der Bundesrepublik Deutschland zunehmend an Bedeutung, während z.B. Schwefeldioxid aufgrund der erfolgreichen Emissionsminderungsmaßnahmen in den Hintergrund tritt. Bei der Erstellung von Luftreinhalteplänen/Wirkungskatastern geht es darum, die räumliche und zeitliche Variabilität der Schadgaskonzentrationen im Hinblick auf eine mögliche Beeinträchtigung der Vegetation zu bewerten. Darüber hinaus gilt es, mögliche Entwicklungen der Immissionsbelastung prospektiv zu beurteilen, um frühzeitig evtl. notwendige Gegenmaßnahmen einleiten zu können. Dies bedarf integrierender Konzepte, in denen physikalisch/chemische Messprogramme und Verfahren der Bioindikation miteinander verknüpft werden. Das gemeinsam mit dem Hessischen Landesamt für Umwelt und Geologie durchgeführte Untersuchungsprogramm gliedert sich in fünf Schritte: - In einem ersten Schritt wurden potentielle Ertragsverluste durch Ozon anhand von Dosis-Wirkung-Funktionen aus der Literatur unter Verwendung hessischer Ozon-Messdaten für verschiedene Kulturpflanzen abgeschätzt. - In einem zweiten Schritt wurde eine flussorientierte Kenngröße für die Ozon-Belastung der Vegetation unter Verwendung von Messgrößen abgeleitet, die in den Ländermessnetzen erhoben werden. - In einem dritten Schritt wurde ein Modell für die Bestimmung des Gasaustausches zwischen Vegetation und bodennaher Atmosphäre entwickelt. - In einem vierten Schritt wurden sog. kritische absorbierte Ozon-Dosen (critical loads) für standardisiert exponierte Rezeptoren abgeleitet. - In einem fünften Schritt werden die aktuell in Europa diskutierten Grenzwerte zum Schutz der Vegetation vor Ozon und die ihnen zu Grunde liegenden Dosis-Wirkung-Funktionen auf ihre Übertragbarkeit auf bzw. Relevanz für die deutschen Verhältnisse untersucht. Die Methodik zur Ableitung kritischer absorbierter Ozon-Dosen (critical loads) wird weiterentwickelt sowie die Gefährdung der Vegetation durch Ozon auf regionaler Ebene realistisch abgeschätzt.
Waldökosysteme sind vielfältigen Belastungen ausgesetzt. Um rechtzeitig ungünstigen Entwicklungen entgegensteuern zu können, ist eine fortlaufende Überwachung des Waldzustandes notwendig. Dieses forstliche Umweltmonitoring erfolgt in Rheinland-Pfalz mit Hilfe von landesweiten Übersichtserhebungen (Level-I: Kronenzustandserhebung, Bodenzustandserhebung oder Waldernährungserhebung auf einem systematischen Raster) und anhand von Intensivuntersuchungen an Waldökosystem-Dauerbeobachtungsflächen (Level-II kontinuierliche Messungen der Luftschadstoffbelastung und der Witterungsverläufe sowie eine fortlaufende Beobachtung der Reaktionen der Waldökosysteme auf natürliche und anthropogene Stresseinflüsse an ausgewählten für die wichtigsten Waldstandorte in Rheinland-Pfalz charakteristischen Flächen). Erfasst werden u.a.: Kronenzustand (terrestrisch und aus IRC-Luftbildern); Waldwachstum; Nährstoffversorgung; Bodenvegetation; Bodenzustand; Baumflechten; Feinwurzeln; Mykorrhiza; Streufall; Ozonschadsymptome; Phänologie; Klima; Witterung; Luftschadstoffimmission; Luftschadstoffdeposition; Bodenwasser; Quellwasser. Anhand dieser Ergebnisse erfolgen Bewertungen zu den Themen: Wasserhaushalt, Bioelementhaushalt, Bodenversauerung, Stickstoffsättigung, Überschreitungen der ökologischen Belastungsgrenzen durch Luftschadstoffe (critical loads, AOT 40 etc.). Alle wesentlichen Befunde und umfangreiche Bewertungen können auch unter www.fawf.wald-rlp.de und hier unter: Forschungsschwerpunkte/Forstliches Umweltmonitoring eingesehen werden.
