API src

Found 57 results.

Linking internal pattern dynamics and integral responses - Identification of dominant controls with a strategic sampling design

Das Projekt "Linking internal pattern dynamics and integral responses - Identification of dominant controls with a strategic sampling design" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: Helmholtz-Zentrum Potsdam Deutsches GeoForschungsZentrum.In hydrology, the relationship between water storage and flow is still fundamental in characterizing and modeling hydrological systems. However, this simplification neglects important aspects of the variability of the hydrological system, such as stable or instable states, tipping points, connectivity, etc. and influences the predictability of hydrological systems, both for extreme events as well as long-term changes. We still lack appropriate data to develop theory linking internal pattern dynamics and integral responses and therefore to identify functionally similar hydrological areas and link this to structural features. We plan to investigate the similarities and differences of the dynamic patterns of state variables and the integral response in replicas of distinct landscape units. A strategic and systematic monitoring network is planned in this project, which contributes the essential dynamic datasets to the research group to characterize EFUs and DFUs and thus significantly improving the usual approach of subdividing the landscape into static entities such as the traditional HRUs. The planned monitoring network is unique and highly innovative in its linkage of surface and subsurface observations and its spatial and temporal resolution and the centerpiece of CAOS.

The parent material as major factor for the properties of the biogeochemical interface: Integrative analysis

Das Projekt "The parent material as major factor for the properties of the biogeochemical interface: Integrative analysis" wird/wurde ausgeführt durch: Technische Universität München, Wissenschaftszentrum Weihenstephan für Ernährung, Landnutzung und Umwelt, Lehrstuhl für Bodenkunde.The formation of biogeochemical interfaces in soils is controlled, among other factors, by the type of particle surfaces present and the assemblage of organic matter and mineral particles. Therefore, the formation and maturation of interfaces is studied with artificial soils which are produced in long-term biogeochemical laboratory incubation experiments (3, 6, 12, 18 months. Clay minerals, iron oxides and charcoal are used as major model components controlling the formation of interfaces because they exhibit high surface area and microporosity. Soil interface characteristics have been analyzed by several groups involved in the priority program for formation of organo-mineral interfaces, sorptive and thermal interface properties, microbial community structure and function. Already after 6 months of incubation, the artificial soils exhibited different properties in relation to their composition. A unique dataset evolves on the development and the dynamics of interfaces in soil in the different projects contributing to this experiment. An integrated analysis based on a conceptual model and multivariate statistics will help to understand overall processes leading to the biogeochemical properties of interfaces in soil, that are the basis for their functions in ecosystems. Therefore, we propose to establish an integrative project for the evaluation of data obtained and for publication of synergistic work, which will bring the results to a higher level of understanding.

A meta-analysis of global insecticide concentrations in agricultural surface waters

Das Projekt "A meta-analysis of global insecticide concentrations in agricultural surface waters" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: Rheinland-Pfälzische Technische Universität Kaiserslautern-Landau, Institut für Umweltwissenschaften.Although global pesticide use increases steadily, our field-data based knowledge regarding exposure of non-target ecosystems is very restricted. Consequently, this meta-analysis will for the first time evaluate the worldwide available peer-reviewed information on agricultural insecticide concentrations in surface water or sediment and test the following two hypotheses: I) Insecticide concentrations in the field largely exceed regulatory threshold levels and II) Additional factors important for threshold level exceedances can be quantified using retrospective meta-analysis. A feasibility study using a restricted dataset (n = 377) suggested the significance of the expected results, i.e. an threshold level exceedance rate of more than 50Prozent of the detected concentrations. Subsequent to a comprehensive database search in the peer-reviewed literature of the past 60 years, analysis of covariance with the relevant threshold level exceedance as the continuous dependent variable (about 10,000 cases) will be performed and the impact of significant predictor variables will be quantified. Parameters not yet considered in pesticide exposure assessment will be included as independent variables, such as compound class, environmental regulatory quality, and sampling design. The simultaneous presence of several insecticide compounds as a well as their metabolites will also be considered in the evaluation. The present approach may provide an innovative and integrated view on the potential environmental side effects of global high-intensity agriculture and in particular of pesticides use.

