API src

Found 71 results.

Related terms

Chem-Anorg\H2-DE-2010

Wasserstoffherstellung: Das industrielle Verfahren zur Wasserstoffherstellung beruht auf dem katalytischen Reformieren (Nickel-Katalysatoren) von Erdgas mit Wasserdampf. Bei diesem Prozeß erfolgt eine Dampfspaltung (steam reforming) des Erdgases (Methan). Methan wird dabei in Reaktoren bei Temperaturen von ca. 850 §C zu Wasserstoff (H2) und Kohlenmonoxid umgesetzt. Nach der Umsetzung wird das Gas schnell abgekühlt, wobei gleichzeitig Prozeßdampf gebildet wird. In einer Folgereaktion reagiert das Kohlenmonoxid und überschüssiges Wasser mit Hilfe eines Katalysators zu weiterem Wasserstoff und Kohlendioxid. Daran schließt sich eine CO2-Entfernung und die Isolierung von Wasserstoff an [CO2-Druckwäsche (Weissermel 1994); PSA, pressure swing adsorption (Ullmann 1989a)]. Wasserstoff (H2) wird heute in erster Linie aus Kohlenwasserstoffen gewonnen. Daneben gibt es noch kohlechemische und elektrochemische Prozesse, die aber von geringerer Bedeutung sind [siehe Tabelle 1, (Weissermel 1994)]. Tabelle 1: Verfahren zur Wasserstofferzeugung Welt-H2-Erzeugung 1988 (in Gew.-%) Rohöl/Erdgas-Spaltung 80 Kohlevergasung 16 Elektrolysen/Sonstige 4 gesamt (in Mio. t) ca. 45 Der wichtigste Rohstoff zur Erzeugung von H2 ist Erdgas, aber auch Naphtha und andere Rückstände der Petrochemie werden eingesetzt (Ullmann 1989a). Die Bilanzierung der vorliegenden Kennziffern erfolgt auf der Annahme, daß Wasserstoff zu 100 % aus Erdgas synthetisiert wird. Für die Bilanzierung des Prozesses wurde eine Studie der Arbeitsgemeinschaft Kunststoff (DSD 1995), die Ökoinventare für Energiesysteme (ETH 1995) und Daten aus (Ullmann 1989a) ausgewertet. Da in (DSD 1995) die ausführlichsten Daten vorliegen, wurden diese für die Berechnung der Kennziffern verwendet. Es wird angenommen, daß die dortigen Angaben sich auf die H2-Herstellung in Westeuropa in den 90er Jahren beziehen. Die Massen- und Energiebilanz ist vom verwendeten Rohstoff abhängig, somit ist eine Übertragung der Kennziffern auf andere Einsatzstoffe oder auch Produktionsverfahren nicht möglich. Allokation: keine Genese der Kennziffern: Massenbilanz: Zur Herstellung von Wasserstoff wird als Rohstoff Erdgas (1990 kg/t H2) und Wasser (4468 kg/t H2) benötigt (DSD 1995). Als weiteres Reaktionsprodukt der chemischen Umsetzung von Erdgas entseht neben H2 auch Kohlendioxid (5458 kg CO2/t H2). Da CO2 kein verwertbares Produkt darstellt, wird es den prozeßbedingten Luftemissionen zugerechnet. Im Vergleich zu den obigen Angaben wird bei (Ullmann 1989a) für eine typische Steamreformer-Anlage ein Erdgasbedarf von 2160 m3 für die Erzeugung von 5000 m3 Wasserstoff (jeweils bei 0 §C und 101,325 kPa) - bzw. umgerechnet 3439 kg Erdgas/t H2 - aufgeführt. (ETH 1995) wiederum gibt einen Erdgasbedarf von 121 MJ/kg H2 (umgerechnet 2881 kg/t H2) an. Die Angaben aus (DSD 1995), (ETH 1995) und (Ullmann 1989a) zeigen deutliche Abweichungen voneinander. Da bei (DSD 1995) die vollständigste Bilanz vorliegt, werden diese Daten übernommen. Es wird angenommen, daß der unterschiedliche Rohstoffbedarf bei den verschiedenen Literaturquellen dadurch zustande kommt, daß die Wasserstoffherstellung je nach Prozeßführung auf eine maximale Produktion an Prozeßdampf, minimalen Einsatz von Erdgas , etc. optimiert werden kann. Energiebedarf: Für den Prozeß der Wasserstofferzeugung wird insgesamt eine Energiemenge von 49,25 MJ/kg H2 benötigt. 47,25 MJ des Gesamtenergiebedarfs werden durch die Verbrennung von Erdgas bereitgestellt. Davon entfallen wiederum 18,144 MJ auf die Dampferzeugung und 8,645 MJ auf die CO2-Druckwäsche. An elektrischer Energie werden 2,0 MJ Energie verbraucht (DSD 1995). Im Vergleich dazu wird der Prozeßenergiebedarf bei (ETH 1995) mit 3,47 MJ/kg elektrischer Energie, 26,55 MJ/kg Heizöl S (Industriefeuerung) und 17,8 Erdgas (Industriefeuerung) angegeben (Summe 47,82 MJ/kg). Der Energiebedarf bei (DSD 1995) und (ETH 1995) zeigt eine sehr gute Übereinstimmung. Es werden die Daten aus (DSD 1995) für GEMIS übernommen. Prozeßbedingte Luftemissionen: Nach (Ullmann 1989a) entstehen beim steam reforming 0,25 mol CO2 pro mol H2 (Methan und Wasser werden zu Wasserstoff und Kohlendioxid umgesetzt). Dieser Wert ist identisch mit der Angabe aus (DSD 1995) von 5,458 kg CO2 pro kg Wasserstoff. Es konnten keine weiteren prozeßspezifischen Daten zu den Emissionen ermittelt werden. Diese sind im Vergleich zu den Emissionen, die durch den Energieverbrauch entstehen, relativ gering (ETH 1995). Wasser: Neben dem Erdgas dient auch Wasser als Rohstoff zur H2-Erzeugung (Reduktion von H2O zu H2). Für die chemische Reaktion werden 4,468 kg H2O pro kg H2 benötigt (DSD 1995). Es kann jedoch davon ausgegangen werden, daß beim Herstellungsprozeß ein Überschuß an Wasserdampf eingesetzt wird. Da hierüber - ebenso wie zum Kühlwasserbedarf - keine Angaben vorliegen, wird der Wert von 4,468 kg Wasser als Kennziffer verwendet. Angaben zu Abwasserwerten und Reststoffen liegen nicht vor. Auslastung: 5000h/a Brenn-/Einsatzstoff: Brennstoffe-fossil-Gase gesicherte Leistung: 100% Jahr: 2010 Lebensdauer: 20a Leistung: 1MW Nutzungsgrad: 143% Produkt: Brennstoffe-Sonstige

Chem-Anorg\H2-DE-2015

Wasserstoffherstellung: Das industrielle Verfahren zur Wasserstoffherstellung beruht auf dem katalytischen Reformieren (Nickel-Katalysatoren) von Erdgas mit Wasserdampf (Dampfspaltung - steam reforming - von Methan). Methan wird dabei in Reaktoren bei Temperaturen von ca. 850 °C zu Wasserstoff (H2) und Kohlenmonoxid (CO) umgesetzt. Danach wird das Gas schnell abgekühlt, wobei Prozessdampf entsteht. In einer Folgereaktion reagieren CO und überschüssiges Wasser mit Hilfe eines Katalysators zu weiterem Wasserstoff und Kohlendioxid. Daran schließt sich eine CO2-Entfernung und die Isolierung von Wasserstoff an [CO2-Druckwäsche (Weissermel 1994); PSA, pressure swing adsorption (Ullmann 1989a)]. Der wichtigste Rohstoff zur Erzeugung von H2 ist Erdgas (Ullmann 1989a). Die Bilanzierung der vorliegenden Kennziffern erfolgt auf der Annahme, daß Wasserstoff zu 100 % aus Erdgas synthetisiert wird. Für die Bilanzierung des Prozesses wurde eine Studie der Arbeitsgemeinschaft Kunststoff (DSD 1995), die Ökoinventare für Energiesysteme (ETH 1995) und Daten aus (Ullmann 1989a) ausgewertet. Da in (DSD 1995) die ausführlichsten Daten vorliegen, wurden diese für die Berechnung der Kennziffern verwendet. Es wird angenommen, daß die dortigen Angaben sich auf die H2-Herstellung in Westeuropa in den 90er Jahren beziehen. Die Massen- und Energiebilanz ist vom verwendeten Rohstoff abhängig, somit ist eine Übertragung der Kennziffern auf andere Einsatzstoffe oder auch Produktionsverfahren nicht möglich. Allokation: keine Massenbilanz: Zur Herstellung von Wasserstoff wird als Rohstoff Erdgas (1990 kg/t H2) und Wasser (4468 kg/t H2) benötigt (DSD 1995). Als weiteres Reaktionsprodukt der chemischen Umsetzung von Erdgas entseht neben H2 auch Kohlendioxid (5458 kg CO2/t H2). Da CO2 kein verwertbares Produkt darstellt, wird es den prozeßbedingten Luftemissionen zugerechnet. Im Vergleich zu den obigen Angaben wird bei (Ullmann 1989a) für eine typische Steamreformer-Anlage ein Erdgasbedarf von 2160 m3 für die Erzeugung von 5000 m3 Wasserstoff (jeweils bei 0 §C und 101,325 kPa) - bzw. umgerechnet 3439 kg Erdgas/t H2 - aufgeführt. (ETH 1995) wiederum gibt einen Erdgasbedarf von 121 MJ/kg H2 (umgerechnet 2881 kg/t H2) an. Die Angaben aus (DSD 1995), (ETH 1995) und (Ullmann 1989a) zeigen deutliche Abweichungen voneinander. Da bei (DSD 1995) die vollständigste Bilanz vorliegt, werden diese Daten übernommen. Es wird angenommen, daß der unterschiedliche Rohstoffbedarf bei den verschiedenen Literaturquellen dadurch zustande kommt, daß die Wasserstoffherstellung je nach Prozeßführung auf eine maximale Produktion an Prozeßdampf, minimalen Einsatz von Erdgas , etc. optimiert werden kann. Energiebedarf: Für den Prozeß der Wasserstofferzeugung wird insgesamt eine Energiemenge von 49,25 MJ/kg H2 benötigt. 47,25 MJ des Gesamtenergiebedarfs werden durch die Verbrennung von Erdgas bereitgestellt. Davon entfallen wiederum 18,144 MJ auf die Dampferzeugung und 8,645 MJ auf die CO2-Druckwäsche. An elektrischer Energie werden 2,0 MJ Energie verbraucht (DSD 1995). Im Vergleich dazu wird der Prozeßenergiebedarf bei (ETH 1995) mit 3,47 MJ/kg elektrischer Energie, 26,55 MJ/kg Heizöl S (Industriefeuerung) und 17,8 Erdgas (Industriefeuerung) angegeben (Summe 47,82 MJ/kg). Der Energiebedarf bei (DSD 1995) und (ETH 1995) zeigt eine sehr gute Übereinstimmung. Es werden die Daten aus (DSD 1995) für GEMIS übernommen. Prozessbedingte Luftemissionen: Nach (Ullmann 1989a) entstehen beim steam reforming 0,25 mol CO2 pro mol H2 (Methan und Wasser werden zu Wasserstoff und Kohlendioxid umgesetzt). Dieser Wert ist identisch mit der Angabe aus (DSD 1995) von 5,458 kg CO2 pro kg Wasserstoff. Wasser: Neben dem Erdgas dient auch Wasser als Rohstoff zur H2-Erzeugung (Reduktion von H2O zu H2). Für die chemische Reaktion werden 4,468 kg H2O pro kg H2 benötigt (DSD 1995). Es kann jedoch davon ausgegangen werden, daß beim Herstellungsprozeß ein Überschuß an Wasserdampf eingesetzt wird. Da hierüber - ebenso wie zum Kühlwasserbedarf - keine Angaben vorliegen, wird der Wert von 4,468 kg Wasser als Kennziffer verwendet. Angaben zu Abwasserwerten und Reststoffen liegen nicht vor. Auslastung: 5000h/a Brenn-/Einsatzstoff: Brennstoffe-fossil-Gase gesicherte Leistung: 100% Jahr: 2015 Lebensdauer: 20a Leistung: 1MW Nutzungsgrad: 143% Produkt: Brennstoffe-Sonstige

