Das Grundgeräusch in deutschen Großstädten wird heute überwiegend durch Verkehrslärm bestimmt. Demgemäß wird von den Bundesbürgern bei Umfragen zur Lärmbelästigung durch unterschiedliche Geräuschquellen häufig der Straßenlärm an erster Stelle genannt. Belastungen durch Lärm im Wohn- und Arbeitsbereich sind offenkundig. Doch auch in der Freizeit, in der sich die Menschen erholen wollen, beeinträchtigt der Lärm das Wohlbefinden. Viele Park- und Grünanlagen, aber auch große Teile der Naherholungsgebiete sind so verlärmt, dass sie für ruhige Erholungsnutzung stark eingeschränkt sind. In den letzten Jahren sind zwar mittels technischer Neuerungen die Fahrgeräusche der einzelnen Kraftfahrzeuge leicht zurückgegangen, doch ist durch die steigende Anzahl und die Zunahme der Geschwindigkeit der Autos der Lärm insgesamt gestiegen. Neben dem Lärm von Kraftfahrzeugen, Bahn und Flugzeugen treten auch Lärmbelastungen durch Industrie, Gewerbe und Bautätigkeit auf. Hinzu kommen Nachbarschaftslärm (z.B. Geräusche von Haushalts- und Musikgeräten und Rasenmähern) sowie Lärm bei Sport- und Freizeitbetätigungen und -veranstaltungen. Die Stärke der Belästigung durch die verschiedenen Geräuschquellen wurde vom Umweltbundesamt untersucht (vgl. Abb. 1). Als Lärm bezeichnet man Schallereignisse , die von der überwiegenden Zahl der Menschen als störend eingestuft werden. Schallereignisse sind Luftdruckschwankungen mit einem Wechsel von 20 bis 20 000 Hz, die durch das menschliche Ohr wahrgenommen werden können. Die Wahrnehmbarkeit von Schallereignissen durch das menschliche Ohr reicht von der Hörschwelle mit einem Effektivwert der Luftdruckschwankungen von 0,00002 Pascal (0,0002 µbar) bis zur Schmerzschwelle mit einem Effektivwert von 20 Pascal (= 200 µbar). Um eine dem menschlichen Vorstellungsvermögen gemäße Skalierung zu erhalten, wird der Schalldruck in einem logarithmischen Maßstab als Schalldruckpegel mit der Einheit Dezibel (dB) angegeben. In dieser Werteskala reicht der genannte Wahrnehmbarkeitsbereich des menschlichen Ohres von 0 bis 120 dB. Die Lautstärkewahrnehmung des Menschen wird bestimmt durch das Zusammenspiel von physikalischem Schalldruckpegel (0 bis 120 dB) und der Frequenz (20 bis 20 000 Hz). Die größte Empfindlichkeit besitzt das menschliche Ohr im mittleren Bereich zwischen 1 000 und 4 000 Hz. Diesem Umstand trägt die mit A-Bewertung benannte Frequenzbewertung Rechnung. Geräusche tiefer (20 bis 1 000 Hz) und hoher (4 000 bis 20 000 Hz) Frequenzlagen werden bei der Ermittlung des sogenannten A-Schallpegels mit einer geringeren Gewichtung als mittlere Frequenzen berücksichtigt. A-Schalldruckpegel werden in Dezibel (A) – dB(A) – angegeben. Die bei verschiedenen Geräuschquellen auftretenden typischen A-Schallpegel sind in Abbildung 2 dargestellt. Die Störwirkung von Geräuschen wird subjektiv sehr unterschiedlich bewertet. So kann ein open air Popkonzert mit einem Schalldruckpegel von 100 dB(A) in der ersten Reihe vom Konzertbesucher als angenehm und in 1 000 m Entfernung mit einem Schalldruckpegel von 60 dB(A) von einem Anwohner als störend empfunden werden. Unfreiwillig mitgehörte, störende Geräusche sind Lärm. Verkehrsbedingte Geräusche werden durch die Mehrzahl der Bevölkerung als störend und damit als Lärm eingestuft. Lärm wird nach heutigem Erkenntnisstand als Risikofaktor betrachtet, der sich nachteilig auf das physische, psychische und soziale Wohlbefinden des Menschen auswirken kann. Allein und im Zusammenwirken mit anderen Belastungsgrößen kann Lärm gesundheitliche Beeinträchtigungen hervorrufen. Folgende Wirkungen können unterschieden werden: Verminderung der Aufmerksamkeit und Konzentrationsfähigkeit Herabsetzung der Beobachtungsfähigkeit Beeinträchtigung von Schlaf und Erholung Überreizung des Nervensystems Bluthochdruck Herz-Kreislauf-Beschwerden Schädigung des Hörvermögens. Die im Alltag auftretenden Geräusche sind häufig großen Schwankungen ausgesetzt. Ihre Belästigungsstärke wird durch den Beurteilungspegel