Swath sonar bathymetry data used for that dataset was recorded during RV MARIA S. MERIAN cruise MSM62/2 using Kongsberg EM1002 multibeam echosounder. The cruise took place between 23.03.2017 and 27.03.2017 in the Baltic Sea. The cruise aimed to investigate the impact of the Littorina transgression on the inflow of saline waters into the western Baltic and assessed the potential for future diminution of ventilation in the central and northern deeper basins due to isostatic uplift [CSR]. CI Citation: Paul Wintersteller (seafloor-imaging@marum.de) as responsible party for bathymetry raw data ingest and approval. During the MSM62/2 cruise, the moonpooled KONGSBERG EM1002 multibeam echosounder (MBES) was utilized to perform bathymetric mapping in shallow depths. The echosounder has a curved transducer in which 111 beams are formed for each ping while the seafloor is detected using amplitude and phase information for each beam sounding. For further information on the system, consult https://www.km.kongsberg.com/. Postprocessing and products were conducted by the Seafloor-Imaging & Mapping group of MARUM/FB5, responsible person Paul Wintersteller (seafloor-imaging@marum.de). The open source software MB-System (Caress, D. W., and D. N. Chayes, MB-System: Mapping the Seafloor, https://www.mbari.org/products/research-software/mb-system, 2017) was utilized for this purpose. A sound velocity correction profile was applied to the MSM62/2 data; there were no further corrections for roll, pitch and heave applied during postprocessing. A tide correction was applied, based on the Oregon State University (OSU) tidal prediction software (OTPS) that is retrievable through MB-System. CTD measurements during the cruise were sufficient to represent the changes in the sound velocity throughout the study area. Using Mbeditviz, artefacts were cleaned manually. NetCDF (GMT) grids of the edited data as well as statistics were created with mbgrid. The published bathymetric EM1002 grid of the cruise MSM62/2 has a resolution of 15 m. No total propagated uncertainty (TPU) has been calculated to gather vertical or horizontal accuracy. A higher resolution is, at least partly, achievable. The grid extended with _num represents a raster dataset with the statistical number of beams/depths taken into account to create the depth of the cell. The extended _sd -grid contains the standard deviation for each cell. The DTMs projections are given in Geographic coordinate system Lat/Lon; Geodetic Datum: WGS84.
Swath sonar bathymetry data used for that dataset was recorded during RV MARIA S. MERIAN cruise MSM52 using Kongsberg EM1002 multibeam echosounder. The cruise took place between 01.03.2016 and 28.03.2016 in the Baltic Sea. The cruise aimed gapless imagining of the major pre-alpine tectonic lineaments due to the fact that the Glückstadt Graben and the Avalonia-Baltica suture zone run across the southern Baltic [DOI: 10.2312/cr_msm52]. CI Citation: Paul Wintersteller (seafloor-imaging@marum.de) as responsible party for bathymetry raw data ingest and approval. During the MSM52 cruise, the moonpooled KONGSBERG EM1002 multibeam echosounder (MBES) was utilized to perform bathymetric mapping in shallow depths. It has a curved transducer of which 111 beams are formed for each ping while the seafloor is detected using amplitude and phase information for each beam sounding. For further information on the system, consult https://www.km.kongsberg.com/. Generally, the system was acquiring data throughout the entire cruise. Responsible person during this cruise / PI: Laura Frahm. Postprocessing and products were conducted by the Seafloor-Imaging & Mapping group of MARUM/FB5, responsible person Paul Wintersteller (seafloor-imaging@marum.de). The open source software MB-System (Caress, D. W., and D. N. Chayes, MB-System: Mapping the Seafloor, https://www.mbari.org/products/research-software/mb-system, 2017) was utilized for this purpose. A sound velocity correction profile was applied to the MSM52 data; there were no further corrections for roll, pitch and heave applied during postprocessing. A tide correction was applied, based on the Oregon State University (OSU) tidal prediction software (OTPS) that is retrievable through MB-System. CTD measurements during the cruise were sufficient to represent the changes in the sound velocity throughout the study area. Using Mbeditviz, artefacts were cleaned manually. NetCDF (GMT) grids of the edited data as well as statistics were created with mbgrid. The published bathymetric EM1002 grid of the cruise MSM52 has a resolution of 35 m. No total propagated uncertainty (TPU) has been calculated to gather vertical or horizontal accuracy. A higher resolution is, at least partly, achievable. The grid extended with _num represents a raster dataset with the statistical number of beams/depths taken into account to create the depth of the cell. The extended _sd -grid contains the standard deviation for each cell. The DTMs projections are given in Geographic coordinate system Lat/Lon; Geodetic Datum: WGS84.
Waterbase serves as the EEA’s central database for managing and disseminating data regarding the status and quality of Europe's rivers, lakes, groundwater bodies, transitional, coastal, and marine waters. It also includes information on the quantity of Europe’s water resources and the emissions from point and diffuse sources of pollution into surface waters. Specifically, Waterbase - Biology focuses on biology data from rivers, lakes, transitional and coastal waters collected annually through the Water Information System for Europe (WISE) – State of Environment (SoE) reporting framework. The data are expected to be collected within monitoring programs defined under the Water Framework Directive (WFD) and used in the classification of the ecological status or potential of rivers, lakes, transitional and coastal water bodies. These datasets provide harmonised, quality-assured biological monitoring data reported by EEA member and cooperating countries, as Ecological Quality Ratios (EQRs) from all surface water categories (rivers, lakes, transitional and coastal waters).
