Der WMS umfasst Schadstoffe im Wasser und im Sediment, die an Messstationen des LLUR erfasst werden. Parameter: Quecksilber, Blei, Kupfer, Nickel, Arsen, Cadmium, Chrom, Zink.
Selbst in tiefen Sedimentschichten unter z.T. mehreren Kilometern mächtiger Sedimentbedeckung finden sich noch aktive Mikroorganismen. Mit zunehmender Tiefe steigt die Temperatur im Untergrund an und überschreitet irgendwann die Grenze bis zu welcher Leben möglich ist. Die bisher festgestellte Temperaturobergrenze von Leben auf der Erde wurden an Mikroorganismen von hydrothermalen Systemen, sogenannten Schwarzen Rauchern gemessen und liegt bei ca. 120 Grad C. In Sedimenten hingegen liegt die Grenze deutlich niedriger. Messdaten aus Ölfeldern deuten auf eine Grenze von ca. 80 Grad C hin. Diese Diskrepanz zwischen hydrothermalen und sedimentären Systemen wurde dadurch erklärt, dass die Mikroorganismen in Sedimenten nicht genügend Energie gewinnen können um die bei hohen Temperaturen verstärkt notwendigen Reparaturen ihrer Zellbestandteile wie DNA und Proteinen durchzuführen. Interessanterweise lässt sich metabolische Aktivität bei extrem hohen Temperaturen nur dann nachweisen, wenn die Experimente unter hohem Druck stattfinden. IODP Expedition 370 wurde spezifisch zur Klärung der Frage nach dem Temperaturlimit von Leben in sedimentären Systemen durchgeführt. Im Nankai Graben vor der Küste Japans herrscht ein recht hoher geothermischer Gradient von ca. 100 Grad C/km, d.h. das gesamte Temperaturspektrum in dem Leben möglich ist erstreckt sich über ein Tiefeninterval von etwas mehr als einem Kilometer. Durch modernste Bohr- und Labortechniken war es möglich, Proben von höchster Qualität zu gewinnen, welche garantiert frei von Kontamination sind. Die Expedition hat einen stark interdisziplinären Charakter, so dass eine Vielzahl von biologischen und chemischen Parameter gemessen wurde, welche eine detaillierte Charakterisierung des Sediments erlauben. Das beantragte Projekt ist ein wichtiger Teil der Expedition, da Sulfatreduktion der quantitativ wichtigste anaerobe Prozess für den Abbau von organischem Material im Meeresboden ist. Im Rahmen einer MSc Arbeit wurden bereits erste Messungen durchgeführt. Diese konnten zeigen das Sulfatreduktion über die gesamte Kernlänge messbar ist, wenn auch z.T. mit extrem geringen Raten. Im Rahmen des beantragten Projekts sollen weitere Messungen durchgeführt werden, unter anderem auch unter hohem Druck. Dazu soll ein Hochdruck Temperatur-Gradientenblock gebaut und betrieben werden. Neben Sedimenten von IODP Exp. 370 sollen weitere Experimente mit hydrothermal beeinflusstem Sediment aus dem Guaymas Becken durchgeführt werden. Ein Vergleich zwischen diesen beiden Sedimenten soll weitere Einblicke in einen der wichtigsten biologischen Prozesse im Meeresboden liefern und ein besseres Verständnis über die Grenzen von Leben im allgemeinen.