Das Kernvorhaben zur Umsetzung des ersten Forschungswettbewerbs in StickstoffBW konkretisiert die Simple-Mass-Balance Methode und entwickelt eine Fachkonvention für die behördliche Festsetzung von Critical Level und Critical Loads (CL). Die Ergebnisse sollen die in 2014 veröffentlichte 'CL-Datenmappe' ablösen. Im Einzelnen sollen die Forschenden 1. eine Anleitung zur Ermittlung der Critical Levels und Critical Loads orientierend mit Karten und abschließend mit Anleitung (Ing. Regioplus Mainz) einschließlich 2. einer Kartieranleitung zur Differenzierung der Biotoptypen nach Empfindlichkeit gegenüber Stickstoffeinträgen (Breunig Karlsruhe) und 3. einer Analyse der historischen Grünlandnutzung als Orientierungshilfe für die Definition von Trophiezonen für den Viehbesatz und die Düngungsintensität erarbeiten (Ing. Hohenheim).
Perowskit-Silizium-Tandemsolarzellen sind die aktuell vielversprechendste Möglichkeit, den Wirkungsgrad von zukünftigen photovoltaischen (PV) Produkten kosteneffizient über das Limit von ausschließlich auf Silizium basierten Solarzellen hinaus zu steigern. Neben der Zelltechnologie ist die Verschaltung und Einkapselung in langzeitstabile Solarmodule die Hauptherausforderung für eine zukünftige Kommerzialisierung von Tandemsolarzellen. Das Ziel des Projektes MoQa ist die Entwicklung eines langzeitstabilen Modulverbunds für Tandemsolarzellen mit industriell geeigneten Prozessen. Um dieses Ziel zu erreichen, werden Tandemsolarzellen auf die Integration in Solarmodule hin optimiert und verschiedene Metallisierungsverfahren auf ihre Eignung evaluiert und weiterentwickelt. Darüber hinaus liegt der Projektschwerpunkt auf der Entwicklung von innovativen Verschaltungstechnologien und der Einkapselung der Tandemsolarzellen, um den Schritt der Tandem-Technologie auf die Modul- und damit die Produktebene zu realisieren. Im zweiten Schwerpunkt des Projektes wird die Einkapselungstechnologie für Tandemsolarzellen entwickelt. Zentrale Herausforderungen sind der Feuchtigkeitsausschluss, die Entwicklung eines Laminationsprozesses sowie die Verwendung von geeigneten Einkapselungsmaterialien. Im Bereich der Langzeitstabilität liegt der Fokus auf der Erarbeitung von Erkenntnissen zur Beschleunigung der für die Tandem Technologie kritischen Belastungen: Der Wasserdampfdurchlässigkeit der Einkapselung, der thermomechanischen Stabilität der entwickelten Verbindungstechnik sowie der UV-Belastung.
