API src

Found 436 results.

Related terms

Störfall im AKW Unterweser

Bei der Suche nach einem Leck im Turbinenölsystem kam es durch einen Fehler des Personals zu einem rapiden Druckanstieg im Dampferzeuger. Bei der nötigen Schnellabschaltung stellte sich heraus, dass sich ein fälschlicherweise per Hand geschlossenes Ventil nicht öffnen lies. Es trat keine Radioaktivität aus. Die Panne wurde auf der 7-stufigen INES-Skala in die Kategorie 2 eingestuft. (Quelle:Greenpeace)

Markt für Cyclohexan

technologyComment of cyclohexane production (RER, RoW): Over 90 % of all cyclohexane is produced commercially by hydrogenation of benzene. A small amount is produced by superfractionation of the naphtha fraction from crude oil. Naturally occurring cyclohexane can be supplemented by fractionating methylcyclopentane from naphtha and isomerizing it to cyclohexane. Hydrogenation of benzene: Benzene can be hydrogenated catalytically to cyclohexane in either the liquid or the vapor phase in the presence of hydrogen. Several cyclohexane processes, which use nickel, platinum, or palladium as the catalyst, have been developed. Usually, the catalyst is supported, e.g., on alumina, but at least one commercial process utilizes Raney nickel. Hydrogenation proceeds readily and is highly exothermic (Δ H500K = – 216.37 kJ/mol). From an equilibrium standpoint, the reaction temperature should not exceed 300 °C. Above this, the equilibrium begins to shift in favor of benzene so that high-purity cyclohexane cannot be produced. As a result of these thermodynamic considerations, temperature control of the reaction is critical to obtaining essentially complete conversion of benzene to cyclohexane. Temperature control requires economic and efficient heat removal. This has been addressed in a number of ways by commercial processes. The earlier vapor-phase processes used multistage reactors with recycle of cyclohexane as a diluent to provide a heat sink, staged injection of benzene feed between reactors, and interstage steam generators to absorb the exothermic heat of hydrogenation. In the 1970s processes have been developed that use only one reactor or a combination of a liquid-and a vaporphase reactor. The objectives of the later processes were to reduce capital cost and improve energy utilization. However, all of the commercial processes have comparably low capital cost and good energy efficiency. In the vapor-phase process with multistage reactors in series, the benzene feed is divided and fed to each of the first two reactors. Recycled cyclohexane is introduced to the first reactor along with hydrogen. The recycled cyclohexane enables higher conversion in the reactors by absorbing part of the heat of hydrogenation. Steam generators between the reactors remove the heat of hydrogenation. The outlet temperature of the last reactor is controlled to achieve essentially 100 % conversion of benzene to cyclohexane. The effluent from the last reactor is cooled, and the vapor and liquid are separated. Part of the hydrogen-rich vapor is recycled to the first reactor, and the rest is purged to fuel gas or hydrogen recovery facilities. The liquid from the separator goes to a stabilizer where the overhead gas is sent to fuel gas; the remaining material is cyclohexane product, part of which is recycled to the first reactor. In the process with liquid- and vapor-phase reactors, benzene and hydrogen are fed to the liquid-phase reactor, which contains a slurry of finely divided Raney nickel. Temperature is maintained at 180 – 190 °C by pumping the slurry through a steam generator and by vaporization in the reactor. Roughly 95 % of the benzene is converted in this reactor. The vapor is fed to a fixed-bed reactor where the conversion of benzene is completed. The effluent from the fixed-bed reactor is processed as described previously for the vapor-phase process. Benzene hydrogenation is done typically at 20 – 30 MPa. The maximum reactor temperature is limited to ca. 300 °C so that a typical specification of < 500 mg/kg benzene and < 200 mg/kg methylcyclopentane in the product can be achieved. This is necessary because of the thermodynamic equilibrium between cyclohexane – benzene and cyclohexane – methylcyclopentane. Actually, equilibrium strongly favors methylcyclopentane, but the isomerization reaction is slow enough with the catalysts employed to avoid a problem if the temperature is controlled. The hydrogen content of the makeup hydrogen has no effect on product purity but it does determine the makeup, recycle, and purge gas rates. Streams with as low as 65 vol % hydrogen can be used. Carbon monoxide and sulfur compounds are catalyst deactivators. Both can be present in the hydrogen from catalytic naphtha reformers or ethylene units, which are typical sources of makeup hydrogen. Therefore, the hydrogen-containing stream is usually passed through a methanator to convert carbon monoxide to methane and water. Prior to methanation, hydrogen-containing gas can be scrubbed with caustic to remove sulfur compounds. Commercial benzene contains less than 1 mg/kg sulfur. In some cases, the recycle gas is also scrubbed with caustic to prevent buildup of hydrogen sulfide from the small amount of sulfur in the benzene. With properly treated hydrogen and specification benzene, a catalyst life in excess of three years can be achieved easily in fixed-bed reactors that use noble-metal catalysts supported on a base. The catalyst in the process that uses Raney nickel in suspension is reported to have a typical life of about six months before it must be replaced. Reference: Campbell, M. L. 2011. Cyclohexane. Ullmann's Encyclopedia of Industrial Chemistry.