beschrieben. Der Beurteilungspegel wird durch einen Mittelwert, den Mittelungspegel, bestimmt. Dieser wird in einem etwas komplizierten Umrechnungsverfahren berechnet, in dem die Lautstärke (Schalldruckpegel) der auftretenden Geräusche und die jeweilige Zeitdauer ihrer Einwirkung in ein Verhältnis mit der Zeitdauer des Beurteilungszeitraums gesetzt werden, z.B. die 16 Stunden am Tag von 6.00 bis 22.00 Uhr, die Nachtzeit von 22.00 bis 6.00 Uhr. Beim Straßenverkehrslärm ist der Mittelungspegel meist identisch mit dem Beurteilungspegel. An ampelgeregelten Kreuzungen und Einmündungen ergibt sich der Beurteilungspegel durch einen Zuschlag auf den Mittelungspegel, wodurch die besondere Lästigkeit der Brems- und Anfahrgeräusche berücksichtigt wird. Der Beurteilungspegel ist ein Maß für die durchschnittliche Langzeitbelastung. Er beschreibt ein (theoretisches) Dauergeräusch von konstanter Lautstärke, das – tritt es real auf – das gleiche Maß an Belästigung hervorruft, wie die realen unterschiedlich lauten Geräusche bei ihrem zeitlich verteilten Einwirken über den gleichen Zeitraum. Mit diesem Wert sind in der städtebaulichen Planung anzustrebende Zielwerte oder in der Gesetzgebung fixierte Grenzwerte zu vergleichen. Änderungen in der Verkehrsstärke führen zu Änderungen der Beurteilungspegel. Die Beeinflussung sowie die Beurteilung dieser Änderung durch den Menschen sind in Tabelle 1 dargestellt. Bei der städtebaulichen Planung sind nach der DIN 18005 vom Mai 1987 für die Lärmbelastung schalltechnische Orientierungswerte angegeben. Der angegebene Wert für Grün- und Freiflächen lautet (tags und nachts) und ist mit den in der Karte dargestellten Beurteilungspegeln zu vergleichen. In dem Gutachten “Studie der ökologischen und stadtverträglichen Belastbarkeit der Berliner Innenstadt durch den Kfz-Verkehr” wurden 1991 folgende Werte für Erholungszonen empfohlen: Die Lärmschutzverordnung der Schweiz sieht für Erholungszonen folgende Werte vor: Der gemäß DIN 18005 für Grün- und Freiflächen anzustrebende Orientierungswert von 55 dB(A) wird mit Ergebnissen der Lärmwirkungsforschung begründet. Danach treten bis zu diesem Schalldruckpegel kaum vegetative Reaktionen und keine körperlichen Schäden auf. Auch die psychischen und sozialen Beeinträchtigungen liegen in einem akzeptablen Rahmen. Bei normaler Sprechweise ist für Gesprächspartner mit 2 m Abstand eine zufriedenstellende Sprachverständlichkeit gegeben.
Das Projekt "Geräuschwirkungen bei der Nutzung von Windenergie an Land" wird vom Umweltbundesamt gefördert und von deBAKOM Gesellschaft für sensorische Meßtechnik mbH durchgeführt. Aufgabenbeschreibung: Die Umweltschutzanforderungen an genehmigungsbedürftige Anlagen, wie z. B. Windenergieanlagen, sind im Bundes-Immissionsschutzgesetz (BImSchG) geregelt. Die Anforderungen hinsichtlich des Lärmschutzes werden für Anlagen in der TA Lärm und für Windenergieanlagen ergänzend in den 'LAI-Hinweisen zum Schallimmissionsschutz bei WKA' konkretisiert. Im Rahmen des geplanten Vorhabens zu den Geräuschimmissionen von WEAs sollen Forschungsfragen geklärt werden, wie z. B. über Schallausbreitung bei Windenergieanlagen. Zudem soll die Geräuschentwicklung moderner Windenergieanlagen und deren Auswirkung auf die Bevölkerung ausführlich untersucht werden. Dabei sollen vor allem Langzeitwirkungen von solchen Dauergeräuschen erfasst werden, die nur knapp unterhalb der Richtwerte liegen. Besonderes Augenmerk soll auf charakteristische Belästigungspotentiale durch tieffrequente Geräuschanteile, Amplitudenmodulation und Schwankungsstärke gelegt werden. Schließlich sollen Möglichkeiten zur Verminderung von besonders störenden Geräuschemissionen von Windenergieanlagen aufgezeigt werden. Die Erkenntnisse sollen in einem verständlichen Ratgeber adressatengerecht aufbereitet werden. Der Ratgeber und die Ergebnisse der Untersuchung sollen auf einem Symposium öffentlichkeitswirksam allen relevanten Stakeholdern präsentiert und mit diesen erörtert werden.