Perowskit-Silizium-Tandemsolarzellen sind die aktuell vielversprechendste Möglichkeit, den Wirkungsgrad von zukünftigen photovoltaischen (PV) Produkten kosteneffizient über das Limit von ausschließlich auf Silizium basierten Solarzellen hinaus zu steigern. Neben der Zelltechnologie ist die Verschaltung und Einkapselung in langzeitstabile Solarmodule die Hauptherausforderung für eine zukünftige Kommerzialisierung von Tandemsolarzellen. Das Ziel des Projektes MoQa ist die Entwicklung eines langzeitstabilen Modulverbunds für Tandemsolarzellen mit industriell geeigneten Prozessen. Um dieses Ziel zu erreichen, werden Tandemsolarzellen auf die Integration in Solarmodule hin optimiert und verschiedene Metallisierungsverfahren auf ihre Eignung evaluiert und weiterentwickelt. Darüber hinaus liegt der Projektschwerpunkt auf der Entwicklung von innovativen Verschaltungstechnologien und der Einkapselung der Tandemsolarzellen, um den Schritt der Tandem-Technologie auf die Modul- und damit die Produktebene zu realisieren. Im zweiten Schwerpunkt des Projektes wird die Einkapselungstechnologie für Tandemsolarzellen entwickelt. Zentrale Herausforderungen sind der Feuchtigkeitsausschluss, die Entwicklung eines Laminationsprozesses sowie die Verwendung von geeigneten Einkapselungsmaterialien. Im Bereich der Langzeitstabilität liegt der Fokus auf der Erarbeitung von Erkenntnissen zur Beschleunigung der für die Tandem Technologie kritischen Belastungen: Der Wasserdampfdurchlässigkeit der Einkapselung, der thermomechanischen Stabilität der entwickelten Verbindungstechnik sowie der UV-Belastung.
This brochure summarizes the revised empirical critical loads for N compared to 2011. 40 % of ecosystems react more sensitively to N than previously assumed. The ecosystems studied have been visualized to make them easier to understand. Two maps show the distribution of natural and semi-natural ecosystems on the one hand and the distribution of forest ecosystems in Europe and the neighboring countries of Eastern Europe, the Caucasus and Central Asia ( EECCA ) on the other. This brochure was developed as a low-threshold information tool for scientists, but also for politicians and the interested public in the EU and the EECCA countries. Veröffentlicht in Broschüren.
This report is an important collection of tools used in the framework of the Geneva Convention on Long-Range Transboundary Air Pollution (CLRTAP). Thus, it provides for example a scientific basis on the application of critical levels and loads, their interrelationships, and the consequences for abatement. After the transfer of the Coordination Center for Effects from the Netherlands to Germany this edition is published by the German Environment Agency ( UBA ). With this edition recent technical updates where transferred in the document. The changes of chapter 3 from the Ammonia-workshop decided 2023 have been incorperated.The information on backgrounddatabase (BGDB) (5.2) and the new receptor map were implemented in chapter 5.6. Veröffentlicht in Texte | 123/2024.
Biodiversity in Europe is strongly affected by atmospheric nitrogen and sulfur deposition to ecosystems. Within the PINETI-4 (Pollutant Input and Ecosystem Impact) project the deposition of nitrogen and sulfur compounds across Germany was quantified for the years 2000, 2005, 2010 and 2015 to 2019, using the atmospheric chemical transport model LOTOS-EUROS and precipitation composition measurements. Model improvements lead to better evaluation scores in comparison to observations compared to the previous PINETI-3 report. While nitrogen deposition has been decreasing in the last decades, the results show that in 2019 critical loads for eutrophication were still exceeded for nearly 70 % of ecosystems. Veröffentlicht in Texte | 130/2024.
The International Cooperative Programme on Modelling and Mapping of Critical Levels and Loads and Air Pollution Effects, Risks and Trends (ICP Modelling and Mapping) develops and uses critical loads to recommend science-based emission reductions to policy makers within the UN Air Convention (CLRTAP). A critical load defines the deposition of a pollutant below which significant harmful effects on a sensitive ecosystem element are not expected to occur. The Simple Mass Balance (SMB) model is the most widely used steady-state model under the Air Convention to estimate critical loads for nutrient nitrogen (eutrophication) and sulphur together with nitrogen (acidification). Within the SMB model, so-called critical limits define chemical threshold values to prevent harmful effects in the ecosystem. In this report, the currently used critical limits for terrestrial ecosystems were reviewed. The project was motivated to ensure continuous uptake of scientific advances in the effects work. Experts of the National Focal Centres (NFC) and beyond were invited to comment and discuss preliminary results of the project during the ICP Modelling and Mapping Task Force meetings and a workshop. Results will be used by the Coordination Centre for Effects (CCE) to review the Mapping Manual for calculating critical loads. Veröffentlicht in Texte | 93/2024.