Chem-Org\Methanol-DE-2015/en

Methanolherstellung durch Steamreforming von Erdgas. Die industrielle Methanolproduktion kann in die drei Hauptschritte: · Produktion von Synthesegas · Synthese von Methanol · Aufarbeitung des Rohmethanols untergliedert werden. Beim ersten Prozessschritt erfolgt eine katalytische Dampfspaltung (steam reforming) des Erdgases (Methan). Methan wird dabei mit Wasserdampf in einem Reaktor unter Ausschluß von Sauerstoff zu Wasserstoff (H2) und Kohlenmonoxid (CO) umgesetzt. Um das für eine Methanolsynthese erforderliche Synthesegas-Verhältnis zwischen H2 und CO von 2,2 bis 2,3 einzustellen, wird dem Erdgas CO2 zugesetzt. Das so hergestellte Synthesegas wird komprimiert und bei Drücken von 50 bis 100 bar (Niederdruckverfahren) und Katalysatoren in einem weiteren Reaktor zu Methanol umgewandelt. Das entstandene Rohmethanol wird destillativ in einer Leichtsiederkolonne von leichtflüchtigen Nebenprodukten abgetrennt. Durch eine weitere Destillation in der Schwersiederkolonne erfolgt die endgültige Reinigung des Produkts. Weniger als 2 Mio. Tonnen der derzeitigen weltweiten Herstellungskapazität von ca 21. Mio. t (Westeuropa ca. 2 Mio. t) basieren auf einem anderen Einsatzstoff als Erdgas (Ullmann 1990a). Nach (Vriens 1994) wird der Bedarf an Methanol in Westeuropa für 1993 mit ca. 5,1 Mio. Tonnen angegeben. Wobei nur in Nordwesteuropa Methanol produziert wird (ca 2,5 Mio. t). Für Deutschland werden die Produktionskapazitäten und Einsatzstoffe gemäß den Werten in der Tabelle 1 angegeben. Tabelle 1 Produktionskapazitäten und Einsatzstoffe für die Methanolproduktion in Deutschland nach (Vriens 1994). Werk Einsatzstoff Kapazität [Mio. t/Jahr] BASF Offgas 0,30 DEA Rückstände 0,45 Leunawerke Rückstände 0,66 Veba Rückstände 0,26 Das Offgas als Einsatzstoff ist mit Erdgas vergleichbar. Bei der Methanolherstellung auf der Basis von Rückständen können Rückstandsöle aus den Raffinerien als Einsatzstoffe verwendet werden. Sämtliche Methanol-Importe und auch die restliche Methanolproduktion in Westeuropa (außer Deutschland) beruhen auf der Herstellung von Methanol aus Erdgas. Aus den obigen Angaben und der Annahme, daß die deutschen Werke zu 90 % ausgelastet sind, ergibt sich, daß der westeuropäische Methanolbedarf zu ca. 70 % aus Methanol mit Erdgas als Einsatzstoff gedeckt wird. In GEMIS wird nur die Methanolherstellung auf der Basis von Erdgas bilanziert. Verfahren die mit Rückständen als Einsatzstoffen arbeiten werden nicht berücksichtigt. Die gebildeten Kennziffern stehen für die Methanolherstellung in Westeuropa und beruhen auf Angaben zu einer Produktionsanlage Mitte der 90er Jahre. Die Bilanzierung der Methanolherstellung ist vom verwendeten Rohstoff abhängig, somit ist eine Übertragung der Kennziffern auf andere Einsatzstoffe nicht möglich. Allokation: Prozesswärme-Überschuss durch energieäquivalente Allokation Genese der Daten: - Massenbilanz: Zur Herstellung von einer Tonne Synthesegas werden als Rohstoffe Erdgas (483 kg/t) und Wasser (374 kg/t, nur für die chemische Reaktion) benötigt. Um das für die Methanolsynthese erforderliche Synthesegasverhältnis zwischen H2 und CO von 2,2 bis 2,3 einzustellen, wird dem Erdgas CO2 (283 kg/t Synthesegas, u. a. aus dem Rauchgas) zugesetzt (DSD 1995). Für die anschließende Umwandlung in Methanol ist eine Menge von 1792 kg Synthesegas/t Methanol erforderliche (Methanol 1996). Somit ergibt sich insgesamt ein Rohstoffbedarf von 760 kg Erdgas, 445 kg CO2 und 588 kg Wasser (pro Tonne Methanol). Bei der chemischen Umwandlung des Synthesegases zu Methanol entstehen außerdem pro Tonne Methanol 672 kg Purgegas (Hauptbestandteile: 52,0 Vol.-% Wasserstoff, 20,9 Vol.-% Methan und 16,0 Vol.-% Kohlenmonoxid) und als Reststoff fallen ca. 120 kg/t Fuselöle an (30 Masse-% Wasser, 54 Masse-% Methanol, 8 Masse-% Ethanol und 8 Masse-% Butanol) (Methanol 1996). Die Fuselöle werden bei GEMIS als Produktionsabfall bilanziert. Das Purgegas wird energetische alloziert (Bereitstellung von Prozeßwärme durch Verbrennung im Kessel mit einem Wirkungsgrad von 85 %). Energiebedarf: Der größte Anteil der Energie zur Synthese von Methanol entfällt auf die Synthesegasherstellung. Für die Herstellung einer Tonne Synthesegas werden 1,397 GJ elektrische Energie und weitere 7,312 GJ an Prozeßenergie benötigt (davon 1,412 GJ für Reformer-Dampf, 0,786 GJ zur Erwärmung des Erdgases und 0,104 GJ zur Erwärmung des CO2). Die Prozeßenergie wird durch die Verbrennung von Erdgas bereitgestellt wird (DSD 1995). Bei der anschließenden Umwandlung des Synthesegases zu Methanol werden 3,415 GJ an Strom eingesetzt. Weiterhin werden 1652 kg Dampf (5 bar, 155 §C; 4,645 GJ) benötigt. Durch Wärmeausnutzung entstehen dabei 912 kg Dampf (39 bar, 360 §C; 2,847 GJ), die gutgeschrieben werden (Methanol 1996). Nach Abzug der Dampfgutschrift ergibt sich insgesamt für die Herstellung einer Tonne Methanol ein Energiebedarf von ca. 18,3 GJ (14,9 GJ durch Erdgasverbrennung und 3,4 GJ elektrische Energie; die Gutschrift für das Purgegas ist dabei noch nicht berücksichtigt). Aus der Verbrennung des Purgegases (Bereitstellung von Prozeßwärme) wird eine Gutschrift von ca. 17,2 GJ/t Methanol berechnet. Wasser: Für das Reaktionsgemisch zur Herstellung des Synthesegases werden 588 kg Wasser (Reformer-Dampf) pro Tonne Methanol eingesetzt. Weitere 2474 kg Prozesswasser (u. a. für CO2-Druckwäsche) werden benötigt. Diese fallen auch als Abwasser an (DSD 1995). Der Wasserbedarf für die anschließende Methanolsynthese aus dem Synthesegas wird mit 256 kg beziffert (Methanol 1996) (da Kesselspeisewasser bzw. Dampf beim Output als Dampf bzw. Kondensat anfällt und weiterverwendet wird, wurde der Wasserbedarf hier gleich dem anfallenden Abwasser gesetzt). Als gesamte Wasserinanspruchnahme ergibt sich ein Wert von 3318 kg Wasser sowie eine Abwassermenge von 2730 kg. Umweltauswirkungen: Nebenprodukte bei der Methanolherstellung werden falls möglich weiterverwendet. Der einzige regelmäßig anfallende Abfall ist der Rückstand (Wasser, Methanol, Ethanol, höhere Alkohole, andere sauerstoffhaltige organische Verbindungen und verschiedene Mengen an Paraffinen) der Reindestillation von Methanol (Ullmann 1990a). Diese Reststoffe (in der Massenbilanz als Fuselöle bezeichnet, 120 kg/t Methanol (Methanol 1996)) werden bei GEMIS als Produktionsabfall bilanziert. Katatysatoren (Cu, Co, Ni, Mo) werden zurückgewonnen oder anderweitig verwendet (Ullmann 1990a). Quantitative Angaben zu Luftemissionen oder Abwasserwerten liegen nicht vor. Auslastung: 5000h/a Brenn-/Einsatzstoff: Brennstoffe-fossil-Gase gesicherte Leistung: 100% Jahr: 2015 Lebensdauer: 20a Leistung: 1MW Nutzungsgrad: 59% Produkt: Brennstoffe-Sonstige Verwendete Allokation: Allokation nach Energieäquivalenten