Mittleres Hochwasser (MHW): 7m über Pegelnullpunkt, Mittleres Niedrigwasser (MNW): 3m über Pegelnullpunkt
PlumeBaSe beschäftigt sich mit der detaillierten Analyse der Zusammensetzung organischer Aerosole, freigesetzt während der Verbrennung fossiler Treibstoffe durch Schiffe, und deren weiterem Weg in der marinen Umwelt. Durch die hochaufgelöste Beprobung der Aerosole und ihrer Transformationsprodukte vom Schiffsschornstein bis in die Ostsee wird eine Brücke zwischen Atmosphären- und Meeresforschung geschlagen. Der zunehmende globale Warentransport auf dem Wasserweg erhöht den Druck auf marine Ökosysteme. Große Schiffe emittieren, zusätzlich zu gasförmigen Schadstoffen, große Mengen an Partikeln reich an Spurenmetallen und organischen Schadstoffen zunächst in die Atmosphäre von wo aus die Schadstoffe ins Meer gelangen. Negative Auswirkungen saurer Oxide und organischer Schadstoffe sind bekannt, weniger hingegen wurde bisher die Deposition der Schiffsaerosole und deren Beitrag zur Meeresverschmutzung untersucht. Besonders lückenhaft ist das Verständnis für die Alterungsprozesse während des atmosphärischen Transports sowie in der Wassersäule, beispielweise durch UV-Strahlung oder reaktive Sauerstoffspezies, obwohl die Transformationsprodukte sehr unterschiedliche Auswirkungen auf Biota haben und die Molekülstruktur den weiteren Weg in der Umwelt maßgeblich beeinflussen können.Um diese Wissenslücken zu schließen, soll in PlumeBaSe durch eine vielschichtige Umweltbeprobung eine neuartige, umfassende Erhebung des Emissionstransports und der Aerosolalterung erreicht werden. Die Projektpartner des Leibniz Instituts für Ostseeforschung Warnemünde (IOW), der Universität Rostock (UR) und der Karls-Universität Prag (CU) befassen sich mit den folgenden zentralen Hypothesen: (H1) Schiffsemissionen tragen signifikant zur Verschmutzung des Oberflächenwassers bei, der Eintrag ist besonders hoch entlang der Hauptschifffahrtsrouten. (H2) Während des atmosphärischen und marinen Transports ändern sich die physikalischen (Partikelgrößenverteilung) und chemischen (molekulare Profile) Eigenschaften der emittierten Aerosole, was ihren weiteren Weg in der Umwelt beeinflusst. (H3) Die Veränderungen auf molekularer Ebene können verfolgt und genutzt werden um Schadstoffeinträge über die Atmosphäre von den über Nassabscheider eingebrachte Verschmutzungen zu unterscheiden.Diese angestrebten Zielsetzungen werden in drei Arbeitspaketen adressiert via I. Zeitlich und räumlich hochaufgelöster Analyse von Partikelgrößenverteilungen direkt in den Abgasfahnen der Schiffe unter Nutzung eines unbemannten Luftschiffes, kombiniert mit hochsensitiven gerichteten und ungerichteten chemischen Analysen der II. atmosphärischen Schadstoffe in Partikeln unterschiedlicher Größe, sowie der III. Schadstoffe im Meerwasser. Die Ostsee stellt durch die hohe Schiffsverkehrsdichte, gute Erreichbarkeit und Regulation der Schiffsemissionen ein ideales Untersuchungsgebiet dar, welches sich auch als Modellsystem für die Beeinflussung küstennaher Ozeane durch Schiffsverkehr weltweit eignet.
Der Anstieg natürlicher Emissionen des Treibhausgases Methan haben einen bedeutenden Einfluss auf das Klima der Erde. Als Methanquelle nehmen küstennahe Gewässer eine besondere Stellung ein, da die Methankonzentration im Wasser hier wesentlich höher ist als im offenen Ozean. Trotz der Bedeutung der Küstengebiete ist bisher nur wenig bekannt über die hier zu findenden Methanemittenten und ihr jeweiliger Beitrag am atmosphärischen Methanfluss. Zudem zeigen eine Reihe aktueller Untersuchungen, dass Methan nicht nur unter anoxischen Bedingungen mikrobiell gebildet werden kann, sondern dass dies auch in einer oxischen Umgebung möglich ist. Eine solche Methanproduktion nahe der Meeresoberfläche würde den Weg zwischen Methanquelle und Atmosphäre wesentlich verkürzen und damit den Methanfluss in die Atmosphäre verstärken. Aufgrund einiger Untersuchungen, die eine Verknüpfung zwischen Primär- und Methanproduktion aufzeigen, stellen wir die Hypothese auf, dass Mikrophytobenthos (MPB)-Gemeinschaften eine wichtige, aber bisher nicht bearbeitete Stellung in der Flachwasser-Methandynamik zukommen. MPB-Gemeinschaften nehmen eine herausragende Rolle in der Primärproduktion von Küstensedimenten ein. Um die Bedeutung der MPB-assoziierten Methanproduktion besser einordnen zu können, werden wir das Potential dieser Methanquelle in Inkubationsexperimenten detailliert untersuchen. Zur Bestimmung der hierbei wichtigen