<p>Überschreitung der Belastungsgrenzen für Eutrophierung </p><p>Nährstoffeinträge (vor allem Stickstoff) aus der Luft belasten Land-Ökosysteme und gefährden die biologische Vielfalt. Zur Bewertung dieser Belastung stellt man ökosystemspezifische Belastungsgrenzen (Critical Loads) den aktuellen Stoffeinträgen aus der Luft gegenüber. Trotz rückläufiger Stickstoffbelastungen in Deutschland besteht weiterhin Handlungsbedarf – vor allem bei den Ammoniak-Emissionen.</p><p>Situation in Deutschland</p><p>Im Jahr 2019 (letzte verfügbare Daten) wurden die ökologischen Belastungsgrenzen für <a href="https://www.umweltbundesamt.de/service/glossar/e?tag=Eutrophierung#alphabar">Eutrophierung</a> durch Stickstoff in Deutschland auf 69 % der Flächen empfindlicher Ökosysteme überschritten (siehe Karte „Überschreitung des Critical Load für Eutrophierung durch die Stickstoffeinträge im Jahr 2019“). Die zur Flächenstatistik dieser Überschreitung herangezogenen Ökosystemtypen stammen aus dem CORINE-Landbedeckungsdatensatz von 2012 und bilden vor allem Waldökosysteme ab (ca. 96 %). Besonders drastisch sind die Überschreitungen in Teilen Nordwestdeutschlands. Aufgrund der dort ansässigen Landwirtschaft und intensiv betriebenen Tierhaltung ist der Stickstoffeintrag dort besonders hoch. So sind etwa zwei Drittel der Stickstoffeinträge auf Ammoniakemissionen zurückzuführen.</p><p>Im Rahmen eines <a href="https://www.umweltbundesamt.de/service/glossar/u?tag=UBA#alphabar">UBA</a>-Vorhabens zur Modellierung der Stickstoffdeposition (PINETI-4, Abschlussbericht in prep.) konnte die Entwicklung der Belastung methodisch konsistent für eine lange Zeitreihe (2000 bis 2019) rückgerechnet werden. Die nationalen Zeitreihendaten zeigen, dass der Anteil der Flächen in Deutschland, auf denen die ökologischen Belastungsgrenzen überschritten wurden, von 84 % im Jahr 2000 auf 69 % im Jahr 2019 zurückging (siehe Abb. „Anteil der Fläche empfindlicher Land-Ökosysteme mit Überschreitung der Belastungsgrenzen für Eutrophierung“). Die Abnahme der Belastungen spiegelt größtenteils den Rückgang der Emissionen durch Luftreinhaltemaßnahmen wider.</p><p>Handlungsbedarf trotz sinkender Stickstoffeinträge</p><p>Auch in den nächsten Jahren ist wegen der bisher nur unwesentlich abnehmenden <a href="https://www.umweltbundesamt.de/daten/luft/luftschadstoff-emissionen-in-deutschland/ammoniak-emissionen">Ammoniak-Emissionen</a> – vornehmlich aus der Tierhaltung – mit einer weiträumigen <a href="https://www.umweltbundesamt.de/service/glossar/e?tag=Eutrophierung#alphabar">Eutrophierung</a> naturnaher Ökosysteme zu rechnen. Bei der Minderung von diffusen Stickstoffemissionen in die Luft besteht daher erheblicher Handlungsbedarf.</p><p>Was sind ökologische Belastungsgrenzen für Eutrophierung?</p><p>Zur Bewertung der Stoffeinträge werden ökologische Belastungsgrenzen (<a href="https://www.umweltbundesamt.de/service/glossar/c?tag=Critical_Loads#alphabar">Critical Loads</a>) ermittelt. Nach heutigem Stand des Wissens ist bei deren Einhaltung nicht mit schädlichen Wirkungen auf Struktur und Funktion eines Ökosystems zu rechnen. <a href="https://www.umweltbundesamt.de/service/glossar/%C3%B6?tag=kologische_Belastungsgrenzen#alphabar">Ökologische Belastungsgrenzen</a> sind somit ein Maß für die Empfindlichkeit eines Ökosystems und erlauben eine räumlich differenzierte Gegenüberstellung der Belastbarkeit eines Ökosystems mit aktuellen atmosphärischen Stoffeinträgen.