Chem-Org\Methanol-DE-2005/en

Methanolherstellung durch Steamreforming von Erdgas. Die industrielle Methanolproduktion kann in die drei Hauptschritte: · Produktion von Synthesegas · Synthese von Methanol · Aufarbeitung des Rohmethanols untergliedert werden. Beim ersten Prozessschritt erfolgt eine katalytische Dampfspaltung (steam reforming) des Erdgases (Methan). Methan wird dabei mit Wasserdampf in einem Reaktor unter Ausschluß von Sauerstoff zu Wasserstoff (H2) und Kohlenmonoxid (CO) umgesetzt. Um das für eine Methanolsynthese erforderliche Synthesegas-Verhältnis zwischen H2 und CO von 2,2 bis 2,3 einzustellen, wird dem Erdgas CO2 zugesetzt. Das so hergestellte Synthesegas wird komprimiert und bei Drücken von 50 bis 100 bar (Niederdruckverfahren) und Katalysatoren in einem weiteren Reaktor zu Methanol umgewandelt. Das entstandene Rohmethanol wird destillativ in einer Leichtsiederkolonne von leichtflüchtigen Nebenprodukten abgetrennt. Durch eine weitere Destillation in der Schwersiederkolonne erfolgt die endgültige Reinigung des Produkts. Weniger als 2 Mio. Tonnen der derzeitigen weltweiten Herstellungskapazität von ca 21. Mio. t (Westeuropa ca. 2 Mio. t) basieren auf einem anderen Einsatzstoff als Erdgas (Ullmann 1990a). Nach (Vriens 1994) wird der Bedarf an Methanol in Westeuropa für 1993 mit ca. 5,1 Mio. Tonnen angegeben. Wobei nur in Nordwesteuropa Methanol produziert wird (ca 2,5 Mio. t). Für Deutschland werden die Produktionskapazitäten und Einsatzstoffe gemäß den Werten in der Tabelle 1 angegeben. Tabelle 1 Produktionskapazitäten und Einsatzstoffe für die Methanolproduktion in Deutschland nach (Vriens 1994). Werk Einsatzstoff Kapazität [Mio. t/Jahr] BASF Offgas 0,30 DEA Rückstände 0,45 Leunawerke Rückstände 0,66 Veba Rückstände 0,26 Das Offgas als Einsatzstoff ist mit Erdgas vergleichbar. Bei der Methanolherstellung auf der Basis von Rückständen können Rückstandsöle aus den Raffinerien als Einsatzstoffe verwendet werden. Sämtliche Methanol-Importe und auch die restliche Methanolproduktion in Westeuropa (außer Deutschland) beruhen auf der Herstellung von Methanol aus Erdgas. Aus den obigen Angaben und der Annahme, daß die deutschen Werke zu 90 % ausgelastet sind, ergibt sich, daß der westeuropäische Methanolbedarf zu ca. 70 % aus Methanol mit Erdgas als Einsatzstoff gedeckt wird. In GEMIS wird nur die Methanolherstellung auf der Basis von Erdgas bilanziert. Verfahren die mit Rückständen als Einsatzstoffen arbeiten werden nicht berücksichtigt. Die gebildeten Kennziffern stehen für die Methanolherstellung in Westeuropa und beruhen auf Angaben zu einer Produktionsanlage Mitte der 90er Jahre. Die Bilanzierung der Methanolherstellung ist vom verwendeten Rohstoff abhängig, somit ist eine Übertragung der Kennziffern auf andere Einsatzstoffe nicht möglich. Allokation: Prozesswärme-Überschuss durch energieäquivalente Allokation Genese der Daten: - Massenbilanz: Zur Herstellung von einer Tonne Synthesegas werden als Rohstoffe Erdgas (483 kg/t) und Wasser (374 kg/t, nur für die chemische Reaktion) benötigt. Um das für die Methanolsynthese erforderliche Synthesegasverhältnis zwischen H2 und CO von 2,2 bis 2,3 einzustellen, wird dem Erdgas CO2 (283 kg/t Synthesegas, u. a. aus dem Rauchgas) zugesetzt (DSD 1995). Für die anschließende Umwandlung in Methanol ist eine Menge von 1792 kg Synthesegas/t Methanol erforderliche (Methanol 1996). Somit ergibt sich insgesamt ein Rohstoffbedarf von 760 kg Erdgas, 445 kg CO2 und 588 kg Wasser (pro Tonne Methanol). Bei der chemischen Umwandlung des Synthesegases zu Methanol entstehen außerdem pro Tonne Methanol 672 kg Purgegas (Hauptbestandteile: 52,0 Vol.-% Wasserstoff, 20,9 Vol.-% Methan und 16,0 Vol.-% Kohlenmonoxid) und als Reststoff fallen ca. 120 kg/t Fuselöle an (30 Masse-% Wasser, 54 Masse-% Methanol, 8 Masse-% Ethanol und 8 Masse-% Butanol) (Methanol 1996). Die Fuselöle werden bei GEMIS als Produktionsabfall bilanziert. Das Purgegas wird energetische alloziert (Bereitstellung von Prozeßwärme durch Verbrennung im Kessel mit einem Wirkungsgrad von 85 %). Energiebedarf: Der größte Anteil der Energie zur Synthese von Methanol entfällt auf die Synthesegasherstellung. Für die Herstellung einer Tonne Synthesegas werden 1,397 GJ elektrische Energie und weitere 7,312 GJ an Prozeßenergie benötigt (davon 1,412 GJ für Reformer-Dampf, 0,786 GJ zur Erwärmung des Erdgases und 0,104 GJ zur Erwärmung des CO2). Die Prozeßenergie wird durch die Verbrennung von Erdgas bereitgestellt wird (DSD 1995). Bei der anschließenden Umwandlung des Synthesegases zu Methanol werden 3,415 GJ an Strom eingesetzt. Weiterhin werden 1652 kg Dampf (5 bar, 155 §C; 4,645 GJ) benötigt. Durch Wärmeausnutzung entstehen dabei 912 kg Dampf (39 bar, 360 §C; 2,847 GJ), die gutgeschrieben werden (Methanol 1996). Nach Abzug der Dampfgutschrift ergibt sich insgesamt für die Herstellung einer Tonne Methanol ein Energiebedarf von ca. 18,3 GJ (14,9 GJ durch Erdgasverbrennung und 3,4 GJ elektrische Energie; die Gutschrift für das Purgegas ist dabei noch nicht berücksichtigt). Aus der Verbrennung des Purgegases (Bereitstellung von Prozeßwärme) wird eine Gutschrift von ca. 17,2 GJ/t Methanol berechnet. Wasser: Für das Reaktionsgemisch zur Herstellung des Synthesegases werden 588 kg Wasser (Reformer-Dampf) pro Tonne Methanol eingesetzt. Weitere 2474 kg Prozesswasser (u. a. für CO2-Druckwäsche) werden benötigt. Diese fallen auch als Abwasser an (DSD 1995). Der Wasserbedarf für die anschließende Methanolsynthese aus dem Synthesegas wird mit 256 kg beziffert (Methanol 1996) (da Kesselspeisewasser bzw. Dampf beim Output als Dampf bzw. Kondensat anfällt und weiterverwendet wird, wurde der Wasserbedarf hier gleich dem anfallenden Abwasser gesetzt). Als gesamte Wasserinanspruchnahme ergibt sich ein Wert von 3318 kg Wasser sowie eine Abwassermenge von 2730 kg. Umweltauswirkungen: Nebenprodukte bei der Methanolherstellung werden falls möglich weiterverwendet. Der einzige regelmäßig anfallende Abfall ist der Rückstand (Wasser, Methanol, Ethanol, höhere Alkohole, andere sauerstoffhaltige organische Verbindungen und verschiedene Mengen an Paraffinen) der Reindestillation von Methanol (Ullmann 1990a). Diese Reststoffe (in der Massenbilanz als Fuselöle bezeichnet, 120 kg/t Methanol (Methanol 1996)) werden bei GEMIS als Produktionsabfall bilanziert. Katatysatoren (Cu, Co, Ni, Mo) werden zurückgewonnen oder anderweitig verwendet (Ullmann 1990a). Quantitative Angaben zu Luftemissionen oder Abwasserwerten liegen nicht vor. Auslastung: 5000h/a Brenn-/Einsatzstoff: Brennstoffe-fossil-Gase gesicherte Leistung: 100% Jahr: 2005 Lebensdauer: 20a Leistung: 1MW Nutzungsgrad: 59% Produkt: Brennstoffe-Sonstige Verwendete Allokation: Allokation nach Energieäquivalenten