Quantification of ice content in mountain permafrost based on geophysical data and simulated annealing

Das Projekt "Quantification of ice content in mountain permafrost based on geophysical data and simulated annealing" wird/wurde gefördert durch: Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung. Es wird/wurde ausgeführt durch: University of Fribourg, Geosciences Departement, Geography Unit.Current and future global warming will cause the degradation of mountain permafrost, which may strongly influence the stability of permafrost slopes or rock walls with potentially hazardous consequences. Due to the strong heterogeneity of both the thermal regime and the ground composition of mountain permafrost, its response to atmospheric forcing can however be highly variable for different landforms and within short distances. The spatial distribution of ice and liquid water is important for determining the sensitivity of a specific permafrost occurrence to climate change because of their large influence on the pace of temperature changes (by effects of latent heat) and their importance for geotechnical properties of the ground. Detailed knowledge of the material properties and internal structures of frozen ground is therefore an important prerequisite to determine the sensitivity of permafrost to climate change. Except for the active layer ice and water contents and their temporal and spatial variability usually cannot be measured directly. Geophysical methods are sensitive for the ice and liquid water content in the ground. With the proposed collaboration, two similar but complementary approaches to quantify the composition of the ground based on 2D sections of geophysical data will be combined for an improved determination of ice and water contents in permafrost regions. The so-called 4-phase model (4PM) is based on two simple petrophysical relationships for electrical resistivity and seismic velocity and estimates volumetric fractions of ice, water, and air within the pore volume of a rock matrix by jointly using complementary data sets from electric and seismic measurements. Due to inherent ambiguities in the model it is still restricted to specific cases and often allows only a rough estimation of the phase fractions. Major drawbacks of the current 4PM comprise the unsatisfactory discrimination between rock and ice and its under-determinedness, requiring the prescription of the porosity and further parameters. The so-called RSANN model (developed and used by the host institution) uses the technique of simulated annealing (a Monte-Carlo-type stochastic simulation approach) as an optimization tool for the integration of electrical resistivity and P-wave velocity to derive 2D sections of porosity, water saturation and volumetric water content. The simulated annealing technique allows - due to its iterative procedure - more parameters to be predicted instead of being prescribed as in the 4PM. The objective of the proposed collaboration is to combine the advantages of the two algorithms (4PM and RSANN) to overcome the shortcomings of the 4PM in order to improve the reliability of the determined ice and liquid water contents. (...)

Measuring and modelling spatially variable fluxes in the soil-plant system

Das Projekt "Measuring and modelling spatially variable fluxes in the soil-plant system" wird/wurde ausgeführt durch: Universität Hohenheim, Institut für Tropische Agrarwissenschaften (Hans-Ruthenberg-Institut), Fachgebiet Pflanzenbau in den Tropen und Subtropen (490e).The research is carried out in cooperation with KU Leuven, Forschungszentrum Jülich and Kasetsart University in Bangkok, Thailand, and aims at improving our understanding of how spatial variability in soil properties and vegetation characteristics control water flow and transport processes in the soil at the field scale, and how it determines resource use efficiency of agro-ecosystems. It focuses on the spatio-temporal dynamics of water contents and competition for water uptake in mixed cropping systems. The emphasis is on spatial variation that is caused by the cropping pattern and landscape. To this end, a set of monitoring techniques will be used with which spatial patterns of crop status and subsurface soil water contents can be imaged in a non-invasive manner. Soil water content distributions will be determined using geophysical methods: electrical resistivity tomography and time domain reflectometry. The state of the crop and its spatial pattern will be monitored using leaf area index (LAI) sensors and an infrared camera. These techniques will be complemented with 13C stable isotope analysis of plants, which is a measure of the integrated stress of the plant over the growing season. In order to interpret the obtained datasets, a soil-crop model will be developed which considers light interception, photosynthesis and stomatal control, water flow within the plant, root growth and root water uptake, and heat fluxes within the canopy in more detail than in currently available crop growth models.