The SuK-Nord (INSPIRE) shows the geological distribution of aggregates (sand and gravel) in Northern Germany, especially north of the southernmost maximum of the Scandinavian inland ice sheet (Saalian and Elsterian glaciation). According to the Data Specifications on Mineral Resources (D2.8.III.21) and Geology (D2.8.II.4_v3.0) the content of the map is stored in two INSPIRE-compliant GML files: SuK_Nord_EarthResource_polygon.gml contains the distribution of aggreagtes (sand and gravel) as polygons. SuK_Nord_GeomorphologicFeature.gml contains the southernmost maximum of the Scandinavian inland ice sheet (Saalian and Elsterian glaciation) as lines. The GML files together with a Readme.txt file are provided in ZIP format (SuK_Nord-INSPIRE.zip). The Readme.text file (German/English) contains detailed information on the GML files content. Data transformation was proceeded by using the INSPIRE Solution Pack for FME according to the INSPIRE requirements.
The Moderate Resolution Imaging Spectroradiometer (MODIS) is a key instrument aboard the Terra (EOS AM-1) and Aqua (EOS PM-1) satellites. The MODIS-EU image mosaic is a seamless true color composite of all Terra and Acqua passes received at DLR during a single day. Daily and Near Real Time (NRT) products are available. For the composite, MODIS channels 1, 4, 3 are used. The channels are re-projected, radiometrically enhanced, and seamlessly stitched to obtain a visually appealing result. Terra passes from north to south across the equator in the morning, while Aqua passes the equator south to north in the afternoon. Both MODIS instruments are viewing the entire Earth surface every 1 to 2 days, acquiring data in 36 spectral bands.
The WOEN88 TTAAii Data Designators decode as: T1 (W): Warnings T1T2 (WO): Other A1A2 (EN): Northern Europe (Remarks from Volume-C: WARNING FOR GERMAN BIGHT (IN ENGLISH))
Intensive agricultural production in the Hai River catchment had detrimental impacts on the quantity and quality of ground and surface water. High cropping intensity, irrigation and fertilizer applications of more than 300 kg N/ha resulted in a decrease of the ground water table by more than 30 m within the last decades and severe deterioration of water quality in the Piedmont Plain Region, a part of the Hai River catchment. The shortage of water resources in the Hai River basin not only hinders the development of the local economy, but also results in severe environmental problems such as:- subsidence of the ground surface due to over-exploitation of groundwater, - degradation of ecosystems, - shrinking of rivers and lakes, - non point source pollution of soil and ground water - serious water pollution in the main channels and tributaries. Sustainable land use in that region requires a sound knowledge of the effects of single management measures. However, subsoil heterogeneity is one of the major obstacles, impeding relating cause and effect at larger scales and to assess the effect of single management strategies. In this study, a three-step up-scaling approach is suggested that combines some innovative methodologies, and enables to grasp the heterogeneities usually encountered at the management scale. First, a recently developed robust methodology will be applied to determine deep percolation and groundwater recharge in situ without requiring a fully-fledged soil hydrological model. The results can be compared to seepage data from lysimeters of the Luancheng station. Moreover, spatial heterogeneities and temporal patterns can be determined and can be related to soil hydrological properties. Second, spatial functional hydrological heterogeneity can be assessed based on principal component analysis of time series of soil water content and groundwater recharge, allowing to up-scale detailed measurements from single field sites. Third, processes affecting groundwater quality, and exchange between groundwater and surface water can be investigated using non-linear PCA of soil water, groundwater, and stream water quality data, combined with stable isotope data. The outcome of the project is expected to provide valuable contributions to scale-specific simulation of water and solute fluxes at the management scale.
The LMAX radar data is a site reflectivity product (volume scan) Horizontal resolution: 2 km x 2 km Horizontal range: 180 km (200px x 200px) Class size: 70
The FEEN53 TTAAii Data Designators decode as: T1 (F): Forecast T1T2 (FE): Extended A1A2 (EN): Northern Europe (Remarks from Volume-C: MEDIUM RANGE - WEATHER AND SEA BULLETIN FOR THE NORTH SEA (IN GERMAN))
This product is based on Vaisala RS92 radiosonde measurements of temperature, humidity, wind and pressure that have been processed following the requirements of the GCOS Reference Upper Air Network (GRUAN) that were described in Immler et al. [2010]. The GRUAN data product file comply to the requirements of GRUAN in particular by providing a full uncertainty analysis. The uncertainty is calculated according to the recommendations of the “Guide for expressing uncertainty in measurement” [GUM2008]. The total uncertainty is assessed from estimates of the calibration uncertainty, the uncertainty of corrections and statistical standard deviations. Corrections are applied such that the data is bias free according to current knowledge.
Origin | Count |
---|---|
Bund | 6952 |
Europa | 602 |
Global | 491 |
Kommune | 3 |
Land | 3184 |
Wirtschaft | 18 |
Wissenschaft | 48246 |
Zivilgesellschaft | 1 |
Type | Count |
---|---|
Daten und Messstellen | 4028 |
Ereignis | 2 |
Förderprogramm | 2558 |
Kartendienst | 1 |
Taxon | 130 |
Text | 358 |
unbekannt | 48460 |
License | Count |
---|---|
geschlossen | 1399 |
offen | 7541 |
unbekannt | 46501 |
Language | Count |
---|---|
Deutsch | 747 |
Englisch | 54835 |
Resource type | Count |
---|---|
Archiv | 1147 |
Bild | 10371 |
Datei | 12950 |
Dokument | 282 |
Keine | 4436 |
Unbekannt | 331 |
Webdienst | 93 |
Webseite | 47135 |
Topic | Count |
---|---|
Boden | 7178 |
Lebewesen und Lebensräume | 49373 |
Luft | 6428 |
Mensch und Umwelt | 55440 |
Wasser | 48087 |
Weitere | 53370 |