Die Feature-Class setzt sich aus den folgenden Themen zusammen: • Vorkommen Biber (Stand Dezember 2014)• Vorkommen Fischotter (Stand Dezember 2015) • Vorkommen Weißstorch (Stand Dezember 2014)• Vorkommen Schwarzstorch (Stand Dezember 2014)Bei der Erarbeitung der landesweiten Programmkulisse und deren Konkretisierung auf der regionalen Ebene sind bestimmte charakteristische Tier- und Pflanzenarten des Anhangs II FFH-RL mit Vorkommen in niedersächsischen Gewässerlandschaften zu berücksichtigen, für deren Schutz die Erhaltung oder Verbesserung des Wasserzustandes und des Wasserhaushaltes ein wichtiger Faktor ist. Beispielhaft zu nennen sind dabei insbesondere die Zielarten der bisherigen Naturschutzprogramme: Biber und Fischotter sind prioritäre und besonders schutzbedürftige Charakterarten großräumiger und vielgestaltiger naturnaher Flusslandschaften. Schutz und Entwicklung dieser wassergebundenen Arten sind Kernziele des Naturschutzes in Niedersachsen. Die Schwerpunkträume ihrer Verbreitung in Gewässerlandschaften einschließlich ihrer z. T. außerhalb der Aue oder in Auenrandbereichen gelegenen Nahrungsreviere und Aktionsräume spielen eine wesentliche Rolle bei der Festlegung und Konkretisierung der Programmkulisse und sind bei der Schwerpunktsetzung zu berücksichtigen. Beim Fischotter entsprechen diese Gewässerauen den Förderkulissen des (bisherigen) Fischotterprogramms. Weißstorch und Schwarzstorch sind ebenfalls prioritäre und schutzbedürftige Arten mit starker Bindung an Wasser und Feuchtigkeit geprägte Lebensräume. Der Weißstorch hat seine Verbreitungsschwerpunkte v. a. in den Stromtälern von Elbe, Weser und Aller. Hier ist in erster Linie die enge Verzahnung von Bruthabitaten und Grünland dominierten Nahrungshabitaten in den Auen, aber auch außerhalb, besonders hervorzuheben. Die Aktionsräume der Weißstörche, ihre Brutstandorte und ihre bekannten Nahrungsreviere auch außerhalb der Auen werden deshalb bei der Programmentwicklung mitberücksichtigt. Der Schwarzstorch ist v. a. hinsichtlich seiner Nahrungshabitate stärker auf Gewässerläufe angewiesen als der Weißstorch. Da der Schwarzstorch auch kleinere Bachtäler (u. a. im Bergland) als Nahrungshabitate nutzt, werden neben bekannten Bruthabitaten v. a. die Nahrungshabitate in die Kulisse mit einbezogen.