Chem-Org\Methanol-DE-2050/en

Methanolherstellung durch Steamreforming von Erdgas. Die industrielle Methanolproduktion kann in die drei Hauptschritte: · Produktion von Synthesegas · Synthese von Methanol · Aufarbeitung des Rohmethanols untergliedert werden. Beim ersten Prozessschritt erfolgt eine katalytische Dampfspaltung (steam reforming) des Erdgases (Methan). Methan wird dabei mit Wasserdampf in einem Reaktor unter Ausschluß von Sauerstoff zu Wasserstoff (H2) und Kohlenmonoxid (CO) umgesetzt. Um das für eine Methanolsynthese erforderliche Synthesegas-Verhältnis zwischen H2 und CO von 2,2 bis 2,3 einzustellen, wird dem Erdgas CO2 zugesetzt. Das so hergestellte Synthesegas wird komprimiert und bei Drücken von 50 bis 100 bar (Niederdruckverfahren) und Katalysatoren in einem weiteren Reaktor zu Methanol umgewandelt. Das entstandene Rohmethanol wird destillativ in einer Leichtsiederkolonne von leichtflüchtigen Nebenprodukten abgetrennt. Durch eine weitere Destillation in der Schwersiederkolonne erfolgt die endgültige Reinigung des Produkts. Weniger als 2 Mio. Tonnen der derzeitigen weltweiten Herstellungskapazität von ca 21. Mio. t (Westeuropa ca. 2 Mio. t) basieren auf einem anderen Einsatzstoff als Erdgas (Ullmann 1990a). Nach (Vriens 1994) wird der Bedarf an Methanol in Westeuropa für 1993 mit ca. 5,1 Mio. Tonnen angegeben. Wobei nur in Nordwesteuropa Methanol produziert wird (ca 2,5 Mio. t). Für Deutschland werden die Produktionskapazitäten und Einsatzstoffe gemäß den Werten in der Tabelle 1 angegeben. Tabelle 1 Produktionskapazitäten und Einsatzstoffe für die Methanolproduktion in Deutschland nach (Vriens 1994). Werk Einsatzstoff Kapazität [Mio. t/Jahr] BASF Offgas 0,30 DEA Rückstände 0,45 Leunawerke Rückstände 0,66 Veba Rückstände 0,26 Das Offgas als Einsatzstoff ist mit Erdgas vergleichbar. Bei der Methanolherstellung auf der Basis von Rückständen können Rückstandsöle aus den Raffinerien als Einsatzstoffe verwendet werden. Sämtliche Methanol-Importe und auch die restliche Methanolproduktion in Westeuropa (außer Deutschland) beruhen auf der Herstellung von Methanol aus Erdgas. Aus den obigen Angaben und der Annahme, daß die deutschen Werke zu 90 % ausgelastet sind, ergibt sich, daß der westeuropäische Methanolbedarf zu ca. 70 % aus Methanol mit Erdgas als Einsatzstoff gedeckt wird. In GEMIS wird nur die Methanolherstellung auf der Basis von Erdgas bilanziert. Verfahren die mit Rückständen als Einsatzstoffen arbeiten werden nicht berücksichtigt. Die gebildeten Kennziffern stehen für die Methanolherstellung in Westeuropa und beruhen auf Angaben zu einer Produktionsanlage Mitte der 90er Jahre. Die Bilanzierung der Methanolherstellung ist vom verwendeten Rohstoff abhängig, somit ist eine Übertragung der Kennziffern auf andere Einsatzstoffe nicht möglich. Allokation: Prozesswärme-Überschuss durch energieäquivalente Allokation Genese der Daten: - Massenbilanz: Zur Herstellung von einer Tonne Synthesegas werden als Rohstoffe Erdgas (483 kg/t) und Wasser (374 kg/t, nur für die chemische Reaktion) benötigt. Um das für die Methanolsynthese erforderliche Synthesegasverhältnis zwischen H2 und CO von 2,2 bis 2,3 einzustellen, wird dem Erdgas CO2 (283 kg/t Synthesegas, u. a. aus dem Rauchgas) zugesetzt (DSD 1995). Für die anschließende Umwandlung in Methanol ist eine Menge von 1792 kg Synthesegas/t Methanol erforderliche (Methanol 1996). Somit ergibt sich insgesamt ein Rohstoffbedarf von 760 kg Erdgas, 445 kg CO2 und 588 kg Wasser (pro Tonne Methanol). Bei der chemischen Umwandlung des Synthesegases zu Methanol entstehen außerdem pro Tonne Methanol 672 kg Purgegas (Hauptbestandteile: 52,0 Vol.-% Wasserstoff, 20,9 Vol.-% Methan und 16,0 Vol.-% Kohlenmonoxid) und als Reststoff fallen ca. 120 kg/t Fuselöle an (30 Masse-% Wasser, 54 Masse-% Methanol, 8 Masse-% Ethanol und 8 Masse-% Butanol) (Methanol 1996). Die Fuselöle werden bei GEMIS als Produktionsabfall bilanziert. Das Purgegas wird energetische alloziert (Bereitstellung von Prozeßwärme durch Verbrennung im Kessel mit einem Wirkungsgrad von 85 %). Energiebedarf: Der größte Anteil der Energie zur Synthese von Methanol entfällt auf die Synthesegasherstellung. Für die Herstellung einer Tonne Synthesegas werden 1,397 GJ elektrische Energie und weitere 7,312 GJ an Prozeßenergie benötigt (davon 1,412 GJ für Reformer-Dampf, 0,786 GJ zur Erwärmung des Erdgases und 0,104 GJ zur Erwärmung des CO2). Die Prozeßenergie wird durch die Verbrennung von Erdgas bereitgestellt wird (DSD 1995). Bei der anschließenden Umwandlung des Synthesegases zu Methanol werden 3,415 GJ an Strom eingesetzt. Weiterhin werden 1652 kg Dampf (5 bar, 155 §C; 4,645 GJ) benötigt. Durch Wärmeausnutzung entstehen dabei 912 kg Dampf (39 bar, 360 §C; 2,847 GJ), die gutgeschrieben werden (Methanol 1996). Nach Abzug der Dampfgutschrift ergibt sich insgesamt für die Herstellung einer Tonne Methanol ein Energiebedarf von ca. 18,3 GJ (14,9 GJ durch Erdgasverbrennung und 3,4 GJ elektrische Energie; die Gutschrift für das Purgegas ist dabei noch nicht berücksichtigt). Aus der Verbrennung des Purgegases (Bereitstellung von Prozeßwärme) wird eine Gutschrift von ca. 17,2 GJ/t Methanol berechnet. Wasser: Für das Reaktionsgemisch zur Herstellung des Synthesegases werden 588 kg Wasser (Reformer-Dampf) pro Tonne Methanol eingesetzt. Weitere 2474 kg Prozesswasser (u. a. für CO2-Druckwäsche) werden benötigt. Diese fallen auch als Abwasser an (DSD 1995). Der Wasserbedarf für die anschließende Methanolsynthese aus dem Synthesegas wird mit 256 kg beziffert (Methanol 1996) (da Kesselspeisewasser bzw. Dampf beim Output als Dampf bzw. Kondensat anfällt und weiterverwendet wird, wurde der Wasserbedarf hier gleich dem anfallenden Abwasser gesetzt). Als gesamte Wasserinanspruchnahme ergibt sich ein Wert von 3318 kg Wasser sowie eine Abwassermenge von 2730 kg. Umweltauswirkungen: Nebenprodukte bei der Methanolherstellung werden falls möglich weiterverwendet. Der einzige regelmäßig anfallende Abfall ist der Rückstand (Wasser, Methanol, Ethanol, höhere Alkohole, andere sauerstoffhaltige organische Verbindungen und verschiedene Mengen an Paraffinen) der Reindestillation von Methanol (Ullmann 1990a). Diese Reststoffe (in der Massenbilanz als Fuselöle bezeichnet, 120 kg/t Methanol (Methanol 1996)) werden bei GEMIS als Produktionsabfall bilanziert. Katatysatoren (Cu, Co, Ni, Mo) werden zurückgewonnen oder anderweitig verwendet (Ullmann 1990a). Quantitative Angaben zu Luftemissionen oder Abwasserwerten liegen nicht vor. Auslastung: 5000h/a Brenn-/Einsatzstoff: Brennstoffe-fossil-Gase gesicherte Leistung: 100% Jahr: 2050 Lebensdauer: 20a Leistung: 1MW Nutzungsgrad: 59% Produkt: Brennstoffe-Sonstige Verwendete Allokation: Allokation nach Energieäquivalenten