Schwerpunktprogramm (SPP) 1167: Quantitative Niederschlagsvorhersage, The verification of precipitation forecasts from numerical models on short time-scales over Germany with pattern-oriented error measures

Das Projekt "Schwerpunktprogramm (SPP) 1167: Quantitative Niederschlagsvorhersage, The verification of precipitation forecasts from numerical models on short time-scales over Germany with pattern-oriented error measures" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: Johannes Gutenberg-Universität Mainz, Institut für Physik der Atmosphäre.The verification of precipitation forecasts from numerical models is essential for the future improvement of quantitative precipitation forecasts (QPF). There are various options when defining a QPF verification strategy, concerning for instance the temporal resolution, the choice of the evaluation data set, the verification domains, the weather-type stratification and the applied error measures. In this project new techniques will be developed to verify QPFs from the weather prediction models LM, GME and ECMWF over Germany on very short time scales (typically 1 hour). A currently developed technique is used to derive an evaluation data set of hourly precipitation analyses from rain-gouge measurements and radar composites. The verifications will be done for the catchment areas of the major river systems and the QPFs will be categorized into different synoptic weather patterns. Finally, new error measures will be implemented that consider the spatial patterns of precipitation, in contrast to more traditional measures that evaluate the similarity of two fields on a point-by-point basis. Such an pattern-oriented approach provides novel and meaningful information about the qualities and deficiencies of a particular QPF. The results will be directly useful for the interpretation of model output in operational weather forecasting and for their quantitative use in impact applications such as runoff forecasting.

3D tomography for SCIAMACHY limb and nadir measurements: retrieval of stratospheric NO2, BrO and OClO profiles and their application for the investigation of stratospheric chemistry

Das Projekt "3D tomography for SCIAMACHY limb and nadir measurements: retrieval of stratospheric NO2, BrO and OClO profiles and their application for the investigation of stratospheric chemistry" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: Max-Planck-Institut für Chemie (Otto-Hahn-Institut).Satellite measurements strongly contribute to the understanding of the processes related to stratospheric ozone loss, e.g. by global and long term monitoring of ozone and its depleting substances. For instance, measurements performed in limb geometry by SCIAMACHY on ENVISAT largely improved the knowledge about the vertical distribution of species like BrO and OClO only recently. However, there are still important open questions, like e.g. the chlorine activation processes on different kinds of aerosols and polar stratospheric clouds. Also, the role of very short lived species in the stratospheric bromine budget or the effects of a possible enhancement of the Brewer-Dobson circulation are not fully understood.Globally, the vertical distribution of ozone depleting species varies significantly in space and time due to solar illumination, atmospheric chemistry and transport. Especially strong gradients occur near the twilight zone or across stratospheric transport barriers (polar vortex boundary, subtropical transport barriers). These regions are of particular importance for chemistry and transport of the lower stratosphere and upper troposphere, since they separate air masses on large scales but also enable exchange between them.Standard 1-D profile retrievals, which assume horizontal homogeneity, result in large systematic biases due to neglecting the effect of horizontal gradients on the measurement. We propose to develop, improve and apply a tomographic profile retrieval algorithm, which optimally combines the information provided by the SCIAMACHY limb and nadir measurements. An improved global dataset of 3D stratospheric profiles for NO2, BrO and OClO for the 10 years of the SCIAMACHY mission (2002-2012) will be developed, compared to atmospheric chemistry simulations and applied to selected questions of atmospheric science. The dataset developed in this project will be very useful for investigating the complex interplay of stratospheric chemistry and transport processes, and will help to reduce the uncertainties in the distribution of ozone depleting species, in particular for regions with large horizontal inhomogeneity.

HGF-Allianz: Remote Sensing and Earth System Dynamics (HGF-REMOTE)

Das Projekt "HGF-Allianz: Remote Sensing and Earth System Dynamics (HGF-REMOTE)" wird/wurde gefördert durch: Helmholtz-Gemeinschaft Deutscher Forschungszentren e.V.. Es wird/wurde ausgeführt durch: Potsdam-Institut für Klimafolgenforschung e.V..The HGF Alliance 'Remote Sensing and Earth System Dynamics' aims at the development and evaluation of novel bio/geo-physical information products derived from data acquired by a new generation of remote sensing satellites; and their integration in Earth system models for improving understanding and modelling ability of global environmental processes and ecosystem change. The Earth system comprises a multitude of processes that are intimately meshed through complex interactions. In times of accelerated global change, the understanding and quantification of these processes is of primary importance. Spaceborne remote sensing sensors are predestined to produce bio-geo-information products on a global scale. The upcoming generation of spaceborne remote sensing configurations will be able to provide global data sets and products with unprecedented spatial and temporal resolution in the context of a consistent and systematic observation strategy. The integration of these data sets in existing environmental and climate science components will allow a new global view of the Earth system and its dynamics, initiating a performance leap in ecosystem and climate change modelling.