In Berlin sind zur Zeit rund 1,28 Millionen Kraftfahrzeuge zugelassen, deren Nutzung nicht nur zu einer erheblichen Verlärmung des Straßenraumes führt, sondern darüber hinaus auch die Wohn- und Aufenthaltsqualität in den an den Hauptnetzstraßen gelegenen Gebäuden und auf den Grundstücken sowohl am Tage als auch in der Nacht nachhaltig vermindert. Besonders gravierend sind diese Auswirkungen bei Straßen mit Verkehrsmengen über 50.000 Kfz/24 Std. (z. B. Sachsendamm, Schöneberger Ufer, Frankfurter Allee, Grunerstraße und Seestraße). Diese Straßen umfassen zwar nur 1,7 % der Gesamtlänge des ca. 1.200 km langen übergeordneten Straßennetzes (Hauptnetz), übernehmen jedoch ca. 19 % aller Fahrleistungen. Durch technisch – konstruktive Veränderungen an den Fahrzeugen wurden in den vergangenen Jahren erhebliche Pegelminderungen bei den Antriebsgeräuschen erzielt. Die nach EU-Recht zulässige Geräuschemission von Kraftfahrzeugen lag 1983 ungefähr 10 dB über der heutigen Grenze, d. h. 10 Fahrzeuge aktueller Bauart sind – bezogen auf die Antriebsgeräusche – nicht lauter als ein Fahrzeug, das 1983 seine Zulassung erhielt. Trotzdem ist es insgesamt auf Berliner Straßen nicht leiser geworden. Ursache ist die erhebliche Zunahme des Kraftfahrzeugverkehrs aber auch die Tatsache, daß bei der Minderung der Reifen- / Fahrbahngeräusche kaum Fortschritte erzielt wurden. Die Einführung von Tempo 30-Zonen für 70 % aller Straßen erbrachte dort zwar eine tendenzielle Reduzierung der Verkehrslärmbelastung, in den Hauptverkehrsstraßen hat der Lärm jedoch zugenommen. Spürbare Entlastungen hat es auch an Abschnitten des Straßenbahnnetzes gegeben, wo die Gleiskörper rekonstruiert worden sind. Insgesamt stellt der Lärm des übergeordneten Straßennetzes – verglichen mit anderen Verursachern wie Eisenbahn- und Luftverkehr, Industrie und Gewerbe sowie Sport- und Freizeitlärm sowohl von seinem Ausmaß als auch von der Zahl der Betroffenen her die problematischste Belastung dar. Unter Lärm ist jede Art von Geräusch zu verstehen, das unerwünscht ist, stört oder belästigt und das physische, psychische und soziale Wohlbefinden beeinträchtigt. Je nach Dauer und Intensität der Einwirkung kann Lärm zu einer Vielzahl von Problemen führen. Dazu gehören u. a.: Verminderung der Konzentrationsfähigkeit, Störung der Kommunikation, Störung von Schlaf und Erholung, negative Beeinflussung des vegetativen Nervensystems (Bluthochdruck, Herz-Kreislauf-Beschwerden, Störungen der Verdauungsorgane), Beeinträchtigung bzw. Schädigung des Hörvermögens, Risikoerhöhung für Herz-/Kreislauferkrankungen. Lärm ist subjektiv bewerteter Schall und folglich abhängig von der jeweiligen Einstellung zum vorhandenen Geräusch, der augenblicklichen Befindlichkeit, der gerade ausgeübten Tätigkeit, der Höhe des gegenwärtigen Ruheanspruchs usw.. Schwer skalierbar ist auch die Lästigkeit eines Geräusches. Neben den vorgenannten subjektiven Parametern spielen u. a. auch eine Rolle: der Informationsgehalt des Geräusches, die Zeit des Auftretens, der zeitliche Verlauf, der frequenzmäßige Verlauf, Impuls- und Tonhaltigkeit, der Übertragungsweg, die spezifische Quelle. Physikalisch gesehen entsteht Schall durch schwingende Körper, d. h. durch Druckschwankungen innerhalb von elastischen Medien (Gase, Flüssigkeiten, feste Körper). Die Anregung von Druckschwankungen kann durch Schlag, Reibung oder strömende Gase (Prinzip aller Musikinstrumente) ausgelöst werden. Die entstandenen Druckschwankungen breiten sich im Umgebungsmedium Luft mit hoher Geschwindigkeit (330 m/s) aus und können bei ausreichender Intensität vom Ohr wahrgenommen werden, wenn die Zahl der Schwingungen pro Sekunde (gemessen in Hertz [Hz]) mehr als 16 und weniger als 20.000 beträgt. Der vom menschlichen Ohr wahrnehmbare Bereich der Druckschwankungen in der Luft (Schwingungsamplitude oder Lautstärke) liegt zwischen 20 µPa (Hörschwelle) und 200.000.000 µPa (Schmerzgrenze). Mikropascal (µPa) ist die Maßeinheit für den Druck. Zur Vermeidung des Umgang mit derartig großen Zahlen wurde ein logarithmischer Maßstab eingeführt, die sog. Dezibel (dB) – Skala. Dabei entsprechen 20 µPa, also der Hörschwelle, 0 dB und 200.000.000 µPa (Schmerzgrenze) 140 dB. Die Dezibelskala, die den ”Schalldruckpegel” beschreibt, ist damit keine absolute Maßeinheit, wie z. B. das Gramm oder das Meter, sondern sie gibt nur das Verhältnis zur Hörschwelle wieder, d. h. sie