Heat recovery in the production of phosphoric acid

Das Projekt "Heat recovery in the production of phosphoric acid" wird vom Umweltbundesamt gefördert und von BK Ladenburg GmbH durchgeführt. Objective: The combustion of yellow phosphorus generates 24,350 kJ of heat per kg of the substance. The large-scale production of phosphoric acid involves the combustion of yellow phosphorus. The considerable amounts of heat generated in this process have been evacuated by means of cooling water. The project suggests to utilize this heat, in the future, for the generation of steam and to have it converted into electric power. This process-heat recovery enables considerable savings of primary energy (coal, oil, gas). General Information: The heat generated by the large-scale combustion of phosphorus is absorbed, in an acid tower, by recirculating acid. The recirculating acid then releases the heat previously absorbed into a heat exchanger (cooling water). The amounts of heat thus transferred are subsequently released, mainly in the form of steam, from the cooling tower into the atmosphere. Now, the new method suggests an upstream combustion chamber before the acid tower, thus utilizing a major part of the heat generated in the combustion of yellow phosphorus for the production of energy. The new method represents an energy-recovery process on a very high temperature level, with the possibility to produce high-pressure to medium-pressure steam with subsequent power/heat coupling. The estimated energy generation, at 8000 hours, would be as follows: Steam 15 t/h = 120,000 t/a with steam-pressure reduction from 80 bars/550 degree of Celsius to 40 bars/450 degree of Celsius. Electric power: 550 kWh = 4,400 mWh/a. Achievements: The project cannot be carried on, for the following reasons: - The capital expense (investment), in view of the actual cost level, will be approx. 30-40 per cent higher than estimated at the time of submission. - The capital payback period, due to the price decline for primary energy, will be excessively long (7 years); longer than there is an assured supply of phosphorus. - Since 1985, in view of a modified strategy, our company has increased its efforts to manufacture speciality products rather than to produce mass phosphates (commodities); this will lead to a reduced demand of phosphorus in the future. - A drastic collapse, since early 1986, in the sale of phosphate salts used in washing powers, detergents, and cleaning agents, will further reduce the amounts of phosphorus needed in the manufacture of our product line. - A major aspect of the project was the purchase of energy by Joh. A. Benckiser, with whom we have a joint network. Joh. A. Benckiser are no longer prepared to purchase any such energy.

Solar waermegewinnungsanlage 1 Tonne Dampf/pro Stunde bei 190 Grad c (M.A.N.-Agip-Nucleare)

Das Projekt "Solar waermegewinnungsanlage 1 Tonne Dampf/pro Stunde bei 190 Grad c (M.A.N.-Agip-Nucleare)" wird vom Umweltbundesamt gefördert und von Maschinenfabrik Augsburg-Nürnberg, Bereich Neue Technologie durchgeführt. Im Rahmen der Ausschreibung 'Demonstrationsvorhaben im Bereich der Sonnenenergie' der Kommission der Europaeischen Gemeinschaften wird von ACIP-Nucleare (Italien) und M.A.N. - neue Technologie eine Solar-Farm-Anlage zur Erzeugung von 1 Tonne Dampf/h von 190 Grad Celsius in Pisticci/Sueditalien errichtet werden. Die solare Prozesswaermeanlage wird parallel zu vorhandenen leichtoelbefeuerten Dampferzeugern zur Brennstoffeinsparung betrieben. 54 Kollektoren vom Typ Helioman 3/32 erhitzen Thermooel, das ueber einen Waermetauscher Frischdampf von 190 Grad Celsius erzeugt. Der Dampf wird in einer petrochemischen Fabrik der ENI-Gruppe als Prozessdampf verwendet, die den Grund fuer die Anlage zur Verfuegung stellt und dieselbe nach Inbetriebnahme betreibt. Die Arbeiten werden zu ca. 50 v.H. von M.A.N. bzw. ACIP-Nucleare uebernommen.

Westfleisch Finanz AG - keine UVP

Die Westfleisch Finanz AG, Fridtjof-Nansen-Weg 5a, 48155 Münster hat mit Datum vom 13.06.2023 einen Antrag zur Änderung und zum Betrieb einer Anlage zum Schlachten von Tieren am Standort Stockum 2 , 48653 Coesfeld vorgelegt. Gegenstand des Antrags ist der Betrieb eines Kombi Dampfkessels im Außenbereich des Betriebs-geländes.

