Kasper-Sonnenberg, Monika; Pälmke, Claudia; Wrobel, Sonja; Brüning, Thomas; Murawski, Aline; Apel, Petra; Weber, Till; Kolossa-Gehring, Marike; Koch, Holger M. Environ Int 195 (2025), 109-190, online: 12. Dezember 2024 The German Environmental Specimen Bank (ESB) annually archives 24-h urine samples since the early 1980s. In this study, we analyzed 420 of these samples from the years 2014 to 2022 for metabolites of 18 phthalates and two substitutes. We merged the new data with the data from previous measurement campaigns to a combined dataset of 1825 samples covering a 35-year period from 1988 to 2022 to investigate time trends, calculate daily intakes and perform an anti-androgenic mixture risk assessment. With the extended set of 41 biomarkers, we are now able to monitor the exposure to all EU-labelled reprotoxic phthalates. Most phthalate exposures continued to decrease since first measurements in the 80s, with biggest drops for DnBP (96.6 %) and DEHP (90.9 %). DiNP and DiDP, seen on the rise in earlier campaigns, now declined. Exposures to the newly included, reprotoxic phthalates were generally negligible. Regarding mixture risk, 5 % of the highly exposed still exceeded the Hazard Index (HI) of 1 in 2009. In the current measurement campaign only three individuals (0.7 %) exceeded the HI of 1 (with exceedances still driven by DEHP and DnBP).In 2022, 20 % of the individuals still had an HI > 0.2, which we propose as a benchmark for interpreting phthalate mixture risk, considering concurrent exposures to other anti-androgens. Exposure to the substitutes DINCH and DEHTP continues to increase, with daily intakes of DEHTP exceeding those of DEHP since 2018. Compared with the United States (US) National Health and Nutrition Examination Survey (NHANES) phthalate exposures seem to align, except for DEHTP with up to ten times higher levels in the US. Human biomonitoring (HBM) is the ideal tool to capture actual mixture exposures per individual, integrating all external exposure sources and pathways, thus we will continue to use HBM in exposure and risk assessment of phthalates and other (anti-androgenic) chemicals. doi: 10.1016/j.envint.2024.109190
Rodriguez Martin, Laura; Gilles, Liese; Helte, Emilie; Akesson, Agneta; Tagt, Jonas; Covaci, Adrian; Sakhi, Amrit K.; Van Nieuwenhuyse, An; Katsonouri, Andromachi; Andersson, Anna-Maria; Gutleb, Arno C.; Janasik, Beata; Appenzeller, Brice; Gabriel, Catherine; Thomsen, Cathrine; Mazej, Darja; Sarigiannis, Denis; Anastasi, Elena; Barbone, Fabio; Tolonen, Hanna; Frederiksen, Hanne; Klanova, Jana; Koponen, Jani; Snoj Tratnik, Janja; Pack, Kim; Koppen, Gudrun; Olafsdottir, Kristin; Knudsen, Lisbeth E.; Rambaud, Loic; Strumylaite, Loreta; Murinova, Lubica P.; Fabelova, Lucia; Riou, Margaux; Berglund, Marika; Szabados, Maté; Imboden, Medea; Laeremans, Michelle; Estokova, Milada; Janev Holcer, Natasa; Probst-Hensch, Nicole; Vodrazkova, Nicole; Vogel, Nina; Piler, Pavel; Schmidt, Phillipp; Lange, Rosa; Namorado, Sónia; Kozepesy, Szilvia; Szigeti, Tamás; Halldorsson, Thorhallur I.; Weber, Till; Kold Jensen, Tina; Rosolen, Valentina; Puklova, Vladimira; Wasowicz, Wojciech; Sepai, Ovnair; Stewart, Lorraine; Kolossa-Gehring, Marike; Esteban-Lopez, Marta; Castano, Argelia; Bessems, Jos; Schoeters, Greet; Govarts, Eva Toxics 11 (2023); online: 28. September 2023 Human biomonitoring (HBM) data in Europe are often fragmented and collected in different EU countries and sampling periods. Exposure levels for children and adult women in Europe were evaluated over time. For the period 2000-2010, literature and aggregated data were collected in a harmonized way across studies. Between 2011-2012, biobanked samples from the DEMOCOPHES project were used. For 2014-2021, HBM data were generated within the HBM4EU Aligned Studies. Time patterns on internal exposure were evaluated visually and statistically using the 