sagt aus, um wieviel ein bestimmtes Geräusch die Hörschwelle übersteigt. Geräusche bestehen in der Regel aus einem Gemisch von hohen, mittleren und tiefen Frequenzanteilen. Das menschliche Ohr nimmt diese Frequenzanteile mit einer unterschiedlichen Empfindlichkeit wahr. Um diese Eigenschaften des Ohres nachzubilden, sind Meßgeräte mit Bewertungsfiltern ausgestattet. Das Bewertungsfilter ”A” zeigt für die üblichen Umweltgeräusche die beste Übereinstimmung zwischen Ohr und Meßgerät. Die korrigierten Schalldruckpegel werden deshalb in ”dB(A)” angegeben. In unserer Umwelt vorhandene Geräusche, z. B. auch der Verkehrslärm, sind selten gleichförmig, sondern schwanken sowohl kurzzeitig als auch in ihrem Tages- und Wochengang (vgl. Karte Verkehrsmengen 07.01.). Zur Beurteilung und zum Vergleich von Geräuschen benutzt man deshalb zweckmäßigerweise einen ”Einzahlwert”, der als Mittelwert des Schalldruckpegelverlaufes gebildet wird. Mit anderen Worten: ein innerhalb eines bestimmten Zeitabschnittes schwankendes Geräusch wird durch ein Dauergeräusch mit konstantem Pegel und gleicher Energie ersetzt. Der ”Mittelungspegel” wird deshalb auch als (energie-) ”äquivalenter Dauerschallpegel” bezeichnet. Der Mittelungspegel ist also nicht als arithmetisches Mittel zu verstehen, sondern entspricht physikalisch gesehen dem energetischen Mittel. Bei diesem Verfahren werden Lärmspitzen besonders berücksichtigt. Für Rechenoperationen mit Schalldruckpegeln gelten die Logarithmengesetze. So erhöht z. B. die Verdoppelung einer Zahl gleichlauter Schallquellen (Fahrzeuge) den Schalldruckpegel um 3 dB (entspricht 10·log 2); eine Verdreifachung um 5 dB (entspricht 10·log 3), eine Verzehnfachung um 10 dB (10·log 10). Ein Geräusch mit einem um 10 dB(A) höheren Pegel wird etwa doppelt so laut empfunden. In gleicher Weise wirken sich auch Vervielfachungen der Einwirkzeiten von Geräuschen innerhalb eines bestimmten Beurteilungszeitraumes (Tag bzw. Nacht) aus. Das heißt, eine Verlängerung der Geräuscheinwirkung, z. B. von 10 auf 20 Minuten oder von 2 auf 4 Stunden, erhöht den Mittelungspegel um 3 dB. Eine Verkürzung der Einwirkungsdauer eines Geräusches von 600 auf 60 Minuten entspräche dann einer Pegelsenkung von 10 dB. Im Vergleich mit Grenz- oder Richtwerten wird üblicherweise der sog. ”Beurteilungspegel” angegeben. Dieser unterscheidet sich vom Mittelungs- bzw. äquivalenten Dauerschallpegel durch bestimmte Zu- oder Abschläge, die die unterschiedliche Lästigkeit der Geräusche berücksichtigen. Bei Straßenverkehrslärm ist die erhöhte Lästigkeit der Brems- und Anfahrgeräusche im Bereich von Lichtsignalanlagen durch einen Zuschlag zu berücksichtigen. Der empirisch belegten geringeren Lästigkeit des Schienenverkehrslärms wird durch einen Abschlag, dem sog. Schienenbonus, entsprochen. Die gesetzlichen Regelungen für die Begrenzung der Straßenverkehrslärmimmission an bestehenden Straßen sind derzeit noch unbefriedigend. Das Bundes-Immissionsschutzgesetz und die Verkehrslärmschutzverordnung (16. BImSchV) sowie die Verkehrswege- Schallschutzmaßnahmenverordnung (24. BImSchV) gelten nur für den Bau oder die wesentliche Änderung von Straßen- und Schienenwegen. Bestehende Verkehrslärmsituationen werden von diesen Vorschriften nicht reglementiert. Nach der 16. BImSchV gelten folgende Immissionsgrenzwerte: Bei vorhandenen Straßen und Stadtautobahnen in der Baulast des Bundes ergeben sich dagegen Lärmsanierungsmöglichkeiten nach den ”Richtlinien für den Verkehrslärmschutz an Bundesfernstraßen in der Baulast des Bundes-VLärmSchR 97” durch eine freiwillige Verpflichtung des Bundesministers für Verkehr. Lärmsanierung, insbesondere durch Schallschutzfenster, ist hiernach dann möglich, wenn der Beurteilungspegel einen der folgenden Richtwerte übersteigt: Die nach diesen Richtlinien möglichen Lärmsanierungsmaßnahmen sind in Berlin weitgehend umgesetzt. Unter bestimmten Voraussetzungen sind Schallschutzmaßnahmen im Bereich des Straßenverkehrs auch über straßenverkehrsrechtliche Maßnahmen nach § 45 StVO möglich. Regelungen für diesen Sachverhalt sind in den ”Vorläufigen Richtlinien des Bundesministeriums für Verkehr für straßenverkehrsrechtliche Maßnahmen zum Schutz der Bevölkerung vor Lärm” enthalten. Die Tag-/Nacht – Richtwerte liegen hiernach bei 70/60 dB(A) für Wohngebiete und ähnlich schutzwürdige Einrichtungen sowie 75/65 dB(A) für Kern-, Dorf-, Misch- und Gewerbegebiete.
