Auf den innerhalb der mit Nitrat belasteten Gebiete liegenden landwirtschaftlichen Flächen bestehen nach § 13a DüV strengere Anforderungen für die Düngung aus Gründen des Grundwasserschutzes. Die Maßnahmen sind notwendig, um die Ziele nach EG-Wasserrahmenrichtlinie und Nitratrichtlinie hinsichtlich der Nitratbelastung des Grundwassers zu erreichen und auf Dauer einzuhalten. Die Ausweisung dieser "roten Gebiete" mit Stand 01/2024 erfolgte durch das LANUV NRW nach den Vorgaben der Allgemeinen Verwaltungsvorschrift zur Ausweisung von mit Nitrat belasteten und eutrophierten Gebieten (AVV GeA) vom 10.08.2022. Grundlage für die Ausweisung sind die Grundwassermessstellen des Ausweisungsmessnetzes nach § 4 AVV GeA. Dieses Messnetz enthält alle Messstellen des WRRL-Messnetzes Qualität (WRRL-Messstellen) und des EUA-/Nitrat-Messnetzes, sofern sie den Anforderungen nach Anlage 1 AVV GeA entsprechen. Nach § 3 und § 5 AVV GeA muss bei der Ermittlung der Nitratkonzentrationen in Gebieten, in denen denitrifizierende Verhältnisse (Nitratabbau) im Grundwasser vorliegen, gemäß Anlage 2 der Grundwasserverordnung (GrwV) der Nitratgehalt im Grundwasser vor der Denitrifikation nach der bestverfügbaren Methodik berechnet werden. Dieser Wert muss entsprechend - sofern höher – anstelle der Nitratkonzentration berücksichtigt werden. Ausgangsflächen für die Ausweisung sind die Grundwasserkörper nach EG-Wasserrahmenrichtlinie der dritten Zustands- und Trendbewertung, in denen eine Nitratbelastung oder ein anhaltend steigender Nitrattrend aktuell besteht (Datengrundlage WRRL-Messstellen des 3. Monitoringzyklus 2013-2018). Zusätzlich müssen Grundwasserkörper (GWK) berücksichtigt werden, innerhalb derer eine Messstelle des Ausweisungsmessnetzes mit landwirtschaftlichem Nutzungseinfluss eine Überschreitung des Nitratschwellenwertes oder einen steigenden Nitrattrend oder unter Berücksichtigung der Denitrifikation (s.o.) eine Überschreitung des Nitratschwellenwertes aufweist. Im nächsten Schritt erfolgt innerhalb dieser betroffenen GWK eine Abgrenzung zwischen belasteten und unbelasteten Teilgebieten (immissionsbasierte Abgrenzung). Dazu werden neben den an den Messstellen des Ausweisungsmessnetzes gemessenen Nitratkonzentrationen (2016-2019) hydrogeologische, hydraulische oder hydrogeologische und hydraulische Kriterien auf Grundlage von Grundwassergleichenkarten, einer modellierten Grundwasseroberfläche des Landes, und hydrogeologischen Karten verwendet. Die so abgegrenzten belasteten Teilgebiete werden als mit Nitrat belastete Gebiete nach § 13a DüV ausgewiesen. Sofern ein Anteil von mindestens 20 Prozent einer landwirtschaftlichen Referenzparzelle (in NRW: Feldblock) innerhalb eines belasteten Gebiets liegt, wird entsprechend § 7 AVV GeA deren Gesamtfläche den mit Nitrat belasteten Gebieten zugerechnet. Zur Klärung der Betroffenheit der einzelnen landwirtschaftlichen Flächen ab 01.01.2024 dient das Thema "Betroffene Feldblöcke (Stand: 21.09.2023) innerhalb der mit Nitrat belasteten Gebiete (01/2024)".