</p><p>Das dadurch angezeigte Risiko bedeutet nicht, dass in dem betrachteten Jahr tatsächlich schädliche chemische Kennwerte erreicht oder biologische Wirkungen sichtbar sind. Es kann Jahrzehnte dauern, bis Ökosysteme auf Überschreitungen der ökologischen Belastungsgrenzen reagieren. Im Rückschluss ist auch die Erholung des Ökosystems auf vorindustrielles Niveau sehr langwierig, wenn nicht sogar eine irreversible Schädigung des Ökosystems vorliegt. Beide Prozesse sind abhängig von Stoffeintragsraten, meteorologischen und anderen Randbedingungen sowie von chemischen Ökosystemeigenschaften. Daher sind absolute Schadprognosen mittels der Überschreitungen der ökologischen Belastungsgrenzen prinzipiell nicht möglich.</p><p>Stickstoffdepositionen – ein Treiber des Biodiversitätsverlusts</p><p>Ein übermäßiger atmosphärischer Eintrag (<a href="https://www.umweltbundesamt.de/service/glossar/d?tag=Deposition#alphabar">Deposition</a>) von Nährstoffen (vor allem Stickstoff) und deren Anreicherung in Land-Ökosystemen kann auf lange Sicht Ökosysteme stark beeinträchtigen. So kann es zu chronischen Schäden der Ökosystemfunktionen (wie der Primärproduktivität und des Stickstoffkreislaufs) kommen. Auch Veränderungen des Pflanzenwachstums und der Artenzusammensetzung zugunsten stickstoffliebender Arten (<a href="https://www.umweltbundesamt.de/service/glossar/e?tag=Eutrophierung#alphabar">Eutrophierung</a>) können hervorrufen werden. Außerdem wird die Anfälligkeit vieler Pflanzen gegenüber Frost, <a href="https://www.umweltbundesamt.de/service/glossar/d?tag=Drre#alphabar">Dürre</a> und Schädlingsbefall erhöht.</p><p>Atmosphärische Einträge führen zu einer weiträumigen Angleichung der Stickstoffkonzentrationen im Boden auf einem nährstoffreichen Niveau. Die derzeit hohen Stickstoffeinträge in natürliche und naturnahe Land-Ökosysteme sind eine Folge menschlicher Aktivitäten, wie Landwirtschaft oder Verbrennungsprozesse. Diese sind mit hohen Emissionen von chemisch und biologisch wirksamen (reaktiven) Stickstoffverbindungen in die Luft verbunden. Aus der <a href="https://www.umweltbundesamt.de/service/glossar/a?tag=Atmosphre#alphabar">Atmosphäre</a> werden diese Stickstoffverbindungen über Regen, Schnee, Nebel, Raureif, Gase und trockene Partikel wieder in Land-Ökosysteme eingetragen. Die resultierende Überdüngung ist eine der Hauptursachen für den Rückgang der <a href="https://www.umweltbundesamt.de/service/glossar/b?tag=Biodiversitt#alphabar">Biodiversität</a>. Fast die Hälfte der in der Roten Liste für Deutschland aufgeführten Farn- und Blütenpflanzen sind durch Stickstoffeinträge gefährdet.