Der vorliegende Text erläutert aufgrund der engen inhaltlichen Bezüge die beiden Karten 07.02 Straßenverkehrslärm und 07.04 Schienenverkehrslärm. Die vorliegenden Karten stellen eine Aktualisierung des Datenstandes 1993/1994 (vgl. Karten 07.02 und 07.04 Ausgabe 1997 dar und enthalten über die Darstellung der Lärmbelastung durch PKW, LKW, Busse und Straßenbahnen hinaus nunmehr in einer eigenen Darstellung auch die von S- und Fernbahn sowie der U-Bahn in oberirdischer Streckenführung ausgehenden Lärmimmissionen. Lärm ist, gerade in einer Großstadt wie Berlin, zu einem ständigen Bestandteil unseres Lebens geworden. Die unterschiedlichen Nutzungen in einer Stadt auf engem Raum wie Wohnen, Arbeiten und Verkehr führen nahezu zwangsläufig zu Konflikten über die Zumutbarkeit bzw. Unzumutbarkeit von Lärm. Der Verkehr und hierbei insbesondere der Kraftfahrzeugverkehr stellt dabei den Hauptverursacher dar. In den letzten Jahren hat sich daher die Erkenntnis immer mehr durchgesetzt, dass Lärm eine ernstzunehmende Umweltbelastung ist. Durch den Lärm kann es direkt und indirekt zu Wirkungen auf das Wohlbefinden und auch auf die Gesundheit des Einzelnen kommen. Erkenntnisse der Lärmwirkungsforschung weisen darauf hin, dass bei Beurteilungspegeln zwischen 55 und 60 dB(A) tags die Lästigkeit des Verkehrslärms ansteigt, über 60 bis 65 dB(A) erkennbar zunimmt und ab 65 dB(A) vermutlich Gesundheitsrisiken beginnen, die ab 70 dB(A) tags signifikant belegt sind. Als Ursache für gesundheitsschädigende Auswirkungen sehen die Lärmwirkungsforscher des Umweltbundesamtes im Wesentlichen die nächtlichen Lärmbelastungen über 55 dB(A) an, weil Schlafstörungen in besonderem Maße zu Belastungen des Herz-Kreislauf-Systems führen (vgl. Ising et al, 1997). Wie entsteht Lärm Physikalisch gesehen entsteht Schall durch schwingende Körper, d. h. durch Druckschwankungen innerhalb von elastischen Medien (Gase, Flüssigkeiten, feste Körper). Die Anregung von Druckschwankungen kann durch Schlag, Reibung oder strömende Gase (Prinzip aller Musikinstrumente) ausgelöst werden. Die entstandenen Druckschwankungen breiten sich im Umgebungsmedium Luft mit hoher Geschwindigkeit (330 m/s) aus und können bei ausreichender Intensität vom Ohr wahrgenommen werden, wenn die Zahl der Schwingungen pro Sekunde (gemessen in Hertz [Hz]) mehr als 16 und weniger als 20.000 beträgt. Der vom menschlichen Ohr wahrnehmbare Bereich der Druckschwankungen in der Luft (Schwingungsamplitude oder Lautstärke) liegt zwischen 20 µPa (Hörschwelle) und 200.000.000 µPa (Schmerzgrenze). Mikropascal (µPa) ist die Maßeinheit für den Druck. Zur Vermeidung des Umgang mit derartig großen Zahlen wurde ein logarithmischer Maßstab eingeführt, die sog. Dezibel (dB) – Skala. Dabei entsprechen 20 µPa, also der Hörschwelle, 0 dB und 200.000.000 µPa (Schmerzgrenze) 140 dB. Die Dezibelskala, die den “Schalldruckpegel” beschreibt, ist damit keine absolute Maßeinheit, wie z. B. das Gramm oder das Meter, sondern sie gibt nur das Verhältnis zur Hörschwelle wieder, d. h. sie sagt aus, um wieviel ein bestimmtes Geräusch die Hörschwelle übersteigt. Geräusche bestehen in der Regel aus einem Gemisch von hohen, mittleren und tiefen Frequenzanteilen. Das menschliche Ohr nimmt diese Frequenzanteile mit einer unterschiedlichen Empfindlichkeit wahr. Um diese Eigenschaften des Ohres nachzubilden, sind Messgeräte mit Bewertungsfiltern ausgestattet. Das Bewertungsfilter “A” zeigt für die üblichen Umweltgeräusche die beste Übereinstimmung zwischen Ohr und Messgerät. Die korrigierten Schalldruckpegel werden deshalb in “dB(A)” angegeben. In unserer Umwelt vorhandene Geräusche, z. B. auch der Verkehrslärm, sind selten gleichförmig, sondern schwanken sowohl kurzzeitig als auch in ihrem Tages- und Wochengang (vgl. Karte Verkehrsmengen 07.01 Ausgabe 2001). Zur Beurteilung und zum Vergleich von Geräuschen benutzt man deshalb zweckmäßigerweise einen “Einzahlwert”, der als