Die Vorkommensgebiete gebietseigener Gehölze in Baden-Württemberg weichen aufgrund erhöhter naturschutzfachlicher Anforderungen von der 2012 deutschlandweit festgelegten Gebietskulisse gebietseigener Gehölze des Bundesministeriums für Umwelt, Naturschutz und Reaktorsicherheit (BMUB) insoweit ab, als die Vorkommensgebiete 4 Westdeutsches Bergland und Oberrheingraben (BMUB) und 5 Schwarzwald, Württembergisch-Fränkisches Hügelland und Schwäbisch-Fränkische Alb (BMUB) in Baden-Württemberg in die Vorkommensgebiete 4.1 Westdeutsches Bergland, Spessart-Rhön-Region (BW) und 4.2 Oberrheingraben (BW) sowie 5.1 Süddeutsches Hügel- und Bergland, Fränkische Platten und Mittelfränkische Becken (BW) und 5.2 Schwäbische und Fränkische Alb (BW) unterteilt wurden. Herkunftsnachweise für gebietseigene Gehölze – mit Ausnahme der dem Forstvermehrungsgutgesetz (FoVG) unterliegenden Forstgehölzen – müssen immer auf diesen Vorkommensgebieten basieren. Bitte beachten Sie folgende Hinweise zu Vollständigkeit und Qualität der bereitgestellten Daten: aufgrund von Ungenauigkeiten bei der Erfassung von Fachobjekten kommt es vereinzelt zu nicht validen Geometrien gemäß OGC-Schema-Validierung. Da GIS-Server wie ArcGIS-Server, GeoServer oder UMN MapServer immer genauere Datengrundlagen verwenden/verarbeiten müssen, wird auch die Prüfroutine immer weiterentwickelt und mahnt im Toleranzbereich als auch in der topologischen Erfassung Ungenauigkeiten (bspw. durch Dritt-Software) an. Dies führt dazu, dass Geometrien nicht mehr dargestellt beziehungsweise erfasst werden können. Zu den beanstandeten Geometriefehlern gehören u.a. Selbstüberschneidungen (Selfintersections) oder doppelte Stützpunkte. Die LUBW kann daher keine Garantie für die Vollständigkeit und Stabilität des Download-Dienstes (WFS) geben. Bitte prüfen Sie daher im Bedarfsfall die Vollständigkeit anhand der ebenfalls angebotenen Darstellungsdienste (WMS).
Die Geologische Übersichtskarte 1 : 500 000 gibt einen landesweiten Überblick vom geologischen Aufbau Niedersachsens. Als Linieninformation werden zusätzlich Angaben zur Ausdehnung verschiedener Vereisungen, zur Küstenlinie der Nordsee im Quartär sowie zu tektonischen Strukturen gegeben. Das südniedersächsische Bergland wird von den Festgesteinen des Paläozoikum und Mesozoikum aufgebaut. Im Harz und bei Osnabrück steht das paläozoische Grundgebirge zutage an. Ältestes Gestein ist der vermutlich aus dem Präkambrium stammende Eckergneis. Über einer Schichtlücke folgen die Sedimente eines paläozoischen Meeresbeckens. Darin kamen im Silur schwarze Tonschiefer, im Devon Sandstein, Dachschiefer, Schwellen- und Riffkalke zum Absatz; im Oberdevon und Unterkarbon wurden die Harzer Grauwacken geschüttet. Basaltische Laven, die heutigen Diabase, traten am Meeresboden aus. Damit in Zusammenhang entstanden Kieselschiefer und Eisenerze. Die gesamte Schichtenfolge wurde bei der varistischen Gebirgsbildung im Oberkarbon aufgefaltet; abschließend stiegen magmatische Schmelzen auf, die heute im Harzburger Gabbro, im Brocken- und Oker-Granit freigelegt sind. Im Rotliegenden sammelte sich der Abtragungsschutt in Senken des Gebirges. Das Zechstein-Meer überflutete ein bereits eingeebnetes Gelände und überdeckte es mit mächtigen Folgen von Kalk, Gips bzw. Anhydrit und Salz. Im Mesozoikum wurde das flache, zeitweise trockenfallende Becken mit den Sedimenten der Trias (Buntsandstein, Muschelkalk und Keuper) aufgefüllt, im Jura und in der Kreidezeit wurde das Becken wieder vom Meer überflutet. Der mesozoische Schichtenstapel zerbrach in einer Zeit tektonischer Unruhe (Oberjura bis Kreide) an tiefreichenden Störungen. An ihnen stieg das plastisch reagierende Zechsteinsalz auf. Das Ergebnis ist die saxonische Bruchfaltung des Deckgebirges. Im Tertiär überflutete das Meer erneut das eingeebnete Gelände und lagerte Sand und Ton ab, während sich im Binnenland zeitweise Braunkohle bildete. Schließlich zog sich das Meer auf den heutigen Nordsee-Bereich zurück. Das Quartär ist durch einen mehrfachen Wechsel von Kalt- und Warmzeiten gekennzeichnet. Im mittleren Pleistozän waren zur Elster- und Saale-Kaltzeit große Teile Niedersachsens vergletschert; das Eis hinterließ Grundmoränen (Geschiebemergel) und Schmelzwasserablagerungen (Kies, Sand und Ton). In den Warmzeiten (Interglazialen) und in der Nacheiszeit (Holozän) entstanden Torfe, Mudden und Mergel. Teile des Küstengebietes wurden dabei überflutet und von Meeres-, Watt- und Brackwasserablagerungen überdeckt.