</p><p>Ziele und Maßnahmen zur Verringerung der Stickstoffeinträge</p><p>Ein langfristiges Ziel der Europäischen Union (EU) und der Genfer Luftreinhaltekonvention (<a href="https://www.umweltbundesamt.de/service/glossar/u?tag=UNECE#alphabar">UNECE</a> Convention on Long-Range Transboundary Air Pollution, CLRTAP) ist die dauerhafte und vollständige Unterschreitung der ökologischen Belastungsgrenzen für <a href="https://www.umweltbundesamt.de/service/glossar/e?tag=Eutrophierung#alphabar">Eutrophierung</a>. International wurden deshalb in der sog. neuen <a href="https://www.umweltbundesamt.de/service/glossar/n?tag=NEC-Richtlinie#alphabar">NEC-Richtlinie</a> (<a href="https://eur-lex.europa.eu/legal-content/DE/TXT/?qid=1542011736987&uri=CELEX:32016L2284">Richtlinie (EU) 2016/2284</a> vom 14.12.2016) für alle Mitgliedstaaten weitere Minderungen der <a href="https://www.umweltbundesamt.de/service/glossar/e?tag=Emission#alphabar">Emission</a> von reaktiven Stickstoffverbindungen (NHx, Stickstoffoxide (NOx)) vereinbart, die bis 2030 erreicht werden müssen. Für Deutschland ergeben sich folgende nationale Emissionsminderungsverpflichtungen für Stickstoff für das Jahr 2030 und darüber hinaus im Vergleich zum Basisjahr 2005:</p><p>(siehe auch <a href="https://www.umweltbundesamt.de/themen/luft/emissionen-von-luftschadstoffen">„Emissionen von Luftschadstoffen“</a>).<br><br>Konkrete nationale Maßnahmen, die zum Erreichen der oben genannten Minderungsverpflichtungen geeignet sind, werden derzeit in einem Nationalen Luftreinhalteprogramm zusammengestellt. Maßnahmen zur Begrenzung der negativen Auswirkungen des reaktiven Stickstoffs, zu denen auch die Eutrophierung von Ökosystemen zählt, sind in der Veröffentlichung des Umweltbundesamtes <a href="https://www.umweltbundesamt.de/publikationen/reaktiver-stickstoff-in-deutschland">"Reaktiver Stickstoff in Deutschland"</a> enthalten. Auch das Bundesministerium für Umwelt, Naturschutz und Reaktorsicherheit (<a href="https://www.umweltbundesamt.de/service/glossar/b?tag=BMU#alphabar">BMU</a>) verfolgt den Ansatz einer nationalen <a href="https://www.bmuv.de/themen/nachhaltigkeit/stickstoffminderung">Stickstoffminderungsstrategie</a>. Weitere Informationen bietet auch das Sondergutachten des SRU <a href="https://www.umweltrat.de/SharedDocs/Downloads/DE/02_Sondergutachten/2012_2016/2015_01_SG_Stickstoff_HD.html">„Stickstoff: Lösungen für ein drängendes Umweltproblem“</a>. Hintergrundwissen zur Modellierung von atmosphärischen Stoffeinträgen bietet der <a href="https://www.umweltbundesamt.de/publikationen/pineti-4-modelling-assessment-of-acidifying">Bericht</a> zum Forschungsvorhaben „PINETI-4: Modelling and assessment of acidifying and eutrophying atmospheric deposition to terrestrial ecosystems“. </p>
| Origin | Count |
|---|---|
| Bund | 193 |
| Europa | 1 |
| Land | 6 |
| Type | Count |
|---|---|
| Ereignis | 1 |
| Förderprogramm | 132 |
| Text | 29 |
| unbekannt | 37 |
| License | Count |
|---|---|
| geschlossen | 61 |
| offen | 137 |
| unbekannt | 1 |
| Language | Count |
|---|---|
| Deutsch | 158 |
| Englisch | 59 |
| Resource type | Count |
|---|---|
| Bild | 1 |
| Datei | 2 |
| Dokument | 20 |
| Keine | 130 |
| Webdienst | 1 |
| Webseite | 56 |
| Topic | Count |
|---|---|
| Boden | 199 |
| Lebewesen und Lebensräume | 199 |
| Luft | 199 |
| Mensch und Umwelt | 199 |
| Wasser | 199 |
| Weitere | 189 |