50th and 90th percentiles (P50/P90) for phthalates/DINCH and organophosphorus flame retardants (OPFRs) in children (5-12 years), and cadmium, bisphenols and polycyclic aromatic hydrocarbons (PAHs) in women (24-52 years). Restricted phthalate metabolites show decreasing patterns for children. Phthalate substitute, DINCH, shows a non-significant increasing pattern. For OPFRs, no trends were statistically significant. For women, BPA shows a clear decreasing pattern, while substitutes BPF and BPS show an increasing pattern coinciding with the BPA restrictions introduced. No clear patterns are observed for PAHs or cadmium. Although the causal relations were not studied as such, exposure levels to chemicals restricted at EU level visually decreased, while the levels for some of their substitutes increased. The results support policy efficacy monitoring and the policy-supportive role played by HBM. doi: 10.3390/toxics11100819
Early puberty has been found to be associated with adverse health outcomes such as metabolic and cardiovascular diseases and hormone-dependent cancers. The decrease in age at menarche observed during the past decades has been linked to an increased exposure to endocrine-disrupting compounds (EDCs). Evidence for the association between PFAS and phthalate exposure and menarche onset, however, is inconsistent. We studied the association between PFAS and phthalate/DINCH exposure and age at menarche using data of 514 teenagers (12 to 18 years) from four aligned studies of the Human Biomonitoring for Europe initiative (HBM4EU): Riksmaten Adolescents 2016-2017 (Sweden), PCB cohort (follow-up; Slovakia), GerES V-sub (Germany), and FLEHS IV (Belgium). PFAS concentrations were measured in blood, and phthalate/DINCH concentrations in urine. We assessed the role of each individual pollutant within the context of the others, by using different multi-pollutant approaches, adjusting for age, age- and sex-standardized body mass index z-score and household educational level. Exposure to di(2-ethylhexyl) phthalate (DEHP), especially mono(2-ethyl-5-hydroxyhexyl) phthalate (5OH-MEHP), was associated with an earlier age at menarche, with estimates per interquartile fold change in 5OH-MEHP ranging from -0.34 to -0.12 years in the different models. Findings from this study indicated associations between age at menarche and some specific EDCs at concentrations detected in the general European population, but due to the study design (menarche onset preceded the chemical measurements), caution is needed in the interpretation of causality. © 2023 by the authors
Over the last twenty-five years it has become evident that exposure to several phthalates can have adverse effects on human health, such as endocrine disruption. This led to a series of EU regulations that resulted in a decrease in the production volumes of the restricted phthalates and an increased production of substitutes. The current study describes the impact of regulations and changes in production and use of phthalates and their substitutes on internal exposure patterns in two European populations since the beginning of the 2000'ies. Using harmonised data from young adults in Denmark (Danish Young Men Study, n = 1,063, spot urine) and Germany (Environmental Specimen Bank, n = 878, 24-h urine) with repeated cross-sectional design (3-11 cycles per biomarker) we applied Locally Estimated Scatterplot Smoothing (LOESS) and Generalized Linear Models (GLMs) to estimate time trends and the role of covariates on the trend (e.g. age, BMI). Time trends of daily excretion (mikrog/24h) are comparable between the two samples for the regulated (DEHP, BBzP, DiNP, DnBP, DiBP, DiDP/DPHP) as well as the non-regulated substances (DMP, DEP, DINCH, DEHTP) although the rate of change differ for some of the compounds. GLM results indicate that the daily excretion of the most regulated phthalates