Die Geologische Übersichtskarte 1 : 500 000 gibt einen landesweiten Überblick vom geologischen Aufbau Niedersachsens. Als Linieninformation werden zusätzlich Angaben zur Ausdehnung verschiedener Vereisungen, zur Küstenlinie der Nordsee im Quartär sowie zu tektonischen Strukturen gegeben. Das südniedersächsische Bergland wird von den Festgesteinen des Paläozoikum und Mesozoikum aufgebaut. Im Harz und bei Osnabrück steht das paläozoische Grundgebirge zutage an. Ältestes Gestein ist der vermutlich aus dem Präkambrium stammende Eckergneis. Über einer Schichtlücke folgen die Sedimente eines paläozoischen Meeresbeckens. Darin kamen im Silur schwarze Tonschiefer, im Devon Sandstein, Dachschiefer, Schwellen- und Riffkalke zum Absatz; im Oberdevon und Unterkarbon wurden die Harzer Grauwacken geschüttet. Basaltische Laven, die heutigen Diabase, traten am Meeresboden aus. Damit in Zusammenhang entstanden Kieselschiefer und Eisenerze. Die gesamte Schichtenfolge wurde bei der varistischen Gebirgsbildung im Oberkarbon aufgefaltet; abschließend stiegen magmatische Schmelzen auf, die heute im Harzburger Gabbro, im Brocken- und Oker-Granit freigelegt sind. Im Rotliegenden sammelte sich der Abtragungsschutt in Senken des Gebirges. Das Zechstein-Meer überflutete ein bereits eingeebnetes Gelände und überdeckte es mit mächtigen Folgen von Kalk, Gips bzw. Anhydrit und Salz. Im Mesozoikum wurde das flache, zeitweise trockenfallende Becken mit den Sedimenten der Trias (Buntsandstein, Muschelkalk und Keuper) aufgefüllt, im Jura und in der Kreidezeit wurde das Becken wieder vom Meer überflutet. Der mesozoische Schichtenstapel zerbrach in einer Zeit tektonischer Unruhe (Oberjura bis Kreide) an tiefreichenden Störungen. An ihnen stieg das plastisch reagierende Zechsteinsalz auf. Das Ergebnis ist die saxonische Bruchfaltung des Deckgebirges. Im Tertiär überflutete das Meer erneut das eingeebnete Gelände und lagerte Sand und Ton ab, während sich im Binnenland zeitweise Braunkohle bildete. Schließlich zog sich das Meer auf den heutigen Nordsee-Bereich zurück. Das Quartär ist durch einen mehrfachen Wechsel von Kalt- und Warmzeiten gekennzeichnet. Im mittleren Pleistozän waren zur Elster- und Saale-Kaltzeit große Teile Niedersachsens vergletschert; das Eis hinterließ Grundmoränen (Geschiebemergel) und Schmelzwasserablagerungen (Kies, Sand und Ton). In den Warmzeiten (Interglazialen) und in der Nacheiszeit (Holozän) entstanden Torfe, Mudden und Mergel. Teile des Küstengebietes wurden dabei überflutet und von Meeres-, Watt- und Brackwasserablagerungen überdeckt.