Mittelwert des Schalldruckpegelverlaufes gebildet wird. Mit anderen Worten: ein innerhalb eines bestimmten Zeitabschnittes schwankendes Geräusch wird durch ein Dauergeräusch mit konstantem Pegel und gleicher Energie ersetzt. Der “Mittelungspegel” wird deshalb auch als (energie-) “äquivalenter Dauerschallpegel” bezeichnet. Der Mittelungspegel ist also nicht als arithmetisches Mittel zu verstehen, sondern entspricht physikalisch gesehen dem energetischen Mittel. Bei diesem Verfahren werden Lärmspitzen besonders berücksichtigt. Für Rechenoperationen mit Schalldruckpegeln gelten die Logarithmengesetze. So erhöht z. B. die Verdoppelung einer Zahl gleichlauter Schallquellen (Fahrzeuge) den Schalldruckpegel um 3 dB (entspricht 10·log 2); eine Verdreifachung um 5 dB (entspricht 10·log 3), eine Verzehnfachung um 10 dB (10·log 10). Ein Geräusch mit einem um 10 dB(A) höheren Pegel wird etwa doppelt so laut empfunden. In gleicher Weise wirken sich auch Vervielfachungen der Einwirkzeiten von Geräuschen innerhalb eines bestimmten Beurteilungszeitraumes (Tag bzw. Nacht) aus. Das heißt, eine Verlängerung der Geräuscheinwirkung, z. B. von 10 auf 20 Minuten oder von 2 auf 4 Stunden, erhöht den Mittelungspegel um 3 dB. Eine Verkürzung der Einwirkungsdauer eines Geräusches von 600 auf 60 Minuten entspräche dann einer Pegelsenkung von 10 dB. Im Vergleich mit Grenz- oder Richtwerten wird üblicherweise der sog. “Beurteilungspegel” angegeben. Dieser unterscheidet sich vom Mittelungs- bzw. äquivalenten Dauerschallpegel durch bestimmte Zu- oder Abschläge, die die unterschiedliche Lästigkeit der Geräusche berücksichtigen. Beim Straßenverkehrslärm wird die erhöhte Lästigkeit der Brems- und Anfahrgeräusche im Bereich von Lichtsignalanlagen durch entfernungsabhängige Zuschläge berücksichtigt. Der empirisch belegten geringeren Lästigkeit des Schienenverkehrslärms wird durch einen Abschlag, dem sog. Schienenbonus, entsprochen. Gesetzliche Regelungen Das Bundes-Immissionsschutzgesetz behandelt in den §§ 41 bis 43 die Lärmvorsorge, d. h. die Berücksichtigung der Belange des Lärmschutzes beim Neubau oder der wesentlichen Änderung von Straßen und Schienenwegen. Konkretisiert wurden diese Vorschriften durch die Verkehrslärmschutzverordnung (16. BImSchV) und die Verkehrswege- Schallschutzmaßnahmenverordnung (24. BImSchV). Wenn im Rahmen der beim Neubau, bzw. wesentlichen Änderung von Verkehrswegen notwendigen Planverfahren eine Überschreitung der in Tabelle 1 genannten Grenzwerte prognostiziert wird, muss entsprechend den genannten Verordnungen Lärmvorsorge durchgeführt werden, d. h. in der Regel Bau von aktiven oder passiven Schallschutzmaßnahmen. Für bestehende Straßen gibt es keine verbindlichen gesetzlichen Regelungen, die die Einhaltung bestimmter Lärmbelastungen vorschreiben. Bei Straßen in der Baulast des Bundes – in Berlin Autobahnen sowie Bundesfernstraßen – bestehen dagegen Lärmsanierungsmöglichkeiten nach den “Richtlinien für den Verkehrslärmschutz an Bundesfernstraßen in der Baulast des Bundes-VLärmSchR 97” durch eine freiwillige Verpflichtung des Bundesministers für Verkehr. Lärmsanierung, insbesondere durch Schallschutzfenster, ist hiernach dann möglich, wenn der Beurteilungspegel einen der folgenden Richtwerte übersteigt. Die nach diesen Richtlinien möglichen Lärmsanierungsmaßnahmen sind in Berlin weitgehend umgesetzt. Eine analoge Regelung zur Lärmsanierung auf freiwilliger Basis gibt es seit kurzem auch für Bahnstrecken. Hier ist zunächst eine Lärmsanierung für Bereiche mit besonders hohen Belastungen beabsichtigt. Unter bestimmten Voraussetzungen sind Schallschutzmaßnahmen im Bereich des Straßenverkehrs auch über straßenverkehrsrechtliche Maßnahmen nach § 45 StVO möglich. Danach kann die Straßenverkehrsbehörde straßenverkehrsrechtliche Anordnungen – wie z. B. LKW-Fahrverbot oder Geschwindigkeitsreduzierung zum Schutz der Wohnbevölkerung vor Lärm und Abgasen anordnen.