has decreased over time (DEHP yearly about 12-16%, BBzP 5%, DnBP 0.3-17%, and DiBP 4-12%). Interestingly, also the non-regulated phthalates DMP and DEP decreased by 6-18% per year. In sharp contrast, the phthalate substitutes DINCH and DEHTP show very steep annual increases (~10-68% and ~100%, respectively) between 2009 and 2017. We did not find an effect of age, sex, BMI, or education on the time trend. The present study provides comparable insights into how exposure to phthalates and two of their substitutes have changed over the last two decades in Germany and Denmark. © 2022 The Authors
Phthalates are mainly used as plasticizers for polyvinyl chloride (PVC). Exposure to several phthalates is associated with different adverse effects most prominently on the development of reproductive functions. The HBM4EU Aligned Studies (2014-2021) have investigated current European exposure to ten phthalates (DEP, BBzP, DiBP, DnBP, DCHP, DnPeP, DEHP, DiNP, DiDP, DnOP) and the substitute DINCH to answer the open policy relevant questions which were defined by HBM4EU partner countries and EU institutions as the starting point of the programme. The exposure dataset includes ~5,600 children (6-11 years) and adolescents (12-18 years) from up to 12 countries per age group and covering the North, East, South and West European regions. Study data from participating studies were harmonised with respect to sample size and selection of participants, selection of biomarkers, and quality and comparability of analytical results to provide a comparable perspective of European exposure. Phthalate and DINCH exposure were deduced from urinary excretions of metabolites, where concentrations were expressed as their key descriptor geometric mean (GM) and 95th percentile (P95). This study aims at reporting current exposure levels and differences in these between European studies and regions, as well as comparisons to human biomonitoring guidance values (HBM-GVs). GMs for children were highest for total-DEHP metabolites (33.6 mikrog/L), MiBP (26.6 mikrog/L), and MEP (24.4 mikrog/L) and lowest for total-DiDP metabolites (1.91 mikrog/L) and total-DINCH metabolites (3.57 mikrog/L). In adolescents highest GMs were found for MEP (43.3 mikrog/L), total-DEHP metabolites (28.8 mikrog/L), and MiBP (25.6 mikrog/L) and lowest for total-DiDP metabolites (= 2.02 mikrog/L) and total-DINCH metabolites (2.51 mikrog/L). In addition, GMs and P95 stratified by European region, sex, household education level, and degree of urbanization are presented. Differences in average biomarker concentrations between sampling sites (data collections) ranged from factor 2 to 9. Compared to the European average, children in the sampling sites OCC (Denmark), InAirQ (Hungary), and SPECIMEn (The Netherlands) had the lowest concentrations across all metabolites and ESTEBAN (France), NAC II (Italy), and CROME (Greece) the highest. For adolescents, comparably higher metabolite concentrations were found in NEB II (Norway), PCB cohort (Slovakia), and ESTEBAN (France), and lower concentrations in POLAES (Poland), FLEHS IV (Belgium), and GerES V-sub (Germany). Multivariate analyses (Survey Generalized Linear Models) indicate compound-specific differences in average metabolite concentrations between the four European regions. Comparison of individual levels with HBM-GVs revealed highest rates of exceedances for DnBP and DiBP, with up to 3 and 5%, respectively, in children and adolescents. No exceedances were observed for DEP and DINCH. With our results we provide current, detailed, and comparable data on exposure to phthalates in children and - for the first time - in adolescents, and - for the first time - on DINCH in children and adolescents of all four regions of Europe which are particularly suited to inform exposure and risk assessment and answer open policy relevant questions. © 2023 The Authors.