Die Geologische Übersichtskarte 1 : 500 000 gibt einen landesweiten Überblick vom geologischen Aufbau Niedersachsens. Als Linieninformation werden zusätzlich Angaben zur Ausdehnung verschiedener Vereisungen, zur Küstenlinie der Nordsee im Quartär sowie zu tektonischen Strukturen gegeben. Das südniedersächsische Bergland wird von den Festgesteinen des Paläozoikum und Mesozoikum aufgebaut. Im Harz und bei Osnabrück steht das paläozoische Grundgebirge zutage an. Ältestes Gestein ist der vermutlich aus dem Präkambrium stammende Eckergneis. Über einer Schichtlücke folgen die Sedimente eines paläozoischen Meeresbeckens. Darin kamen im Silur schwarze Tonschiefer, im Devon Sandstein, Dachschiefer, Schwellen- und Riffkalke zum Absatz; im Oberdevon und Unterkarbon wurden die Harzer Grauwacken geschüttet. Basaltische Laven, die heutigen Diabase, traten am Meeresboden aus. Damit in Zusammenhang entstanden Kieselschiefer und Eisenerze. Die gesamte Schichtenfolge wurde bei der varistischen Gebirgsbildung im Oberkarbon aufgefaltet; abschließend stiegen magmatische Schmelzen auf, die heute im Harzburger Gabbro, im Brocken- und Oker-Granit freigelegt sind. Im Rotliegenden sammelte sich der Abtragungsschutt in Senken des Gebirges. Das Zechstein-Meer überflutete ein bereits eingeebnetes Gelände und überdeckte es mit mächtigen Folgen von Kalk, Gips bzw. Anhydrit und Salz. Im Mesozoikum wurde das flache, zeitweise trockenfallende Becken mit den Sedimenten der Trias (Buntsandstein, Muschelkalk und Keuper) aufgefüllt, im Jura und in der Kreidezeit wurde das Becken wieder vom Meer überflutet. Der mesozoische Schichtenstapel zerbrach in einer Zeit tektonischer Unruhe (Oberjura bis Kreide) an tiefreichenden Störungen. An ihnen stieg das plastisch reagierende Zechsteinsalz auf. Das Ergebnis ist die saxonische Bruchfaltung des Deckgebirges. Im Tertiär überflutete das Meer erneut das eingeebnete Gelände und lagerte Sand und Ton ab, während sich im Binnenland zeitweise Braunkohle bildete. Schließlich zog sich das Meer auf den heutigen Nordsee-Bereich zurück. Das Quartär ist durch einen mehrfachen Wechsel von Kalt- und Warmzeiten gekennzeichnet. Im mittleren Pleistozän waren zur Elster- und Saale-Kaltzeit große Teile Niedersachsens vergletschert; das Eis hinterließ Grundmoränen (Geschiebemergel) und Schmelzwasserablagerungen (Kies, Sand und Ton). In den Warmzeiten (Interglazialen) und in der Nacheiszeit (Holozän) entstanden Torfe, Mudden und Mergel. Teile des Küstengebietes wurden dabei überflutet und von Meeres-, Watt- und Brackwasserablagerungen überdeckt.