Effekte im Rahmen der Genfer Luftreinhaltekonvention
Bezugszeitraum 2014-2016, berechnet durch Forschungszentrum Jülich (Stand 2018), Die Karte der Nitratkonzentration im Sickerwasser 2014-2016 ist ein im Rahmen des Koope-rationsprojekts GROWA+NRW2021 erstelltes Berechnungsergebnis der Modellkette RAUMIS-mGROWA-DENUZ-WEKU. Grundlage für die enthaltenen Ergebniswerte sind die flächendifferenzierten Werte des verlagerbaren Stickstoffgehalts im Boden, die Denitrifikati-onsbedingungen der Böden, die nutzbare Feldkapazität des effektiven Wurzelraumes auf Basis der Bodeneinheiten der BK50 (Stand 2016) sowie die auf Basis des Wasserhaushalts-modells mGROWA berechnete Sickerwasserrate. Als Zwischenergebnis wurde aus der Si-ckerwasserrate und der nFKWe die Verweilzeit im Boden berechnet. Mit Hilfe des reaktiven Transportmodells DENUZ wurden ausgehend von den flächendifferenzierten Werten des ver-lagerbaren Stickstoffgehalts im Boden, der Denitrifikationsbedingungen der Böden und der Verweilzeit des Sickerwassers im Boden der Nitratabbau im Boden berechnet. Zu dem aus der Differenz aus verlagerbarer N-Menge im Boden und Nitratabbau im Boden berechneten Stickstoffaustrag aus dem Boden werden zusätzlich N-Einträge aus Kleinkläranlagen sowie aus urbanen Quellen addiert. Die so gebildete Summe wurde nachfolgend über die Sicker-wasserrate und entsprechende Faktoren in die Nitratkonzentration im Sickerwasser umge-rechnet. Die in der Karte dargestellten Werte können für das Grundwasser als potentielle Nitrateintrags¬konzentration angesehen werden, sofern im entsprechenden Gebiet Grundwasser neu gebil¬det wird und ein Nitratabbau in den Grundwasserdeckschichten unwahrscheinlich ist. Auf Flä¬chen bzw. in Gebieten mit überwiegendem Direktabflussanteil wird die entsprechende Nitrat¬fracht direkt in die Oberflächengewässer eingetragen. Eine detaillierte Beschreibung der Methodik enthält: LANUV (2021): Kooperationsprojekt GROWA+ NRW 2021 Teil VII - Minderungsbedarf der Stickstoffeinträge zur Erreichung der Ziele für das Grundwasser und für den Meeresschutz. LANUV-Fachbericht 110, Landesamt für Natur, Umwelt und Verbraucherschutz Nordrhein-Westfalen, Recklinghausen 2021. https://www.lanuv.nrw.de/fileadmin/lanuvpubl/3_fachberichte/30110h.pdf
Die Excel-Tabelle listet alle Grundwassergütemessstellen des WRRL- und EUA- /Nitratmessnetzes NRW, die für die Ausweisung der mit Nitrat belasteten "roten" Gebiete und zur immissionsbasierten Abgrenzung belasteter / unbelasteter Teilgebiete innerhalb der betroffenen Grundwasserkörper herangezogen worden sind (Stand: 12/2022). Messstellen ohne landwirtschaftlichen Einfluss, die eine Nitrat- oder Nitrateintragskonzentration oberhalb des Grundwasserschwellenwertes oder einen steigenden Nitrattrend aufweisen, sind nicht in der Tabelle enthalten, da sie gemäß AVV GeA bei der Gebietsausweisung keine Berücksichtigung finden. Als Angaben enthält das Tabellenblatt: - 9-stellige amtliche Messstellennummer und Name der Messstelle - Gemeinde und Kreis in der bzw. dem die Messstelle liegt - Grundwasserkörper (ID und Name), dem die Messstelle beim Monitoring zugeordnet ist - Lagekoordinaten (aus Datenschutzgründen unterbleiben die beiden letzten Stellen) - dominierender Landnutzungseinfluss im Zustromgebiet der Messstelle - Information, ob