Chem-Org\Methanol-DE-2020/en

Methanolherstellung durch Steamreforming von Erdgas. Die industrielle Methanolproduktion kann in die drei Hauptschritte: · Produktion von Synthesegas · Synthese von Methanol · Aufarbeitung des Rohmethanols untergliedert werden. Beim ersten Prozessschritt erfolgt eine katalytische Dampfspaltung (steam reforming) des Erdgases (Methan). Methan wird dabei mit Wasserdampf in einem Reaktor unter Ausschluß von Sauerstoff zu Wasserstoff (H2) und Kohlenmonoxid (CO) umgesetzt. Um das für eine Methanolsynthese erforderliche Synthesegas-Verhältnis zwischen H2 und CO von 2,2 bis 2,3 einzustellen, wird dem Erdgas CO2 zugesetzt. Das so hergestellte Synthesegas wird komprimiert und bei Drücken von 50 bis 100 bar (Niederdruckverfahren) und Katalysatoren in einem weiteren Reaktor zu Methanol umgewandelt. Das entstandene Rohmethanol wird destillativ in einer Leichtsiederkolonne von leichtflüchtigen Nebenprodukten abgetrennt. Durch eine weitere Destillation in der Schwersiederkolonne erfolgt die endgültige Reinigung des Produkts. Weniger als 2 Mio. Tonnen der derzeitigen weltweiten Herstellungskapazität von ca 21. Mio. t (Westeuropa ca. 2 Mio. t) basieren auf einem anderen Einsatzstoff als Erdgas (Ullmann 1990a). Nach (Vriens 1994) wird der Bedarf an Methanol in Westeuropa für 1993 mit ca. 5,1 Mio. Tonnen angegeben. Wobei nur in Nordwesteuropa Methanol produziert wird (ca 2,5 Mio. t). Für Deutschland werden die Produktionskapazitäten und Einsatzstoffe gemäß den Werten in der Tabelle 1 angegeben. Tabelle 1 Produktionskapazitäten und Einsatzstoffe für die Methanolproduktion in Deutschland nach (Vriens 1994). Werk Einsatzstoff Kapazität [Mio. t/Jahr] BASF Offgas 0,30 DEA Rückstände 0,45 Leunawerke Rückstände 0,66 Veba Rückstände 0,26 Das Offgas als Einsatzstoff ist mit Erdgas vergleichbar. Bei der Methanolherstellung auf der Basis von Rückständen können Rückstandsöle aus den Raffinerien als Einsatzstoffe verwendet werden. Sämtliche Methanol-Importe und auch die restliche Methanolproduktion in Westeuropa (außer Deutschland) beruhen auf der Herstellung von Methanol aus Erdgas. Aus den obigen Angaben und der Annahme, daß die deutschen Werke zu 90 % ausgelastet sind, ergibt sich, daß der westeuropäische Methanolbedarf zu ca. 70 % aus Methanol mit Erdgas als Einsatzstoff gedeckt wird. In GEMIS wird nur die Methanolherstellung auf der Basis von Erdgas bilanziert. Verfahren die mit Rückständen als Einsatzstoffen arbeiten werden nicht berücksichtigt. Die gebildeten Kennziffern stehen für die Methanolherstellung in Westeuropa und beruhen auf Angaben zu einer Produktionsanlage Mitte der 90er Jahre. Die Bilanzierung der Methanolherstellung ist vom verwendeten Rohstoff abhängig, somit ist eine Übertragung der Kennziffern auf andere Einsatzstoffe nicht möglich. Allokation: Prozesswärme-Überschuss durch energieäquivalente Allokation Genese der Daten: - Massenbilanz: Zur Herstellung von einer Tonne Synthesegas werden als Rohstoffe Erdgas (483 kg/t) und Wasser (374 kg/t, nur für die chemische Reaktion) benötigt. Um das für die Methanolsynthese erforderliche Synthesegasverhältnis zwischen H2 und CO von 2,2 bis 2,3 einzustellen, wird dem Erdgas CO2 (283 kg/t Synthesegas, u. a. aus dem Rauchgas) zugesetzt (DSD 1995). Für die anschließende Umwandlung in Methanol ist eine Menge von 1792 kg Synthesegas/t Methanol erforderliche (Methanol 1996). Somit ergibt sich insgesamt ein Rohstoffbedarf von 760 kg Erdgas, 445 kg CO2 und 588 kg Wasser (pro Tonne Methanol). Bei der chemischen Umwandlung des Synthesegases zu Methanol entstehen außerdem pro Tonne Methanol 672 kg Purgegas (Hauptbestandteile: 52,0 Vol.-% Wasserstoff, 20,9 Vol.-% Methan und 16,0 Vol.-% Kohlenmonoxid) und als Reststoff fallen ca. 120 kg/t Fuselöle an (30 Masse-% Wasser, 54 Masse-% Methanol, 8 Masse-% Ethanol und 8 Masse-% Butanol) (Methanol 1996). Die Fuselöle werden bei GEMIS als Produktionsabfall bilanziert. Das Purgegas wird energetische alloziert (Bereitstellung von Prozeßwärme durch Verbrennung im Kessel mit einem Wirkungsgrad von 85 %). Energiebedarf: Der größte Anteil der Energie zur Synthese von Methanol entfällt auf die Synthesegasherstellung. Für die Herstellung einer Tonne Synthesegas werden 1,397 GJ elektrische Energie und weitere 7,312 GJ an Prozeßenergie benötigt (davon 1,412 GJ für Reformer-Dampf, 0,786 GJ zur Erwärmung des Erdgases und 0,104 GJ zur Erwärmung des CO2). Die Prozeßenergie wird durch die Verbrennung von Erdgas bereitgestellt wird (DSD 1995). Bei der anschließenden Umwandlung des Synthesegases zu Methanol werden 3,415 GJ an Strom eingesetzt. Weiterhin werden 1652 kg Dampf (5 bar, 155 §C; 4,645 GJ) benötigt. Durch Wärmeausnutzung entstehen dabei 912 kg Dampf (39 bar, 360 §C; 2,847 GJ), die gutgeschrieben werden (Methanol 1996). Nach Abzug der Dampfgutschrift ergibt sich insgesamt für die Herstellung einer Tonne Methanol ein Energiebedarf von ca. 18,3 GJ (14,9 GJ durch Erdgasverbrennung und 3,4 GJ elektrische Energie; die Gutschrift für das Purgegas ist dabei noch nicht berücksichtigt). Aus der Verbrennung des Purgegases (Bereitstellung von Prozeßwärme) wird eine Gutschrift von ca. 17,2 GJ/t Methanol berechnet. Wasser: Für das Reaktionsgemisch zur Herstellung des Synthesegases werden 588 kg Wasser (Reformer-Dampf) pro Tonne Methanol eingesetzt. Weitere 2474 kg Prozesswasser (u. a. für CO2-Druckwäsche) werden benötigt. Diese fallen auch als Abwasser an (DSD 1995). Der Wasserbedarf für die anschließende Methanolsynthese aus dem Synthesegas wird mit 256 kg beziffert (Methanol 1996) (da Kesselspeisewasser bzw. Dampf beim Output als Dampf bzw. Kondensat anfällt und weiterverwendet wird, wurde der Wasserbedarf hier gleich dem anfallenden Abwasser gesetzt). Als gesamte Wasserinanspruchnahme ergibt sich ein Wert von 3318 kg Wasser sowie eine Abwassermenge von 2730 kg. Umweltauswirkungen: Nebenprodukte bei der Methanolherstellung werden falls möglich weiterverwendet. Der einzige regelmäßig anfallende Abfall ist der Rückstand (Wasser, Methanol, Ethanol, höhere Alkohole, andere sauerstoffhaltige organische Verbindungen und verschiedene Mengen an Paraffinen) der Reindestillation von Methanol (Ullmann 1990a). Diese Reststoffe (in der Massenbilanz als Fuselöle bezeichnet, 120 kg/t Methanol (Methanol 1996)) werden bei GEMIS als Produktionsabfall bilanziert. Katatysatoren (Cu, Co, Ni, Mo) werden zurückgewonnen oder anderweitig verwendet (Ullmann 1990a). Quantitative Angaben zu Luftemissionen oder Abwasserwerten liegen nicht vor. Auslastung: 5000h/a Brenn-/Einsatzstoff: Brennstoffe-fossil-Gase gesicherte Leistung: 100% Jahr: 2020 Lebensdauer: 20a Leistung: 1MW Nutzungsgrad: 59% Produkt: Brennstoffe-Sonstige Verwendete Allokation: Allokation nach Energieäquivalenten