In der Bodenübersichtskarte im Maßstab 1 : 500 000 (BÜK500) werden die wichtigsten Bodentypen und ihre Vergesellschaftung auf Basis der Bodenlandschaften, Bodengroßlandschaften und Bodenregionen dargestellt. Die räumliche Verteilung von Böden zeigt in der Regel ein engräumiges Mosaik unterschiedlicher Erscheinungen und Eigenschaften. Die Verbreitung lässt sich auch bei großen Maßstäben in der Regel nur als Bodenvergesellschaftung darstellen. Die pedoregionale Gliederung soll den Rahmen für eine systematische Ordnung des räumlichen Nebeneinanders von Böden geben. Die Bodenregionen und Bodengroßlandschaften geben einen Überblick zur bodenkundlichen Gliederung des Landes und bilden die oberen Ebenen der pedoregionalen Gliederung von Niedersachsen. Die Verbreitung der Böden in Niedersachsen ist dabei nicht zufällig. Es ist leicht nachvollziehbar, dass die Böden im Bereich der ebenen Marschlandschaften sich grundsätzlich von denen der Geest, des Bergvorlandes, des Berglandes oder des Mittelgebirges (Harz) unterscheiden. Die Böden und Bodengesellschaften im Bereich der ebenen Marschlandschaften finden keine Entsprechung in der Geest, dem Bergvorland, dem Bergland oder dem Mittelgebirge (Harz). Die vorstehend angeführten Kategorien beschreiben deshalb auch bodenkundlich bedeutsame Großstrukturen und werden als die Bodenregionen Niedersachsens bezeichnet. Innerhalb der Bodenregionen lassen sich jeweils durch Einengung der Geofaktoren (Gestein, Relief, Wasserhaushalt, Klima) zunehmend homogenere Bodenareale bilden. Die Gliederung der Bodengroßlandschaften richtet sich nach der geologischmorphologischen Struktur. In der Geest beruht diese im Wesentlichen auf der Abfolge in der glazialen Serie und dem maritim-kontinentalen Klimawandel. In der Bergvorlandregion werden lössfreie und lössbedeckte Großlandschaften unterschiedlicher Reliefausprägung (eben bis flachwellig, hügelig) abgetrennt. Die Bodengroßlandschaften des Berglandes unterscheiden sich aufgrund der Reliefausprägung. Die Bodenregionen des Mittelgebirges und der Küste werden nicht in Bodengroßlandschaften unterteilt.
Der modifizierte Bodenfeuchte-Index (BFi) stellt ein Maß für die reliefbedingten, potentiellen Feuchteverhältnisse des Bodens dar. Er errechnet sich einerseits aus dem komplexen Reliefparameter Einzugsgebietsgröße, also der potentiell durch Abfluss zur Verfügung stehenden Wassermenge und andererseits aus dem lokalen Reliefparameter Neigung. Die Neigung steuert die Fließgeschwindigkeit und damit die Verweildauer des abfließenden Wassers. Weitere Details zum Verfahren (ohne Modifikation) finden sich bei BÖHNER & KÖTHE (2003). Der modifizierte Bodenfeuchte-Index ist ein leistungsfähiger Reliefparameter. Es gelingt u.a., dass breite Talböden einen einheitlichen hohen Bodenfeuchte-Index aufweisen und nicht wie z.B. bei MOORE et al. (1993) hohe Indizes nur auf die schmalen Abflusslinien in den Talböden konzentriert bleiben (vgl. BÖHNER & KÖTHE 2003). Die Modifikation des Bodenfeuchte-Index besteht in erster Linie in der Gewichtung der Hangneigung. Der verwendete Gewichtungsfaktor beträgt den Wert 2 (Standardwert ist 1). Der relativ hohe Gewichtungsfaktor 2 führt zwar dazu, dass im Bergland der Bodenfeuchte-Index recht undifferenziert ist und bereits die Endmoränen der Geest ähnlich geringe Werte wie das Bergland aufweisen. Dafür sind aber alle sehr flach geneigten Gebiete stark differenziert. Da Niedersachsen überwiegend ein flach geneigtes Relief aufweist und da der Zusammenhang Boden -Relief in grundwassernahen Standorten i.d.R. stärker ist, wurde sich für einen hohen Gewichtungsfaktor entschieden. BÖHNER, J. & KÖTHE, R. (2003): Bodenregionalisierung und Prozeßmodellierung: Instrumente für den Bodenschutz. – Peterm. Geogr. Mitt., 147, 2003/3: 72-82; Gotha.