Advanced Model Development and Validation for Improved Analysis of Costs and Impacts of Mitigation Policies (ADVANCE)

Das Projekt "Advanced Model Development and Validation for Improved Analysis of Costs and Impacts of Mitigation Policies (ADVANCE)" wird/wurde gefördert durch: Kommission der Europäischen Gemeinschaften Brüssel. Es wird/wurde ausgeführt durch: Potsdam-Institut für Klimafolgenforschung e.V..Objective: Integrated assessment and energy-economy models have become central tools for informing long-term global and regional climate mitigation strategies. There is a large demand for improved representations of complex system interactions and thorough validation of model behaviour in order to increase user confidence in climate policy assessments. ADVANCE aims to respond to this demand by facilitating the development of a new generation of integrated assessment models. This will be achieved by substantial progress in key areas where model improvements are greatly needed: end use and energy service demand; representation of heterogeneity, behaviour, innovation and consumer choices; technical change and uncertainty; system integration, path dependencies and resource constraints; and economic impacts of mitigation policies. In the past, methodological innovations and improvements were hindered by the unavailability of suitable input data. The ADVANCE project will make a large and coordinated effort to generate relevant datasets. These datasets, along with newly developed methodologies, will be made available to the broader scientific community as open-access resources. ADVANCE will also put a focus on improved model transparency, model validation, and data handling. A central objective of ADVANCE is to evaluate and to improve the suitability of models for climate policy impact assessments. The improved models will be applied to an assessment of long-term EU climate policy in a global context, and disseminated to the wider community. The ADVANCE consortium brings together long-standing expertise in integrated assessment and energy-economy modelling with a strong expertise in material flows, energy system integration, and energy service demand.

Schwerpunktprogramm (SPP) 1006: Bereich Infrastruktur - Internationales Kontinentales Bohrprogramm (ICDP); International Continental Drilling Program (ICDP), Sub project: Determination of the depth of rhyolitic magma chambers in the Snake River Plain province, USA - An experimental calibration

Das Projekt "Schwerpunktprogramm (SPP) 1006: Bereich Infrastruktur - Internationales Kontinentales Bohrprogramm (ICDP); International Continental Drilling Program (ICDP), Sub project: Determination of the depth of rhyolitic magma chambers in the Snake River Plain province, USA - An experimental calibration" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: Leibniz Universität Hannover, Institut für Mineralogie.The investigation of high-silica rhyolitic rocks collected in the recent ICDP drilling from the Snake River Plain (SRP) volcanic province (western United States) as well as rocks from the adjacent rhyolitic complexes offers a unique opportunity to track the evolution of magma storage conditions in time and space in the 'Yellowstone hotspot' intracontinental volcanic province. The application of various geothermometers which can be used to determine pre-eruptive temperatures show a general trend indicating a general decrease of temperature over the last 16 Ma. However, the depth (or pressure) of the magma chambers is difficult to constrain and remains mainly unknown because the mineral assemblage in the rhyolitic systems is not suitable for geobarometry. As an alternative to mineral compositions, the silica content of rhyolitic melts can be used to constrain pressure, provided that the silicate melts have cotectic compositions (melts coexisting with quartz and feldspar), which is the case for most SRP rhyolites. From studies in synthetic systems, it is well known that the silica content of cotectic melts decreases with increasing pressure and that it may be used as barometer in pressure ranges of ca 1000 - 50 MPa. However, the evolution of silica content with pressure is not calibrated for natural systems containing up to 2 wtProzent Cao and 4 wtProzent FeO. In this study, we plan to determine the role of pressure on the silica content of cotectic melts compositions relevant for SRP compositions. The experimental data are crucial to interpret the natural glass compositions (matrix glass and glass inclusions) analyzed in the ICDP core samples and will be used to extract quantitative information on the depth of magma storage prior to eruption. The dataset obtained from various eruptive events (samples from ICDP drillings and other SRP rhyolites) will be used to check if there is an evolution of the depth of magma storage over the lifetime of the 'Yellowstone hotspot' in the last 16 Ma and if there is a correlation between the pre-eruptive pressure, the volume of erupted material, the temperature (or differentiation level) and the water activity of magmas. This study will be conducted in close cooperation with other U.S. groups who are in charge of the analysis of ICDP rhyolitic samples. It is emphasized that the experimental database obtained in this project can also be applied to other case studies (high silica rhyolites, A-type granites).

1 2 3 4 5 6