Phthalates are mainly used as plasticizers and are associated inter alia with adverse effects on reproductive functions. While more and more national programs in Europe have started monitoring internal exposure to phthalates and its substitute 1,2-Cyclohexanedicarboxylic acid (DINCH), the comparability of results from such existing human biomonitoring (HBM) studies across Europe is challenging. They differ widely in time periods, study samples, degree of geographical coverage, design, analytical methodology, biomarker selection, and analytical quality assurance level. The HBM4EU initiative has gathered existing HBM data of 29 studies from participating countries, covering all European regions and Israel. The data were prepared and aggregated by a harmonized procedure with the aim to describe - as comparably as possible - the EU-wide general population's internal exposure to phthalates from the years 2005 to 2019. Most data were available from Northern (up to 6 studies and up to 13 time points), Western (11; 19), and Eastern Europe (9; 12), e.g., allowing for the investigation of time patterns. While the bandwidth of exposure was generally similar, we still observed regional differences for Butyl benzyl phthalate (BBzP), Di(2-ethylhexyl) phthalate (DEHP), Di-isononyl phthalate (DiNP), and Di-isobutyl phthalate (DiBP) with pronounced decreases over time in Northern and Western Europe, and to a lesser degree in Eastern Europe. Differences between age groups were visible for Di-n-butyl phthalate (DnBP), where children (3 to 5-year olds and 6 to 11-year olds) had lower urinary concentrations than adolescents (12 to 19-year-olds), who in turn had lower urinary concentrations than adults (20 to 39-year-olds). This study is a step towards making internal exposures to phthalates comparable across countries, although standardized data were not available, targeting European data sets harmonized with respect to data formatting and calculation of aggregated data (such as developed within HBM4EU), and highlights further suggestions for improved harmonization in future studies. © 2023 by the authors
Im Rahmen der europäischen HumanBiomonitoringInitiative (HBM4EU) wurden aktuelle harmonisierte Daten zur körperlichen Belastung von Kindern und Jugendlichen mit Phthalat-Weichmachern und dem alternativen Weichmacher DINCH in Europa gewonnen. Zwischen den Ländern und europäischen Regionen wurden Unterschiede in der Belastung festgestellt. Ein Vergleich der HBM-Ergebnisse mit im Projekt abgeleiteten toxikologischen Beurteilungswerten zeigt, dass die Belastung trotz bestehender Regulierungen immer noch zu hoch ist. Bei Betrachtung der gleichzeitigen Belastung mit verschiedenen Phthalaten konnte für 17 rozent der Teilnehmenden ein gesundheitliches Risiko nicht mit ausreichender Sicherheit ausgeschlossen werden. Weitere Meilensteine von HBM4EU waren der Aufbau eines Labornetzwerks zur Analytik der Stoffe, eine Zeittrendanalyse, die Identifizierung von Expositionsquellen sowie Effektbiomarkern und die Untersuchung beruflich Exponierter. Die Ergebnisse ermöglichen die Beantwortung politikberatungsrelevanter Fragen sowie eine Einschätzung der Effektivität bestehender Regulierungen. Quelle: UMID : Umwelt und Mensch - Informationsdienst ; Umwelt & Gesundheit, Umweltmedizin, Verbraucherschutz / Boden- und Lufthygiene (Berlin) Institut für Wasser- - (2023), Heft 1, Seite 25
As one of the core elements of the European Human Biomonitoring Initiative (HBM4EU) a human biomonitoring (HBM) survey was conducted in 23 countries to generate EU-wide comparable HBM data. This survey has built on existing HBM capacity in Europe by aligning national or regional HBM studies, referred to as the HBM4EU Aligned Studies. The HBM4EU Aligned Studies included a total of 10,795 participants of three age groups: (i) 3,576 children aged 6-12 years, (ii) 3,117 teenagers aged 12-18 years and (iii) 4,102 young adults aged 20-39 years. The participants were recruited between 2014 and 2021 in 11-12 countries per age group, geographically distributed across Europe. Depending on the age group, internal exposure to phthalates and the substitute DINCH, halogenated and organophosphorus flame retardants, per- and polyfluoroalkyl substances (PFASs), cadmium, bisphenols, polycyclic aromatic hydrocarbons (PAHs), arsenic species, acrylamide, mycotoxins (deoxynivalenol (total DON)), benzophenones and selected pesticides was assessed by measuring substance specific biomarkers subjected to stringent quality control programs for chemical analysis. For substance groups analyzed in different age groups higher average exposure levels were observed in the youngest age group, i.e., phthalates/DINCH in children versus teenagers, acrylamide and pesticides in children versus