Effektoren und Mikrophytobenthosarten werden wir an verschiedenen axenischen und xenischen klonalen Kulturen benthischer Diatomeen-Spezies die Primär- und Methanproduktion unter kontrollierten Temperatur- und Lichtbedingungen bestimmen. Mit Hilfe einer neuen Cavity-Ring-Down-Spektroskopie basierten Methode planen wir an geschlossenen Inkubationen die Methankonzentrationsentwicklung in hoher zeitlicher Auflösung über Tag/Nacht Zyklen zu erfassen. Zusätzliche Inkubationen mit 13C-markierten Substraten werden es uns erlauben, den Weg der Methanproduktion in den Diatomeen einzugrenzen. Bisher wurde der Prozess der oxischen Methanproduktion nur in Kulturexperimenten untersucht. Ob die hier ermittelten Raten auch in die natürliche Umgebung übertragbar sind, wurde hingegen nicht geprüft. Um diese Wissenslücke zu schließen, planen wir neben den Experimenten an klonalen Kulturen auch Studien an natürlichen MPB-Gemeinschaften durchzuführen. Diese Gemeinschaften werden wir im Flachwasser vor der Insel Askö (schwedische Ostseeküste) und dem inneren Küstengewässer vor Zingst (Darßer-Zingst-Bodden, deutsche Ostseeküste) beproben, um ein möglichst breites Spektrum an Sedimenten, hydrodynamischen Bedingungen und MPB-Gemeinschaften abzudecken. Um die in unseren Experimenten ermittelten Methanproduktionsraten in die benthischen und atmosphärischen Methanflüsse besser einordnen zu können, werden wir in beiden Untersuchungsgebieten die Methanflüsse zwischen Sediment, dem Wasser und der Atmosphäre bestimmen.
Mikroplastik (MP, Plastikteile kleiner als 5 mm) werden als neu aufkommende Schadstoffe betrachtet und neuste Studien belegen die potentielle Gefahr von MP für die menschliche Gesundheit und die Umwelt. Die Forschung hat sich bisher mehrheitlich auf die Untersuchung von MP in der marinen Umgebung konzentriert. Allerdings konnte MP auch vermehrt Süßwasser und -sedimenten weltweit nachgewiesen werden. Als Primärpartikel oder Sekundärprodukte aus dem Abbau von Makroplastik kann MP entweder direkt toxisch wirken oder als Überträger von sorbierten Schadstoffen fungieren. Neuste Studien belegen außerdem, dass MP in die menschliche Nahrungskette eindringen kann. Weiterhin können die dem MP beigefügten endokrinen Disruptoren wie Bisphenol A (BPA) and Nonylphenol (NP) während der Transportprozesse an das Süßwasser abgegeben werden. Dabei können Flussbettsedimente potentielle Hotspots für die Akkumulation von MP und deren Additive darstellen.Das Hauptziel dieses Projektes ist, die Akkumulation und den Transport von MP in Süßwasser und -sedimenten näher zu untersuchen. Dabei soll den folgenden beiden grundsätzlichen Fragen nachgegangen werden:(i) Welche Prozesse kontrollieren Transport und Akkumulation von MP verschiedener Größe, Dichte und Zusammensetzung und wie bilden sich sogenannte Mikroplastik-Hotspots in der hyporheischen Zone?(ii) Wie können Transport und Akkumulation von MP sowie die Freisetzung von Additiven wie BPA und NP unter variablen Umweltbedingungen beschrieben und vorhergesagt werden? Zwei Arbeitspakete (WP) sollen helfen, diese Fragen zu beantworten:WP1 befasst sich mit den Auswirkungen der grundlegenden Eigenschaften von MP wie Größe, Form, Zusammensetzung, Dichte, Auftrieb auf deren Transport und untersucht systematisch, wie verschiedene Arten von MP in der hyporheischen Zone (hier Flussbettsedimente) unter diversen hydrodynamischen und morphologischen Bedingungen akkumulieren. Dafür sollen Versuche in künstlichen Abflusskanälen (artificial flumes) durchgeführt werden. In diesen Versuchen werden repräsentative hydrodynamische und morphologische Bedingungen geschaffen, um eine Spannbreite an primären und sekundären MP zu testen, ihr Transportverhalten zu beschrieben und die Freisetzung von Additiven näher zu untersuchen. MP wird mit verschiedensten Methoden charakterisiert, z.B. mit single particle ICP-MS zur Bestimmung der Größe oder FT-IR zur Bestimmung des vorherrschenden Polymers. Während der Flume-Experimente werden die Eigenschaften der Sedimente, des Porenwassers und der Biofilme, sowie die Konzentration an BPA und NP gemessen und später analysiert, um die Reaktivität der Akkumulationshotspots zu bestimmen.WP2 beinhaltet die Entwicklung und Anwendung eines Models, um MP-Transport sowie die Freisetzung von Additiven in der hyporheischen Zone vorherzusagen. Da Modelle, die momentan im Bereich Stofftransport verwendet werden nicht für MP ausgelegt sind, soll die Lattice-Boltzmann Methode als neuer Modellansatz verfolgt werden.