Das Projekt "Beurteilung der Laestigkeit von zeitlich schwankenden Schallreizen" wird vom Umweltbundesamt gefördert und von Technische Universität Berlin, Fachbereich 06 Verfahrenstechnik, Umwelttechnik, Werkstoffwissenschaften, Institut für Technische Akustik durchgeführt. Vergleich der Laestigkeit nicht stationaerer Schalle mit der Laestigkeit stationaerer Schalle (Dauerschall); Anwendung auf Pegel-Mittelungsverfahren.
Das Projekt "Messung, Modellierung und Bewertung der Vibrationsrammung in Bezug auf Installation, Schallemissionen und Auswirkungen auf Schweinswale im Offshore-Windpark 'KASKASI II'" wird vom Umweltbundesamt gefördert und von RWE Offshore Wind GmbH durchgeführt. Ziel des Verbundvorhabens VISSKA ist es zu untersuchen und nachzuweisen, ob das innovative Vibrationsrammverfahren als Gründungsmethode für Offshore-Fundamente hinsichtlich der Installationsdauer und der Schalleinträge ins Wasser eine schallärmere und naturverträgliche Alternative zum Impulsrammverfahren darstellt. Das Projekt wird begleitend zur Errichtung des Offshore-Windparks 'KASKASI II' durchgeführt. Durch die Entwicklung und Validierung von Prognosemodellen zur Einbringbarkeit und zur Schallentwicklung sowie durch die Untersuchung der Reaktion von Schweinswalen auf den Dauerschall soll die Überführung des neuartigen Installationsverfahrens in den Stand der Technik ermöglicht werden.
Das Projekt "Teilvorhaben: Messung und Modellierung von Vibrationsrammschall und dessen Auswirkungen auf Schweinswale" wird vom Umweltbundesamt gefördert und von itap - Institut für technische und angewandte Physik GmbH durchgeführt. Ziel des Verbundvorhabens VISSKA ist es zu untersuchen und nachzuweisen, ob das innovative Vibrationsrammverfahren als Gründungsmethode für Offshore-Fundamente hinsichtlich der Installationsdauer und der Schalleinträge ins Wasser eine schallärmere und naturverträgliche Alternative zum Impulsrammverfahren darstellt. Das Projekt wird begleitend zur Errichtung des Offshore-Windparks 'KASKASI II' durchgeführt. Durch die Entwicklung und Validierung von Prognosemodellen zur Einbringbarkeit und zur Schallentwicklung sowie durch die Untersuchung der Reaktion von Schweinswalen auf den Dauerschall soll die Überführung des neuartigen Installationsverfahrens in den Stand der Technik ermöglicht werden. Im Teilvorhaben der itap GmbH werden umfängliche Unterwasserschallmessungen vor, während und nach der Installation der Monopiles im Vibrationsrammverfahren durchgeführt. Ziel ist der Aufbau einer qualitätsgesicherten Unterwasserschalldatenbasis für Dauerschalleinträge nach der MSRL (Deskriptor 11.2), um damit ein empirisches Prädiktionsmodell für Unterwasserschall zu entwickeln, mit dessen Hilfe Lärmkarten für die ökologische Bewertung des Vibrationsrammverfahrens generiert werden können.
Das Projekt "Teilvorhaben: Untersuchung und Bewertung der Auswirkungen von Vibrationsrammungen auf Schweinswale" wird vom Umweltbundesamt gefördert und von BioConsult SH GmbH & Co. KG durchgeführt. Ziel des Verbundvorhabens VISSKA ist es, zu untersuchen und nachzuweisen, ob das innovative Vibrationsrammverfahren als Gründungsmethode für Offshore-Fundamente hinsichtlich der Installationsdauer und der Schalleinträge ins Wasser eine schallärmere und naturverträgliche Alternative zum Impulsrammverfahren darstellt. Das Projekt wird begleitend zur Errichtung des Offshore-Windparks 'KASKASI II' durchgeführt. Durch die Entwicklung und Validierung von Prognosemodellen zur Einbringbarkeit und zur Schallentwicklung sowie durch die Untersuchung der Reaktion von Schweinswalen auf den Dauerschall soll die Überführung des neuartigen Installationsverfahrens in den Stand der Technik ermöglicht werden. Im Teilvorhaben von BioConsult SH werden mögliche Reaktionen von Schweinswalen auf die Vibrationsrammungen sowie andere anthropogene Schallquellen , wie z.B. Schiffsverkehr, untersucht. Hierfür werden Schweinswale mittels digitalen hochaufgelösten Video-Flugsurveys und durch die kontinuierliche Aufnahme ihrer Echoortungsrufe durch spezielle Schweinswal-Detektoren (C-PODs) im und um den Bereich des OWP 'KASKASI II' vor, während und nach der Vibrationsrammung erfasst. Mit diesen Daten kann die räumliche und zeitliche Verteilung von Schweinswalen in Abhängigkeit zu den Bauarbeiten analysiert und bewerten werden.