ein anhaltend steigender Nitrattrend aktuell im Zeitraum 2009-2018 gemäß GrwV an der Messstelle vorliegt (ja/nein) und ob gleichzeitig ein Nitratwert > 37,5 mg/l vorliegt - Mittelwert der Maximalwerte MWMxJW1619 (Nitrat; mg/l) der Jahre 2016-2019 zu der Messstelle - Nitrateintragskonzentration (mg/l) im Zeitraum 2016-2019, soweit vorhanden (bei mehreren Messungen wird der Mittelwert verwendet). Grundlage sind Messungen des Parameters „Exzess-N2 (umgerechnet in Nitrat in mg/L)“ und die „Nitratkonzentration“ als Summenwert aus jeweils derselben Grundwasserprobe. Die Daten stehen in ELWAS-web. Die Nitrateintragskonzentration entspricht der Nitratkonzentration vor Denitrifikation im Grundwasser. Der Exzess-N2 (durch Nitratabbau im Überschuss gebildetes N2) wird mit der N2/Ar-Methode bestimmt. - Maßgeblicher Wert, aus welchem die Information abzuleiten ist, ob bei der Abgrenzung belasteter / unbelastete Teilgebiete MWMxJW1619 oder Nitrateintragskonzentration ausschlaggebend ist. - Information, ob die Messstelle für die Ausweisung „roter Feldblöcke“ relevant ist oder nicht. Dies ist der Fall bei landwirtschaftlich beeinflussten Messstellen, bei denen der Nitratwert (MWMxJW1619) oder die Nitrateintragskonzentration größer als 50 mg/l ist, sowie bei landwirtschaftlich beeinflussten Messstellen, bei denen ein steigender Nitrattrend vorliegt und der Nitratwert (MWMxJW1619) 37,5 mg/l oder größer ist. In der Excel-Datei sind neben der Datentabelle (Tabellenblatt „AWMN_2022_11“) ein Tabellenblatt zur Erläuterung der Attribute (Tabellenblatt „Dateninformation“) sowie ein Tabellenblatt mit Informationen zu den Grundwasserkörpern (Tabellenblatt „GWK-Tabelle“) enthalten.
Die Karte zeigt die mittlere Veränderung des standörtlichen Verlagerungspotentials für nichtsorbierbare Stoffe (auch Austauschhäufigkeit des Bodenwassers pro Jahr) 2021-2050 gegenüber 1971-2000 unter dem „Kein-Klimaschutz“-Szenario (RCP8.5). Mit Hilfe der Austauschhäufigkeit (AH) des Bodenwassers kann das standörtliche Verlagerungspotenzial für nicht- oder schwach sorbierbare Stoffe beschrieben werden. Die AH gibt an, wie häufig die Bodenlösung in der effektiven Wurzelzone im Zuge der Sickerwasserverlagerung ausgetauscht wird. Je geringer das Wasserspeicher- und Rückhaltevermögen eines Bodens, desto größer ist seine Austauschhäufigkeit des Bodenwassers. Aussagen zur Konzentration und Frachten von nicht sorbierbaren Stoffen können mit der Methode nicht abgebildet werden. Bei Nitrat werden die Deposition, Denitrifikation und Mineralisation nicht berücksichtigt. Sie können in Abhängigkeit vom Standort deutlichen Einfluss auf die Nitratverfügbarkeit und -konzentration im Sickerwasser haben. Die Klimamodelle sind mit dem „Kein-Klimaschutz“-Szenario (RCP8.5) angetrieben. Dabei handelt es sich um ein Szenario des IPCC (Weltklimarat), welches einen kontinuierlichen Anstieg der globalen Treibhausgasemissionen beschreibt, der bis zum Ende des 21. Jahrhunderts einen zusätzlichen Strahlungsantrieb von 8,5 Watt pro m² gegenüber dem vorindustriellen Niveau bewirkt. Die Ergebnisse aller Klimamodelle sind gleich wahrscheinlich. Daher kann neben dem Mittelwert, der eine Tendenz aufzeigt, auch der obere (Maximum) und untere (Minimum) Rand der Ergebnisbandbreite über den MapTip abgerufen werden.