Ziel des Projektes ist die detaillierte Untersuchung der geologischen Strukturen und petrophysikalischen Eigenschaften der skandinavischen Kaledoniden. Im Rahmen des ICDP Projektes Collisional Orogeny in the Scandinavian Caledonides (COSC) werden wichtige gebirgsbildende Prozesse, wie die Entstehung von tektonischen Decken, näher untersucht. Mit den neu gewonnenen Kenntnissen soll ein Vergleich der Kaledoniden mit modernen Analoga, wie dem Himalaja, möglich sein. Hauptziel dieses Projektantrages ist die Entwicklung einer hoch auflösenden seismischen Stratigraphie des Seve Nappe Complex (SNC) mittels Kern-Log-Seismik Intergration (Core-Log-Seismic Integration, CLSI) im Bereich der COSC-Bohrung und deren Umgebung. Dadurch können markante petrophysikalische Eigenschaften des SNC und seiner Umgebungsgesteine bestimmt und somit die Entstehung des Komplexes besser verstanden werden. Abschließend sollen die gewonnen Informationen vom Bohrloch in ein großräumiges Modell extrapoliert werden. Dazu werden hochauflösende seismische 2D und 3D Migrationsergebnisse verwendet, die dank Bohrlochseismik teufenkalibriert sind. Die reflexionsseismische Abbildung des Untergrundes reicht jedoch nicht für eine detaillierte seismische Stratigraphie aus. Zusätzlich müssen hochauflösende petrophysikalische Messungen an Bohrkernen und im Bohrloch beachtet werden. Daher ist die gemeinsame Betrachtung und gegenseitige Kalibrierung aller Daten notwendig, um die Zusammensetzung und Entstehung der primären Scherzonen (wahrscheinlich umgewandelt in Mylonite) zwischen den Decken umfassender zu beleuchten. Unser Projektantrag konzentriert sich auf die Untersuchung geo- und petrophysikalischer Eigenschaften der Gesteine, unter Verwendung eines interdisziplinären Ansatzes basierend auf CLSI. Dabei nutzen wir Kernmessungen, Logging und seismische Daten, welche verschiedene räumliche Auflösungen besitzen. Die CLSI-Methode wurde bereits erfolgreich im marinen und lakustrinen Umfeld eingesetzt. Mit den Mitteln aus diesem Projektantrag soll die Methode erstmalig auf Hartgestein angewandt werden, wodurch der Ansatz erweitert werden muss, um den Anforderungen im Kristallin gerecht zu werden. Das COSC-Projekt wurde als Fallbeispiel ausgewählt, da in dem Projekt qualitativ hochwertige Daten aus allen benötigten Bereichen vorhanden sind. Der umfassende seismische Datensatz (2D und 3D) wird durch eine hochauflösende Bohrlochseismik komplettiert und die Logging-Daten zeichnen sich durch eine sehr gute Qualität aus. Zusätzlich zu bohrbegleitenden Kernmessungen arbeiten verschiedene Gesteinslabore an einer Vielzahl der erbohrten Kerne. Alle Wissenschaftler, die bereits an Daten und Proben des COSC Projektes arbeiten, haben zugestimmt, sich an diesem Projekt zu beteiligen bzw. dieses zu unterstützen.