Das Projekt "Teilvorhaben: Numerische Modellierung und Simulation von Pfahlinstallation und Unterwasserschallemissionen" wird vom Umweltbundesamt gefördert und von Technische Universität Berlin, Institut für Bauingenieurwesen, Fachgebiet Grundbau und Bodenmechanik durchgeführt. Ziel des Verbundvorhabens VISSKA ist es, zu untersuchen und nachzuweisen, ob das innovative Vibrationsrammverfahren als Gründungsmethode für Offshore-Fundamente hinsichtlich der Installationsdauer und der Schalleinträge ins Wasser eine schallärmere und naturverträgliche Alternative zum Impulsrammverfahren darstellt. Das Projekt wird begleitend zur Errichtung des Offshore-Windparks 'KASKASI II' durchgeführt. Durch die Entwicklung und Validierung von Prognosemodellen zur Einbringbarkeit und zur Schallentwicklung sowie durch die Untersuchung der Reaktion von Schweinswalen auf den Dauerschall soll die Überführung des neuartigen Installationsverfahrens in den Stand der Technik ermöglicht werden. Im Teilvorhaben der TU Berlin werden numerische Modelle für die Pfahlinstallation und den dabei erzeugten Unterwasserschall entwickelt und anhand der in VISSKA gewonnenen Messdaten validiert. Ziel ist die Schaffung eines Übertragungsmodells, mit dem der Eindringvorgang und der zu erwartende Unterwasserschalleintrag für zukünftige Windpark-Projekte prognostiziert werden kann.
Das Projekt "Der Einfluss von Lärm auf Fische" wird vom Umweltbundesamt gefördert und von Universität Wien, Formal- und Naturwissenschaftliche Fakultät, Institut für Zoologie durchgeführt. Im Laufe der letzten Jahre kam zu den natürlichen Schallpegeln unter Wasser im zunehmenden Ausmaß Lärm von Schiffen, Kraftwerken und dergleichen hinzu. Diese 'akustische Umweltverschmutzung' hat verschiedene Auswirkungen auf Verhalten, Physiologie, Kommunikation und Fitness aquatischer Tiere. Während jedoch über die Auswirkungen von anthropogenem Lärm auf Säugetiere, insbesondere Wale, schon einiges bekannt ist, ist unser Wissen bei Fischen sehr gering. Einige wenige Daten zeigen, dass Lärm das Hörvermögen partiell verschlechtert bzw. auch die Hörzellen schädigt. Jedoch wissen wir beinahe nichts über die Auswirkungen auf akustische Kommunikation oder inwieweit Lärm Stress auslöst. Dies soll im Zuge von drei Experimentreihen untersucht werden. In einer ersten Phase soll geklärt werden, ob und inwieweit Lärm das Hörvermögen von Hörspezialisten (diese besitzen morphologische Strukturen zur Verbesserung ihres Hörvermögens) und Nichtspezialisten unterschiedlich beeinflusst. Die Hörempfindlichkeit soll über den gesamten Hörbereich gemessen werden, wobei sowohl Weißes Rauschen (gleichmäßige Verteilung der Energie auf alle Frequenzen), als auch im Freiland Unterwasser aufgenommener Lärm verwendet werden. Die Hörempfindlichkeit wird mittels akustisch hervorgerufener Hirnstammpotentiale (ABRs) gemessen werden. Die ABR-Methode ist eine nichtinvasive, elektrophysiologische Methode, die im Bioakustik-Labor des Institutes für Zoologie im Zuge des Vorprojektes erfolgreich etabliert wurde. Der Einfluss auf akustische Kommunikation soll untersucht werden, indem Hirnstammpotentiale als Reaktion auf arteigene Laute unter Lärmeinfluss analysiert werden. Dies wird nach entsprechender Adaptierung mit Hilfe der ABR-Methode geschehen. Die Auslösung von Stress durch Lärm wird über die Bestimmung von Stresshormonen, insbesondere Cortisol, erfolgen. Dies geschieht in Kooperation mit Dr. Rui Oliviera vom Instituto Superior de Psicologia Aplicada in Lissabon, der eine nichtinvasive Methode zur Bestimmung von Steroidhormonen im Wasser entwickelt hat. Für Vergleichszwecke werden bei allen Versuchsansätzen lautproduzierende Hörspezialisten wie Welse, Karpfen- und Labyrinthfische Nichtspezialisten wie Sonnen- und Buntbarsche gegenübergestellt werden. Dies wird die erste umfassende Studie sein, die den Einfluss von Lärm auf das Hörvermögen, die akustische Kommunikation und die Stressantwort der Fische aufzeigt. Gemeinsam mit Daten zur Biologie wird sie helfen, die unmittelbaren Effekte von anthropogenem Lärm und dessen Gefahren für Fische darzulegen.