Chem-Org\Methanol-DE-2010/en

Methanolherstellung durch Steamreforming von Erdgas. Die industrielle Methanolproduktion kann in die drei Hauptschritte: · Produktion von Synthesegas · Synthese von Methanol · Aufarbeitung des Rohmethanols untergliedert werden. Beim ersten Prozessschritt erfolgt eine katalytische Dampfspaltung (steam reforming) des Erdgases (Methan). Methan wird dabei mit Wasserdampf in einem Reaktor unter Ausschluß von Sauerstoff zu Wasserstoff (H2) und Kohlenmonoxid (CO) umgesetzt. Um das für eine Methanolsynthese erforderliche Synthesegas-Verhältnis zwischen H2 und CO von 2,2 bis 2,3 einzustellen, wird dem Erdgas CO2 zugesetzt. Das so hergestellte Synthesegas wird komprimiert und bei Drücken von 50 bis 100 bar (Niederdruckverfahren) und Katalysatoren in einem weiteren Reaktor zu Methanol umgewandelt. Das entstandene Rohmethanol wird destillativ in einer Leichtsiederkolonne von leichtflüchtigen Nebenprodukten abgetrennt. Durch eine weitere Destillation in der Schwersiederkolonne erfolgt die endgültige Reinigung des Produkts. Weniger als 2 Mio. Tonnen der derzeitigen weltweiten Herstellungskapazität von ca 21. Mio. t (Westeuropa ca. 2 Mio. t) basieren auf einem anderen Einsatzstoff als Erdgas (Ullmann 1990a). Nach (Vriens 1994) wird der Bedarf an Methanol in Westeuropa für 1993 mit ca. 5,1 Mio. Tonnen angegeben. Wobei nur in Nordwesteuropa Methanol produziert wird (ca 2,5 Mio. t). Für Deutschland werden die Produktionskapazitäten und Einsatzstoffe gemäß den Werten in der Tabelle 1 angegeben. Tabelle 1 Produktionskapazitäten und Einsatzstoffe für die Methanolproduktion in Deutschland nach (Vriens 1994). Werk Einsatzstoff Kapazität [Mio. t/Jahr] BASF Offgas 0,30 DEA Rückstände 0,45 Leunawerke Rückstände 0,66 Veba Rückstände 0,26 Das Offgas als Einsatzstoff ist mit Erdgas vergleichbar. Bei der Methanolherstellung auf der Basis von Rückständen können Rückstandsöle aus den Raffinerien als Einsatzstoffe verwendet werden. Sämtliche Methanol-Importe und auch die restliche Methanolproduktion in Westeuropa (außer Deutschland) beruhen auf der Herstellung von Methanol aus Erdgas. Aus den obigen Angaben und der Annahme, daß die deutschen Werke zu 90 % ausgelastet sind, ergibt sich, daß der westeuropäische Methanolbedarf zu ca. 70 % aus Methanol mit Erdgas als Einsatzstoff gedeckt wird. In GEMIS wird nur die Methanolherstellung auf der Basis von Erdgas bilanziert. Verfahren die mit Rückständen als Einsatzstoffen arbeiten werden nicht berücksichtigt. Die gebildeten Kennziffern stehen für die Methanolherstellung in Westeuropa und beruhen auf Angaben zu einer Produktionsanlage Mitte der 90er Jahre. Die Bilanzierung der Methanolherstellung ist vom verwendeten Rohstoff abhängig, somit ist eine Übertragung der Kennziffern auf andere Einsatzstoffe nicht möglich. Allokation: Prozesswärme-Überschuss durch energieäquivalente Allokation Genese der Daten: - Massenbilanz: Zur Herstellung von einer Tonne Synthesegas werden als Rohstoffe Erdgas (483 kg/t) und Wasser (374 kg/t, nur für die chemische Reaktion) benötigt. Um das für die Methanolsynthese erforderliche Synthesegasverhältnis zwischen H2 und CO von 2,2 bis 2,3 einzustellen, wird dem Erdgas CO2 (283 kg/t Synthesegas, u. a. aus dem Rauchgas) zugesetzt (DSD 1995). Für die anschließende Umwandlung in Methanol ist eine Menge von 1792 kg Synthesegas/t Methanol erforderliche (Methanol 1996). Somit ergibt sich insgesamt ein Rohstoffbedarf von 760 kg Erdgas, 445 kg CO2 und 588 kg Wasser (pro Tonne Methanol). Bei der chemischen Umwandlung des Synthesegases zu Methanol entstehen außerdem pro Tonne Methanol 672 kg Purgegas (Hauptbestandteile: 52,0 Vol.-% Wasserstoff, 20,9 Vol.-% Methan und 16,0 Vol.-% Kohlenmonoxid) und als Reststoff fallen ca. 120 kg/t Fuselöle an (30 Masse-% Wasser, 54 Masse-% Methanol, 8 Masse-% Ethanol und 8 Masse-% Butanol) (Methanol 1996). Die Fuselöle werden bei GEMIS als Produktionsabfall bilanziert. Das Purgegas wird energetische alloziert (Bereitstellung von Prozeßwärme durch Verbrennung im Kessel mit einem Wirkungsgrad von 85 %). Energiebedarf: Der größte Anteil der Energie zur Synthese von Methanol entfällt auf die Synthesegasherstellung. Für die Herstellung einer Tonne Synthesegas werden 1,397 GJ elektrische Energie und weitere 7,312 GJ an Prozeßenergie benötigt (davon 1,412 GJ für Reformer-Dampf, 0,786 GJ zur Erwärmung des Erdgases und 0,104 GJ zur Erwärmung des CO2). Die Prozeßenergie wird durch die Verbrennung von Erdgas bereitgestellt wird (DSD 1995). Bei der anschließenden Umwandlung des Synthesegases zu Methanol werden 3,415 GJ an Strom eingesetzt. Weiterhin werden 1652 kg Dampf (5 bar, 155 §C; 4,645 GJ) benötigt. Durch Wärmeausnutzung entstehen dabei 912 kg Dampf (39 bar, 360 §C; 2,847 GJ), die gutgeschrieben werden (Methanol 1996). Nach Abzug der Dampfgutschrift ergibt sich insgesamt für die Herstellung einer Tonne Methanol ein Energiebedarf von ca. 18,3 GJ (14,9 GJ durch Erdgasverbrennung und 3,4 GJ elektrische Energie; die Gutschrift für das Purgegas ist dabei noch nicht berücksichtigt). Aus der Verbrennung des Purgegases (Bereitstellung von Prozeßwärme) wird eine Gutschrift von ca. 17,2 GJ/t Methanol berechnet. Wasser: Für das Reaktionsgemisch zur Herstellung des Synthesegases werden 588 kg Wasser (Reformer-Dampf) pro Tonne Methanol eingesetzt. Weitere 2474 kg Prozesswasser (u. a. für CO2-Druckwäsche) werden benötigt. Diese fallen auch als Abwasser an (DSD 1995). Der Wasserbedarf für die anschließende Methanolsynthese aus dem Synthesegas wird mit 256 kg beziffert (Methanol 1996) (da Kesselspeisewasser bzw. Dampf beim Output als Dampf bzw. Kondensat anfällt und weiterverwendet wird, wurde der Wasserbedarf hier gleich dem anfallenden Abwasser gesetzt). Als gesamte Wasserinanspruchnahme ergibt sich ein Wert von 3318 kg Wasser sowie eine Abwassermenge von 2730 kg. Umweltauswirkungen: Nebenprodukte bei der Methanolherstellung werden falls möglich weiterverwendet. Der einzige regelmäßig anfallende Abfall ist der Rückstand (Wasser, Methanol, Ethanol, höhere Alkohole, andere sauerstoffhaltige organische Verbindungen und verschiedene Mengen an Paraffinen) der Reindestillation von Methanol (Ullmann 1990a). Diese Reststoffe (in der Massenbilanz als Fuselöle bezeichnet, 120 kg/t Methanol (Methanol 1996)) werden bei GEMIS als Produktionsabfall bilanziert. Katatysatoren (Cu, Co, Ni, Mo) werden zurückgewonnen oder anderweitig verwendet (Ullmann 1990a). Quantitative Angaben zu Luftemissionen oder Abwasserwerten liegen nicht vor. Auslastung: 5000h/a Brenn-/Einsatzstoff: Brennstoffe-fossil-Gase gesicherte Leistung: 100% Jahr: 2010 Lebensdauer: 20a Leistung: 1MW Nutzungsgrad: 59% Produkt: Brennstoffe-Sonstige Verwendete Allokation: Allokation nach Energieäquivalenten