Das Projekt BE-Cult wird sich mit der Biodiversität von nitratammonifizierenden (syn. Dissimilatorischen Nitrat-zu-Ammoniumreduzierenden, DNRA) Bakterien in Böden von wenig und intensiv genutzten Grünländern der Biodiversitätsexploratorien (BEs) an allen Grünland-VIPs (very intensively studied plots) beschäftigen. Die Funktion Stickstoff (N) durch DNRA-Bakterien im Boden zu halten, wurde lange Zeit nur wenig wahrgenommen und die quantitative Rolle bei der Lachgas-Freisetzung aus Böden nicht untersucht. Aus diesem Grund gibt es umfassende Informationen zur Biodiversität und Ökophysiologie von denitrifizierenden aber nicht zu DNRA-Boden- Mikroorganismen. Die Konsequenz dieser historischen Entwicklung ist, dass heute wenig über die Ökophysiologie und Bedeutung der DNRA Bakterien im N-Kreislauf terrestrischer Ökosysteme bekannt ist. Im Gegensatz zu den DNRA-Bakterien, bilden Dentrifikanten N-haltige Gase als Endprodukt ihres Stoffwechsels, die substantiell zum N-Verlust in Böden beitragen. Dahingegen reduzieren DNRA Bakterien Nitrat hauptsächlich zu Ammonium, das im Boden verbleibt und als wichtiger Pflanzennährstoff dient. Beide Bakteriengrupppen bilden das potente Treibhausgas Lachgas und tragen damit zur globalen Erwärmung bei. Das Hauptanliegen des Projektes BE-Cult ist es den Einfluss der Landnutzungsintensität auf diese wichtigen Mikroorganismen im N-Kreislauf von Böden zu untersuchen. In einem Hochdurchsatz-Kultivierungs-Ansatz (einschl. MALDI TOF MS für eine schnelle Stammidentifikation und verschiedene Tests zur physiologischen Charakterisierung des Nitrat- Stoffwechsels) werden über 10.000 Reinkulturen charakterisiert und entsprechend ihrer Phylogenie und Nitrat-Physiologie gruppiert. Aus dieser Stammsammlung werden 100 Isolate genom-sequenziert. Basierend auf den genomischen Informationen werden PCR-Primer funktioneller Genmarker entwickelt und verbessert um dann die funktionellen Genmarker in DNA-Extrakten der Grünland-VIPs zu quantifizieren. Zusammen mit Partnern in den BEs wird die relative Bedeutung der DNRA-Bakterien (insbesondere ihrer relativen Aktivität im Vergleich zu Denitrifikanten) in Meta-Transkriptom Datensätzen evaluiert. Letztendlich werden die so gewonnen Daten in multivariaten Analysen bestehend aus funktionellen Genmarker-Abundanzen, physiologischen 'traits' und auch abiotischen wie biotischen Parametern verwendet um die Verteilungsmuster von DNRA Bakterien in Böden zu erklären und ihre ökologischen Nischen besser definieren zu können.
Origin | Count |
---|---|
Bund | 8243 |
Europa | 17 |
Global | 6 |
Kommune | 16 |
Land | 1465 |
Schutzgebiete | 62 |
Wirtschaft | 42 |
Wissenschaft | 958 |
Zivilgesellschaft | 3 |
Type | Count |
---|---|
Bildmaterial | 1 |
Daten und Messstellen | 2585 |
Ereignis | 212 |
Förderprogramm | 5101 |
Gesetzestext | 10 |
Kartendienst | 13 |
Lehrmaterial | 1 |
Taxon | 50 |
Text | 608 |
Umweltprüfung | 43 |
WRRL-Maßnahme | 2 |
unbekannt | 874 |
License | Count |
---|---|
geschlossen | 1028 |
offen | 8248 |
unbekannt | 179 |
Language | Count |
---|---|
Deutsch | 7632 |
Englisch | 2557 |
Leichte Sprache | 1 |
andere | 2 |
Resource type | Count |
---|---|
Archiv | 255 |
Bild | 123 |
Datei | 557 |
Dokument | 2365 |
Keine | 3566 |
Multimedia | 3 |
Unbekannt | 74 |
Webdienst | 2231 |
Webseite | 5140 |
Topic | Count |
---|---|
Boden | 6007 |
Lebewesen und Lebensräume | 7405 |
Luft | 4787 |
Mensch und Umwelt | 9379 |
Wasser | 8928 |
Weitere | 9130 |