Solaranlage zur Prozesswaermeerzeugung mit einer Leistung von 1 Tonne Dampf/Std bei 6 Bar

Das Projekt "Solaranlage zur Prozesswaermeerzeugung mit einer Leistung von 1 Tonne Dampf/Std bei 6 Bar" wird vom Umweltbundesamt gefördert und von MAN Technologie GmbH durchgeführt. Objective: The project involved the design, construction and operation of a solar plant at Pisticci to produce process steam at a temperature of 180 degree C. and at a pressure of 6 bar with a nominal output of 1 t/h. The aim of the project was: - to demonstrate the operation of a solar process heat generation plant for industrial purposes under realistic operating conditions and - to obtain improved data relating to costs, production, maintenance and reliability of this technology for future commercial applications. General Information: The project is a German-Italian venture executed by Agip Nucleare and M.A.N. and deals with the construction of a solar process steam generation installation. The plant is located at Anic Fibre's chemical factory in Pisticci, Italy. It is equipped with 54 concentrating solar collectors of the type Helioman 3, a double axis tracking collector with concentrating parabolic troughs. The solar field is arranged in 9 loops with 6 collectors each. The production will be 1 ton/hour steam of 180 deg C at 6 bars with a direct solar irradiation of 920w/m2. Effective mirror surface is 32 m2 per collector giving a total of 1,728 m2. Oil, 'Marlotherms', was used as the heating medium reaching average temperatures of 200 degree C. The plant operates on the basis of 'a fuel saving mode' whereby a maximum of available solar energy is utilised. The produced steam is fed without buffer or storage via a pressure regulating valve into the steam header of the conventional system. The collector field is operated with a nearly constant normal thermal oil mass flow of 16 200 kg/h employing a minimum of controls and instrumentation. A drum-type steam generator with super heater and live steam bypass control are installed in the system for steam generation. It is possible to preheat the thermal oil in the expansion vessel and steam generator with the steam obtained from the main line. Achievements: Official acceptance and transfer for test operation of the plant took place on 16.04.84. Apart from slight difficulties with regard to the control of the feed water supply, commissioning which was completed prior to this date presented no serious problems. With regard to the absolute output of the collector field and the tendency towards higher radiation values, the measured results obtained at Pisticci indicate close agreement with theory. Beginning at 350 W/m2 a field output of 200 kW is achieved which increases to 700-800 kW at 850 W/m2. The MAN collector field performance was in accordance with original expectations. Field temperatures: 235 - 240 C. Steam production: 790 kg/h (175 C and 6 bar). (The steam is slightly superheated). Insolation: 760-880 W/m2. Efficiency: approx. 55 per cent. Thus on expiry of a 4 months' extended operation period the project was terminated as a technical success. The biaxial tracking technology used for the HELIOMAN 3/32 collectors has been proved to such an extent that the main parts could be retained on ...

Einhaltung der TA-Luft bei Dampfkesseln der 5-MW-Klasse durch neue Technologien

Das Projekt "Einhaltung der TA-Luft bei Dampfkesseln der 5-MW-Klasse durch neue Technologien" wird vom Umweltbundesamt gefördert und von APC Angewandte Physik Consulting GmbH durchgeführt.

Bekanntmachung gemäß § 5 UVPG-Ruhr Oel GmbH

Die Firma Ruhr Oel GmbH, Alexander-von-Humboldt-Str. 1 in 45896 Gelsenkirchen hat die Genehmigung zur wesentlichen Änderung einer Anlage zur Dampferzeugung auf dem Grundstück Johannastr. 2-8 in 45899 Gelsenkirchen (Gemarkung Horst, Flur 3, Flurstück 53) beantragt. Gegenstand des Antrages ist der Anschluss von Atmungsgasen aus drei Tanken im Tanklager Linnebrink an die Dampfkessel.

EnBW Contracting GmbH, Stuttgart

Die Firma EnBW Contracting GmbH, 70567 Stuttgart, Schelmenwasenstraße 15, hat mit Schreiben vom 07.12.2023 die Erteilung einer Genehmigung gemäß § 4 i. V. m. § 19 BImSchG für die Errichtung und den Betrieb einer Dampfzentrale bestehend aus drei bivalent gefeuerten Dampfkesseln sowie eines Holzheizwer-kes mit einem weiteren Dampfkessel am Standort in 30926 Seelze, Wunstorfer Straße 40, Gemarkung Seel-ze, Flur 1, Flurstück 39 beantragt.

Statkraft Markets GmbH, Kraftwerk Emden

Die Firma Statkraft Markets GmbH betreibt das Kraftwerk Emden. Die genehmigte Feuerungs-anlage „Block IV“ im Kraftwerk Emden besteht aus einem Dampfkessel (FWL 858,3 MW) mit nachgeschalteter Dampfturbine und einer Gasturbine (FWL 175,7 MW). Die Gasturbine kann sowohl als Frischlüfter für den Kessel (Kombibetrieb / im Durchfahrbetrieb ohne Begrenzung der Betriebszeit) als auch eigenständig betrieben werden (Solobetrieb - Betriebszeiten auf 88 h/a be-grenzt). Am 30.09.2019 wurde die Genehmigung zur wesentlichen Änderung des Betriebs durch - eine Erhöhung der Betriebszeit der Gasturbine (175,5 MW FWL) für fünf Jahre auf 1.500 h/a und - ein Nichtbetrieb des Kessels IV (858,3 MW) für die Teilnahme am Kapazitätsreservemarkt beantragt.

1 2 3 4 542 43 44