Als Subrosion wird die unterirdische Auslaugung und Verfrachtung von meist leichtlöslichem Gestein bezeichnet. Subrodierbar sind chemische Sedimente, wie die leichtlöslichen Chloride Steinsalz und Kalisalz, Sulfatgesteine wie Gips und Anhydrit (Sulfatkarst) und auch die schwerer löslichen Karbonatgesteine z.B. Kalkstein (Karbonatkarst). Die meisten Schäden in Niedersachsen sind auf die Auslaugung von Sulfatgesteinen zurückzuführen. Bei der Subrosion ist zwischen regulärer und irregulärer Auslaugung zu unterscheiden. Eine reguläre Auslaugung findet flächenhaft an der Oberfläche des subrodierbaren Gesteins statt und führt zu weitspannigen, meist geringen Senkungen des Geländes. Eine irreguläre Auslaugung konzentriert sich auf einen kleinräumigen, eng begrenzten Bereich und kann zur Entstehung von Höhlen, Schlotten oder Gerinnen führen. Sie schreitet im Festgestein vor allem entlang von Klüften oder Fugen im Gestein voran. Daher sind aufgelockerte Gebirgsbereiche in tektonischen Störungszonen auch meist Bereiche intensiver Subrosion. Wird die Grenztragfähigkeit des über einem Hohlraum liegenden Gebirges überschritten, kann dieser Hohlraum verstürzen und bis zur Erdoberfläche durchbrechen (Erdfall). Die Schichtmächtigkeit des löslichen Gesteines und damit die mögliche Größe eines Hohlraumes sind maßgeblich für die Größe des Einbruchs an der Geländeoberfläche. Etwa 50 Prozent der Erdfälle haben in Niedersachsen einen Durchmesser bis zwei Meter und bei ungefähr 40 Prozent liegt der Durchmesser zwischen zwei und fünf Metern. Obwohl diese Durchmesser recht klein erscheinen, können die Auswirkungen auf Bauwerke sehr groß sein. In der Karte ISH50 wurde auf Basis des Geotektonischen Atlas von Nordwestdeutschland 1:100.000 Salzstockhochlagen gekennzeichnet, in denen Salzgesteine oberhalb von -200 m NN – in wenigen Ausnahme oberhalb von -300 m NN – auftreten und von Grundwasser führenden Schichten umgeben sind. Hier können durch Auslaugung im Bereich des Salzspiegels flächenhafte Senkungen und durch Auslaugung im Bereich des Gipshutes Erdfälle entstehen. Die in der Karte dargestellten Informationen ersetzen keine Baugrunduntersuchung gemäß DIN EN 1997-2 (DIN 4020).
In der Bodenübersichtskarte im Maßstab 1 : 500 000 (BÜK500) werden die wichtigsten Bodentypen und ihre Vergesellschaftung auf Basis der Bodenlandschaften, Bodengroßlandschaften und Bodenregionen dargestellt. Die räumliche Verteilung von Böden zeigt in der Regel ein engräumiges Mosaik unterschiedlicher Erscheinungen und Eigenschaften. Die Verbreitung lässt sich auch bei großen Maßstäben in der Regel nur als Bodenvergesellschaftung darstellen. Die pedoregionale Gliederung soll den Rahmen für eine systematische Ordnung des räumlichen Nebeneinanders von Böden geben. Die Bodenregionen und Bodengroßlandschaften geben einen Überblick zur bodenkundlichen Gliederung des Landes und bilden die oberen Ebenen der pedoregionalen Gliederung von Niedersachsen. Die Verbreitung der Böden in Niedersachsen ist dabei nicht zufällig. Es ist leicht nachvollziehbar, dass die Böden im Bereich der ebenen Marschlandschaften sich grundsätzlich von denen der Geest, des Bergvorlandes, des Berglandes oder des Mittelgebirges (Harz) unterscheiden. Die Böden und Bodengesellschaften im Bereich der ebenen Marschlandschaften finden keine Entsprechung in der Geest, dem Bergvorland, dem Bergland oder dem Mittelgebirge (Harz). Die vorstehend angeführten Kategorien beschreiben deshalb auch bodenkundlich bedeutsame Großstrukturen und werden als die Bodenregionen Niedersachsens bezeichnet. Innerhalb der Bodenregionen lassen sich jeweils durch Einengung der Geofaktoren (Gestein, Relief, Wasserhaushalt, Klima) zunehmend homogenere Bodenareale bilden. Die Gliederung der Bodengroßlandschaften richtet sich nach der geologischmorphologischen Struktur. In der Geest beruht diese im Wesentlichen auf der Abfolge in der glazialen Serie und dem maritim-kontinentalen Klimawandel. In der Bergvorlandregion werden lössfreie und lössbedeckte Großlandschaften unterschiedlicher Reliefausprägung (eben bis flachwellig, hügelig) abgetrennt. Die Bodengroßlandschaften des Berglandes unterscheiden sich aufgrund der Reliefausprägung. Die Bodenregionen des Mittelgebirges und der Küste werden nicht in Bodengroßlandschaften unterteilt.