Chem-Org\Methanol-DE-2030/en

Methanolherstellung durch Steamreforming von Erdgas. Die industrielle Methanolproduktion kann in die drei Hauptschritte: · Produktion von Synthesegas · Synthese von Methanol · Aufarbeitung des Rohmethanols untergliedert werden. Beim ersten Prozessschritt erfolgt eine katalytische Dampfspaltung (steam reforming) des Erdgases (Methan). Methan wird dabei mit Wasserdampf in einem Reaktor unter Ausschluß von Sauerstoff zu Wasserstoff (H2) und Kohlenmonoxid (CO) umgesetzt. Um das für eine Methanolsynthese erforderliche Synthesegas-Verhältnis zwischen H2 und CO von 2,2 bis 2,3 einzustellen, wird dem Erdgas CO2 zugesetzt. Das so hergestellte Synthesegas wird komprimiert und bei Drücken von 50 bis 100 bar (Niederdruckverfahren) und Katalysatoren in einem weiteren Reaktor zu Methanol umgewandelt. Das entstandene Rohmethanol wird destillativ in einer Leichtsiederkolonne von leichtflüchtigen Nebenprodukten abgetrennt. Durch eine weitere Destillation in der Schwersiederkolonne erfolgt die endgültige Reinigung des Produkts. Weniger als 2 Mio. Tonnen der derzeitigen weltweiten Herstellungskapazität von ca 21. Mio. t (Westeuropa ca. 2 Mio. t) basieren auf einem anderen Einsatzstoff als Erdgas (Ullmann 1990a). Nach (Vriens 1994) wird der Bedarf an Methanol in Westeuropa für 1993 mit ca. 5,1 Mio. Tonnen angegeben. Wobei nur in Nordwesteuropa Methanol produziert wird (ca 2,5 Mio. t). Für Deutschland werden die Produktionskapazitäten und Einsatzstoffe gemäß den Werten in der Tabelle 1 angegeben. Tabelle 1 Produktionskapazitäten und Einsatzstoffe für die Methanolproduktion in Deutschland nach (Vriens 1994). Werk Einsatzstoff Kapazität [Mio. t/Jahr] BASF Offgas 0,30 DEA Rückstände 0,45 Leunawerke Rückstände 0,66 Veba Rückstände 0,26 Das Offgas als Einsatzstoff ist mit Erdgas vergleichbar. Bei der Methanolherstellung auf der Basis von Rückständen können Rückstandsöle aus den Raffinerien als Einsatzstoffe verwendet werden. Sämtliche Methanol-Importe und auch die restliche Methanolproduktion in Westeuropa (außer Deutschland) beruhen auf der Herstellung von Methanol aus Erdgas. Aus den obigen Angaben und der Annahme, daß die deutschen Werke zu 90 % ausgelastet sind, ergibt sich, daß der westeuropäische Methanolbedarf zu ca. 70 % aus Methanol mit Erdgas als Einsatzstoff gedeckt wird. In GEMIS wird nur die Methanolherstellung auf der Basis von Erdgas bilanziert. Verfahren die mit Rückständen als Einsatzstoffen arbeiten werden nicht berücksichtigt. Die gebildeten Kennziffern stehen für die Methanolherstellung in Westeuropa und beruhen auf Angaben zu einer Produktionsanlage Mitte der 90er Jahre. Die Bilanzierung der Methanolherstellung ist vom verwendeten Rohstoff abhängig, somit ist eine Übertragung der Kennziffern auf andere Einsatzstoffe nicht möglich. Allokation: Prozesswärme-Überschuss durch energieäquivalente Allokation Genese der Daten: - Massenbilanz: Zur Herstellung von einer Tonne Synthesegas werden als Rohstoffe Erdgas (483 kg/t) und Wasser (374 kg/t, nur für die chemische Reaktion) benötigt. Um das für die Methanolsynthese erforderliche Synthesegasverhältnis zwischen H2 und CO von 2,2 bis 2,3 einzustellen, wird dem Erdgas CO2 (283 kg/t Synthesegas, u. a. aus dem Rauchgas) zugesetzt (DSD 1995). Für die anschließende Umwandlung in Methanol ist eine Menge von 1792 kg Synthesegas/t Methanol erforderliche (Methanol 1996). Somit ergibt sich insgesamt ein Rohstoffbedarf von 760 kg Erdgas, 445 kg CO2 und 588 kg Wasser (pro Tonne Methanol). Bei der chemischen Umwandlung des Synthesegases zu Methanol entstehen außerdem pro Tonne Methanol 672 kg Purgegas (Hauptbestandteile: 52,0 Vol.-% Wasserstoff, 20,9 Vol.-% Methan und 16,0 Vol.-% Kohlenmonoxid) und als Reststoff fallen ca. 120 kg/t Fuselöle an (30 Masse-% Wasser, 54 Masse-% Methanol, 8 Masse-% Ethanol und 8 Masse-% Butanol) (Methanol 1996). Die Fuselöle werden bei GEMIS als Produktionsabfall bilanziert. Das Purgegas wird energetische alloziert (Bereitstellung von Prozeßwärme durch Verbrennung im Kessel mit einem Wirkungsgrad von 85 %). Energiebedarf: Der größte Anteil der Energie zur Synthese von Methanol entfällt auf die Synthesegasherstellung. Für die Herstellung einer Tonne Synthesegas werden 1,397 GJ elektrische Energie und weitere 7,312 GJ an Prozeßenergie benötigt (davon 1,412 GJ für Reformer-Dampf, 0,786 GJ zur Erwärmung des Erdgases und 0,104 GJ zur Erwärmung des CO2). Die Prozeßenergie wird durch die Verbrennung von Erdgas bereitgestellt wird (DSD 1995). Bei der anschließenden Umwandlung des Synthesegases zu Methanol werden 3,415 GJ an Strom eingesetzt. Weiterhin werden 1652 kg Dampf (5 bar, 155 §C; 4,645 GJ) benötigt. Durch Wärmeausnutzung entstehen dabei 912 kg Dampf (39 bar, 360 §C; 2,847 GJ), die gutgeschrieben werden (Methanol 1996). Nach Abzug der Dampfgutschrift ergibt sich insgesamt für die Herstellung einer Tonne Methanol ein Energiebedarf von ca. 18,3 GJ (14,9 GJ durch Erdgasverbrennung und 3,4 GJ elektrische Energie; die Gutschrift für das Purgegas ist dabei noch nicht berücksichtigt). Aus der Verbrennung des Purgegases (Bereitstellung von Prozeßwärme) wird eine Gutschrift von ca. 17,2 GJ/t Methanol berechnet. Wasser: Für das Reaktionsgemisch zur Herstellung des Synthesegases werden 588 kg Wasser (Reformer-Dampf) pro Tonne Methanol eingesetzt. Weitere 2474 kg Prozesswasser (u. a. für CO2-Druckwäsche) werden benötigt. Diese fallen auch als Abwasser an (DSD 1995). Der Wasserbedarf für die anschließende Methanolsynthese aus dem Synthesegas wird mit 256 kg beziffert (Methanol 1996) (da Kesselspeisewasser bzw. Dampf beim Output als Dampf bzw. Kondensat anfällt und weiterverwendet wird, wurde der Wasserbedarf hier gleich dem anfallenden Abwasser gesetzt). Als gesamte Wasserinanspruchnahme ergibt sich ein Wert von 3318 kg Wasser sowie eine Abwassermenge von 2730 kg. Umweltauswirkungen: Nebenprodukte bei der Methanolherstellung werden falls möglich weiterverwendet. Der einzige regelmäßig anfallende Abfall ist der Rückstand (Wasser, Methanol, Ethanol, höhere Alkohole, andere sauerstoffhaltige organische Verbindungen und verschiedene Mengen an Paraffinen) der Reindestillation von Methanol (Ullmann 1990a). Diese Reststoffe (in der Massenbilanz als Fuselöle bezeichnet, 120 kg/t Methanol (Methanol 1996)) werden bei GEMIS als Produktionsabfall bilanziert. Katatysatoren (Cu, Co, Ni, Mo) werden zurückgewonnen oder anderweitig verwendet (Ullmann 1990a). Quantitative Angaben zu Luftemissionen oder Abwasserwerten liegen nicht vor. Auslastung: 5000h/a Brenn-/Einsatzstoff: Brennstoffe-fossil-Gase gesicherte Leistung: 100% Jahr: 2030 Lebensdauer: 20a Leistung: 1MW Nutzungsgrad: 59% Produkt: Brennstoffe-Sonstige Verwendete Allokation: Allokation nach Energieäquivalenten