adults, benzophenones in teenagers versus adults. Many biomarkers in teenagers and adults varied significantly according to educational attainment, with higher exposure levels of bisphenols, phthalates, benzophenones, PAHs and acrylamide in participants (from households) with lower educational attainment, while teenagers from households with higher educational attainment have higher exposure levels for PFASs and arsenic. In children, a social gradient was only observed for the non-specific pyrethroid metabolite 3-PBA and di-isodecyl phthalate (DiDP), with higher levels in children from households with higher educational attainment. Geographical variations were seen for all exposure biomarkers. For 15 biomarkers, the available health-based HBM guidance values were exceeded with highest exceedance rates for toxicologically relevant arsenic in teenagers (40%), 3-PBA in children (36%), and between 11 and 14% for total DON, Summe (PFOA + PFNA + PFHxS + PFOS), bisphenol S and cadmium. The infrastructure and harmonized approach succeeded in obtaining comparable European wide internal exposure data for a prioritized set of 11 chemical groups. These data serve as a reference for comparison at the global level, provide a baseline to compare the efficacy of the European Commission's chemical strategy for sustainability and will give leverage to national policy makers for the implementation of targeted measures. © 2023 The Authors
Human biomonitoring (HBM) data in Europe are often fragmented and collected in different EU countries and sampling periods. Exposure levels for children and adult women in Europe were evaluated over time. For the period 2000-2010, literature and aggregated data were collected in a harmonized way across studies. Between 2011-2012, biobanked samples from the DEMOCOPHES project were used. For 2014-2021, HBM data were generated within the HBM4EU Aligned Studies. Time patterns on internal exposure were evaluated visually and statistically using the 50th and 90th percentiles (P50/P90) for phthalates/DINCH and organophosphorus flame retardants (OPFRs) in children (5-12 years), and cadmium, bisphenols and polycyclic aromatic hydrocarbons (PAHs) in women (24-52 years). Restricted phthalate metabolites show decreasing patterns for children. Phthalate substitute, DINCH, shows a non-significant increasing pattern. For OPFRs, no trends were statistically significant. For women, BPA shows a clear decreasing pattern, while substitutes BPF and BPS show an increasing pattern coinciding with the BPA restrictions introduced. No clear patterns are observed for PAHs or cadmium. Although the causal relations were not studied as such, exposure levels to chemicals restricted at EU level visually decreased, while the levels for some of their substitutes increased. The results support policy efficacy monitoring and the policy-supportive role played by HBM. © 2023 by the authors
The European Initiative HBM4EU aimed to further establish human biomonitoring across Europe as an important tool for determining population exposure to chemicals and as part of health-related risk assessments, thus making it applicable for policy advice. Not only should analytical methods and survey design be harmonized and quality assured, but also the evaluation of human biomonitoring data. For the health-related interpretation of the data within HBM4EU, a strategy for deriving health-based human biomonitoring guidance values (HBM-GVs) for both the general population and workers was agreed on. On this basis, HBM-GVs for exposure biomarkers of 1,2-cyclohexane dicarboxylic acid diisononyl ester (DINCH), phthalates (diethyl hexyl phthalate (DEHP), di-n-butyl phthalate (DnBP), diisobutyl phthalate (DiBP), butyl benzyl phthalate (BBzP), and bis-(2-propylheptyl) phthalate (DPHP)), bisphenols A and S, pyrethroids (deltamethrin and cyfluthrin), solvents (1-methyl-2-pyrrolidone (NMP), 1-ethylpyrrolidin-2-one (NEP), N-dimethylformamide (DMF), N,N-dimethylacetamide (DMAC)), the heavy metal cadmium and the mycotoxin deoxynivalenol (DON) were developed and assigned a level of confidence. The approach to HBM-GV derivations, results, and limitations in data interpretation with special focus on the pyrethroids are presented in this paper. © 2023 The Authors
Origin | Count |
---|---|
Bund | 49 |
Type | Count |
---|---|
Chemische Verbindung | 1 |
Förderprogramm | 5 |
Messwerte | 1 |
Text | 12 |
unbekannt | 30 |
License | Count |
---|---|
geschlossen | 44 |
offen | 5 |
Language | Count |
---|---|
Deutsch | 21 |
Englisch | 38 |
Resource type | Count |
---|---|
Bild | 2 |
Dokument | 2 |
Keine | 40 |
Webseite | 8 |
Topic | Count |
---|---|
Boden | 20 |
Lebewesen & Lebensräume | 39 |
Luft | 23 |
Mensch & Umwelt | 49 |
Wasser | 23 |
Weitere | 34 |