Als Subrosion wird die unterirdische Auslaugung und Verfrachtung von meist leichtlöslichem Gestein bezeichnet. Subrodierbar sind chemische Sedimente, wie die leichtlöslichen Chloride Steinsalz und Kalisalz, Sulfatgesteine wie Gips und Anhydrit (Sulfatkarst) und auch die schwerer löslichen Karbonatgesteine z.B. Kalkstein (Karbonatkarst). Die meisten Schäden in Niedersachsen sind auf die Auslaugung von Sulfatgesteinen zurückzuführen. Bei der Subrosion ist zwischen regulärer und irregulärer Auslaugung zu unterscheiden. Eine reguläre Auslaugung findet flächenhaft an der Oberfläche des subrodierbaren Gesteins statt und führt zu weitspannigen, meist geringen Senkungen des Geländes. Eine irreguläre Auslaugung konzentriert sich auf einen kleinräumigen, eng begrenzten Bereich und kann zur Entstehung von Höhlen, Schlotten oder Gerinnen führen. Sie schreitet im Festgestein vor allem entlang von Klüften oder Fugen im Gestein voran. Daher sind aufgelockerte Gebirgsbereiche in tektonischen Störungszonen auch meist Bereiche intensiver Subrosion. Wird die Grenztragfähigkeit des über einem Hohlraum liegenden Gebirges überschritten, kann dieser Hohlraum verstürzen und bis zur Erdoberfläche durchbrechen (Erdfall). Die Schichtmächtigkeit des löslichen Gesteines und damit die mögliche Größe eines Hohlraumes sind maßgeblich für die Größe des Einbruchs an der Geländeoberfläche. Etwa 50 Prozent der Erdfälle haben in Niedersachsen einen Durchmesser bis zwei Meter und bei ungefähr 40 Prozent liegt der Durchmesser zwischen zwei und fünf Metern. Obwohl diese Durchmesser recht klein erscheinen, können die Auswirkungen auf Bauwerke sehr groß sein. In der Karte IEG50 sind Gebiete dargestellt, in denen eine flächenhafte Gefährdung durch Erdfälle besteht. Die in der Karte dargestellten Informationen ersetzen keine Baugrunduntersuchung gemäß DIN EN 1997-2 (DIN 4020).
Origin | Count |
---|---|
Bund | 1435 |
Land | 209 |
Type | Count |
---|---|
Ereignis | 13 |
Förderprogramm | 1260 |
Messwerte | 1 |
Taxon | 47 |
Text | 136 |
Umweltprüfung | 7 |
unbekannt | 153 |
License | Count |
---|---|
closed | 271 |
open | 1313 |
unknown | 33 |
Language | Count |
---|---|
Deutsch | 1601 |
Englisch | 475 |
Resource type | Count |
---|---|
Archiv | 17 |
Bild | 17 |
Datei | 20 |
Dokument | 82 |
Keine | 1163 |
Multimedia | 2 |
Unbekannt | 1 |
Webdienst | 37 |
Webseite | 375 |
Topic | Count |
---|---|
Boden | 1613 |
Lebewesen & Lebensräume | 1617 |
Luft | 948 |
Mensch & Umwelt | 1594 |
Wasser | 1091 |
Weitere | 1577 |