Chem-Org\Methanol-DE-2000

Methanolherstellung durch Steamreforming von Erdgas. Die industrielle Methanolproduktion kann in die drei Hauptschritte: · Produktion von Synthesegas · Synthese von Methanol · Aufarbeitung des Rohmethanols untergliedert werden. Beim ersten Prozeßschritt erfolgt eine katalytische Dampfspaltung (steam reforming) des Erdgases (Methan). Methan wird dabei mit Wasserdampf in einem Reaktor unter Ausschluß von Sauerstoff zu Wasserstoff (H2) und Kohlenmonoxid (CO) umgesetzt. Um das für eine Methanolsynthese erforderliche Synthesegas-Verhältnis zwischen H2 und CO von 2,2 bis 2,3 einzustellen, wird dem Erdgas CO2 zugesetzt. Das so hergestellte Synthesegas wird komprimiert und bei Drücken von 50 bis 100 bar (Niederdruckverfahren) und Katalysatoren in einem weiteren Reaktor zu Methanol umgewandelt. Das entstandene Rohmethanol wird destillativ in einer Leichtsiederkolonne von leichtflüchtigen Nebenprodukten abgetrennt. Durch eine weitere Destillation in der Schwersiederkolonne erfolgt die endgültige Reinigung des Produkts. Weniger als 2 Mio. Tonnen der derzeitigen weltweiten Herstellungskapazität von ca 21. Mio. t (Westeuropa ca. 2 Mio. t) basieren auf einem anderen Einsatzstoff als Erdgas (Ullmann 1990a). Nach (Vriens 1994) wird der Bedarf an Methanol in Westeuropa für 1993 mit ca. 5,1 Mio. Tonnen angegeben. Wobei nur in Nordwesteuropa Methanol produziert wird (ca 2,5 Mio. t). Für Deutschland werden die Produktionskapazitäten und Einsatzstoffe gemäß den Werten in der Tabelle 1 angegeben. Tabelle 1 Produktionskapazitäten und Einsatzstoffe für die Methanolproduktion in Deutschland nach (Vriens 1994). Werk Einsatzstoff Kapazität [Mio. t/Jahr] BASF Offgas 0,30 DEA Rückstände 0,45 Leunawerke Rückstände 0,66 Veba Rückstände 0,26 Das Offgas als Einsatzstoff ist mit Erdgas vergleichbar. Bei der Methanolherstellung auf der Basis von Rückständen können Rückstandsöle aus den Raffinerien als Einsatzstoffe verwendet werden. Sämtliche Methanol-Importe und auch die restliche Methanolproduktion in Westeuropa (außer Deutschland) beruhen auf der Herstellung von Methanol aus Erdgas. Aus den obigen Angaben und der Annahme, daß die deutschen Werke zu 90 % ausgelastet sind, ergibt sich, daß der westeuropäische Methanolbedarf zu ca. 70 % aus Methanol mit Erdgas als Einsatzstoff gedeckt wird. Bei GEMIS wird nur die Methanolherstellung auf der Basis von Erdgas bilanziert. Verfahren die mit Rückständen als Einsatzstoffen arbeiten werden nicht berücksichtigt. Die gebildeten Kennziffern stehen für die Methanolherstellung in Westeuropa und beruhen auf Angaben zu einer Produktionsanlage Mitte der 90er Jahre. Die Bilanzierung der Methanolherstellung ist vom verwendeten Rohstoff abhängig, somit ist eine Übertragung der Kennziffern auf andere Einsatzstoffe nicht möglich. Allokation: keine Genese der Daten: - Massenbilanz: Zur Herstellung von einer Tonne Synthesegas werden als Rohstoffe Erdgas (483 kg/t) und Wasser (374 kg/t, nur für die chemische Reaktion) benötigt. Um das für die Methanolsynthese erforderliche Synthesegasverhältnis zwischen H2 und CO von 2,2 bis 2,3 einzustellen, wird dem Erdgas CO2 (283 kg/t Synthesegas, u. a. aus dem Rauchgas) zugesetzt (DSD 1995). Für die anschließende Umwandlung in Methanol ist eine Menge von 1792 kg Synthesegas/t Methanol erforderliche (Methanol 1996). Somit ergibt sich insgesamt ein Rohstoffbedarf von 760 kg Erdgas, 445 kg CO2 und 588 kg Wasser (pro Tonne Methanol). Bei der chemischen Umwandlung des Synthesegases zu Methanol entstehen außerdem pro Tonne Methanol 672 kg Purgegas (Hauptbestandteile: 52,0 Vol.-% Wasserstoff, 20,9 Vol.-% Methan und 16,0 Vol.-% Kohlenmonoxid) und als Reststoff fallen ca. 120 kg/t Fuselöle an (30 Masse-% Wasser, 54 Masse-% Methanol, 8 Masse-% Ethanol und 8 Masse-% Butanol) (Methanol 1996). Die Fuselöle werden bei GEMIS als Produktionsabfall bilanziert. Dem Purgegas wird eine Gutschrift für eine energetische Verwertung angerechnet (Bereitstellung von Prozeßwärme durch Verbrennung im Kessel mit einem Wirkungsgrad von 85 %). Energiebedarf: Der größte Anteil der Energie zur Synthese von Methanol entfällt auf die Synthesegasherstellung. Für die Herstellung einer Tonne Synthesegas werden 1,397 GJ elektrische Energie und weitere 7,312 GJ an Prozeßenergie benötigt (davon 1,412 GJ für Reformer-Dampf, 0,786 GJ zur Erwärmung des Erdgases und 0,104 GJ zur Erwärmung des CO2). Die Prozeßenergie wird durch die Verbrennung von Erdgas bereitgestellt wird (DSD 1995). Bei der anschließenden Umwandlung des Synthesegases zu Methanol werden 3,415 GJ an Strom eingesetzt. Weiterhin werden 1652 kg Dampf (5 bar, 155 §C; 4,645 GJ) benötigt. Durch Wärmeausnutzung entstehen dabei 912 kg Dampf (39 bar, 360 §C; 2,847 GJ), die gutgeschrieben werden (Methanol 1996). Nach Abzug der Dampfgutschrift ergibt sich insgesamt für die Herstellung einer Tonne Methanol ein Energiebedarf von ca. 18,3 GJ (14,9 GJ durch Erdgasverbrennung und 3,4 GJ elektrische Energie; die Gutschrift für das Purgegas ist dabei noch nicht berücksichtigt). Aus der Verbrennung des Purgegases (Bereitstellung von Prozeßwärme) wird eine Gutschrift von ca. 17,2 GJ/t Methanol berechnet. Wasser: Für das Reaktionsgemisch zur Herstellung des Synthesegases werden 588 kg Wasser (Reformer-Dampf) pro Tonne Methanol eingesetzt. Weitere 2474 kg Prozesswasser (u. a. für CO2-Druckwäsche) werden benötigt. Diese fallen auch als Abwasser an (DSD 1995). Der Wasserbedarf für die anschließende Methanolsynthese aus dem Synthesegas wird mit 256 kg beziffert (Methanol 1996) (da Kesselspeisewasser bzw. Dampf beim Output als Dampf bzw. Kondensat anfällt und weiterverwendet wird, wurde der Wasserbedarf hier gleich dem anfallenden Abwasser gesetzt). Als gesamte Wasserinanspruchnahme ergibt sich ein Wert von 3318 kg Wasser sowie eine Abwassermenge von 2730 kg. Umweltauswirkungen: Nebenprodukte bei der Methanolherstellung werden falls möglich weiterverwendet. Der einzige regelmäßig anfallende Abfall ist der Rückstand (Wasser, Methanol, Ethanol, höhere Alkohole, andere sauerstoffhaltige organische Verbindungen und verschiedene Mengen an Paraffinen) der Reindestillation von Methanol (Ullmann 1990a). Diese Reststoffe (in der Massenbilanz als Fuselöle bezeichnet, 120 kg/t Methanol (Methanol 1996)) werden bei GEMIS als Produktionsabfall bilanziert. Katatysatoren (Cu, Co, Ni, Mo) werden zurückgewonnen oder anderweitig verwendet (Ullmann 1990a). Quantitative Angaben zu Luftemissionen oder Abwasserwerten liegen nicht vor. Auslastung: 5000h/a Brenn-/Einsatzstoff: Brennstoffe-fossil-Gase gesicherte Leistung: 100% Jahr: 2000 Lebensdauer: 20a Leistung: 1MW Nutzungsgrad: 59% Produkt: Brennstoffe-Sonstige Verwendete Allokation: Allokation durch Gutschriften

Markt für Methanol

technologyComment of methanol production (GLO): For normal methanol synthesis, reforming is performed in one step in a tubular reactor at 850 – 900 °C in order to leave as little methane as possible in the synthesis gas. For large methanol synthesis plants, Lurgi has introduced a two-step combination (combined reforming process) that gives better results. In the primary tubular reformer, lower temperature (ca. 800 °C) but higher pressure (2.5-4.0 MPa instead of 1.5-2.5 MPa) are applied. More recently, Lurgi developed another two-step gas production scheme. It is based on catalytic autothermal reforming with an adiabatic performer and has economical advantages for very large methanol plants. At locations where no carbon dioxide is available most of the methanol plants are based on the following gas production technologies, depending on their capacities: steam reforming for capacities up to 2000 t d-1 or combined reforming from 1800 to 2500 t d-1 (Ullmann 2001). For the energy and resource flows in this inventory a modern steam reforming process was taken as average technology. To estimate best and worst case values, also values from combined reforming and autothermal reforming were investigated. Methanol produced using a low pressure steam reforming process (ICI LPM) accounts for approximately 60% of the world capacity (Synetix 2000a). Besides steam reforming, combined reforming has gained importance due to the production of methanol in large plants at remote locations. The reaction of the steam-reforming route can be formulated for methane, the major constituent of natural gas, as follows: Synthesis gas preparation: CH4 + H2O → CO + 3 H2; ΔH = 206 kJ mol-1 CO + H2O → CO2 + H2; ΔH = - 41 kJ mol-1 Methanol synthesis: CO + 2 H2 → CH3OH; ΔH = -98 kJ mol-1 CO2 + 3 H2 → CH3OH + H2O; ΔH = -58 kJ mol-1 For an average plant the total carbon efficiency is around 75%, 81% for the synthesis gas preparation and 93% for the methanol synthesis (Le Blanc et al. 1994, p. 114). For steam reformers usually a steam to carbon ratio of 3:1 to 3.5:1 is used. As methanol production is a highly integrated process with a complicated steam system, heat recovery and often also internal electricity production (out of excess steam), there were only data of the efficiency and energy consumption of the total process available. Therefore the process was not divided into a reforming process, a synthesis process and a purification process for estimating the energy and resource flows. Also the energy and resource flows in the methanol production plants are site specific (dependent on the local availability of resources such as CO2, O2, or electricity). In this inventory typical values for a methanol plant using steam-reforming technology were used. The main resource for methanol production is natural gas, which acts as feedstock and fuel. A natural gas based methanol plant consumes typically 29-37 MJ (LHV) of natural gas per kg of methanol. This gas is needed as feedstock for the produced methanol (20 MJ kg-1 LHV) and also used as fuel for the utilities of the plant. From the converted feed, 1 kg methanol and 0.06 kg hydrogen is yielded. It was assumed that the purged hydrogen was also burned in the furnace. The only emission to air considered from burning hydrogen is NOX. The energy amount generated is not considered, because the process of the furnace is specified for natural gas as fuel. The NOX emissions of the hydrogen burning were therefore calculated separately. References: Althaus H.-J., Chudacoff M., Hischier R., Jungbluth N., Osses M. and Primas A. (2007) Life Cycle Inventories of Chemicals. ecoinvent report No. 8, v2.0. EMPA Dübendorf, Swiss Centre for Life Cycle Inventories, Dübendorf, CH. technologyComment of synthetic fuel production, from coal, high temperature Fisher-Tropsch operations (ZA): SECUNDA SYNFUEL OPERATIONS: Secunda Synfuels Operations operates the world’s only commercial coal-based synthetic fuels manufacturing facility of its kind, producing synthesis gas (syngas) through coal gasification and natural gas reforming. They make use of their proprietary technology to convert syngas into synthetic fuel components, pipeline gas and chemical feedstock for the downstream production of solvents, polymers, comonomers and other chemicals. Primary internal customers are Sasol Chemicals Operations, Sasol Exploration and Production International and other chemical companies. Carbon is produced for the recarburiser, aluminium, electrode and cathodic production markets. Secunda Synfuels Operations receives coal from five mines in Mpumalanga (see figure attached). After being crushed, the coal is blended to obtain an even quality distribution. Electricity is generated by both steam and gas and used to gasify the coal at a temperature of 1300°C. This produces syngas from which two types of reactor - circulating fluidised bed and Sasol Advanced SynthoTM reactors – produce components for making synthetic fuels as well as a number of downstream chemicals. Gas water and tar oil streams emanating from the gasification process are refined to produce ammonia and various grades of coke respectively. imageUrlTagReplacea79dc0c2-0dda-47ec-94e0-6f076bc8cdb6 SECUNDA CHEMICAL OPERATIONS: The Secunda Chemicals Operations hub forms part of the Southern African Operations and is the consolidation of all the chemical operating facilities in Secunda, along with Site Services activities. The Secunda Chemicals hub produces a diverse range of products that include industrial explosives, fertilisers; polypropylene, ethylene and propylene; solvents (acetone, methyl ethyl ketone (MEK), ethanol, n-Propanol, iso-propanol, SABUTOL-TM, PROPYLOL-TM, mixed C3 and C4 alcohols, mixed C5 and C6 alcohols, High Purity Ethanol, and Ethyl Acetate) as well as the co-monomers, 1-hexene, 1-pentene and 1-octene and detergent alcohol (SafolTM).

1 2 3 4 5 6 7 8