Die Karte zeigt die mittlere Veränderung des standörtlichen Verlagerungspotentials für nichtsorbierbare Stoffe (auch Austauschhäufigkeit des Bodenwassers pro Jahr) 2031-2060 gegenüber 1971-2000 unter dem „Kein-Klimaschutz“-Szenario (RCP8.5). Mit Hilfe der Austauschhäufigkeit (AH) des Bodenwassers kann das standörtliche Verlagerungspotenzial für nicht- oder schwach sorbierbare Stoffe beschrieben werden. Die AH gibt an, wie häufig die Bodenlösung in der effektiven Wurzelzone im Zuge der Sickerwasserverlagerung ausgetauscht wird. Je geringer das Wasserspeicher- und Rückhaltevermögen eines Bodens, desto größer ist seine Austauschhäufigkeit des Bodenwassers. Aussagen zur Konzentration und Frachten von nicht sorbierbaren Stoffen können mit der Methode nicht abgebildet werden. Bei Nitrat werden die Deposition, Denitrifikation und Mineralisation nicht berücksichtigt. Sie können in Abhängigkeit vom Standort deutlichen Einfluss auf die Nitratverfügbarkeit und -konzentration im Sickerwasser haben. Die Klimamodelle sind mit dem „Kein-Klimaschutz“-Szenario (RCP8.5) angetrieben. Dabei handelt es sich um ein Szenario des IPCC (Weltklimarat), welches einen kontinuierlichen Anstieg der globalen Treibhausgasemissionen beschreibt, der bis zum Ende des 21. Jahrhunderts einen zusätzlichen Strahlungsantrieb von 8,5 Watt pro m² gegenüber dem vorindustriellen Niveau bewirkt. Die Ergebnisse aller Klimamodelle sind gleich wahrscheinlich. Daher kann neben dem Mittelwert, der eine Tendenz aufzeigt, auch der obere (Maximum) und untere (Minimum) Rand der Ergebnisbandbreite über den MapTip abgerufen werden.
Die Karte zeigt die mittlere Veränderung des standörtlichen Verlagerungspotentials für nichtsorbierbare Stoffe (auch Austauschhäufigkeit des Bodenwassers pro Jahr) 2071-2100 gegenüber 1971-2000 unter dem „Kein-Klimaschutz“-Szenario (RCP8.5). Mit Hilfe der Austauschhäufigkeit (AH) des Bodenwassers kann das standörtliche Verlagerungspotenzial für nicht- oder schwach sorbierbare Stoffe beschrieben werden. Die AH gibt an, wie häufig die Bodenlösung in der effektiven Wurzelzone im Zuge der Sickerwasserverlagerung ausgetauscht wird. Je geringer das Wasserspeicher- und Rückhaltevermögen eines Bodens, desto größer ist seine Austauschhäufigkeit des Bodenwassers. Aussagen zur Konzentration und Frachten von nicht sorbierbaren Stoffen können mit der Methode nicht abgebildet werden. Bei Nitrat werden die Deposition, Denitrifikation und Mineralisation nicht berücksichtigt. Sie können in Abhängigkeit vom Standort deutlichen Einfluss auf die Nitratverfügbarkeit und -konzentration im Sickerwasser haben. Die Klimamodelle sind mit dem „Kein-Klimaschutz“-Szenario (RCP8.5) angetrieben. Dabei handelt es sich um ein Szenario des IPCC (Weltklimarat), welches einen kontinuierlichen Anstieg der globalen Treibhausgasemissionen beschreibt, der bis zum Ende des 21. Jahrhunderts einen zusätzlichen Strahlungsantrieb von 8,5 Watt pro m² gegenüber dem vorindustriellen Niveau bewirkt. Die Ergebnisse aller Klimamodelle sind gleich wahrscheinlich. Daher kann neben dem Mittelwert, der eine Tendenz aufzeigt, auch der obere (Maximum) und untere (Minimum) Rand der Ergebnisbandbreite über den MapTip abgerufen werden.
Die Karte zeigt die mittlere Veränderung des standörtlichen Verlagerungspotentials für nichtsorbierbare Stoffe (auch Austauschhäufigkeit des Bodenwassers pro Jahr) 2071-2100 gegenüber 1971-2000 unter dem „Kein-Klimaschutz“-Szenario (RCP8.5). Mit Hilfe der Austauschhäufigkeit (AH) des Bodenwassers kann das standörtliche Verlagerungspotenzial für nicht- oder schwach sorbierbare Stoffe beschrieben werden. Die AH gibt an, wie häufig die Bodenlösung in der effektiven Wurzelzone im Zuge der Sickerwasserverlagerung ausgetauscht wird. Je geringer das Wasserspeicher- und Rückhaltevermögen eines Bodens, desto größer ist seine Austauschhäufigkeit des Bodenwassers. Aussagen zur Konzentration und Frachten von nicht sorbierbaren Stoffen können mit der Methode nicht abgebildet werden. Bei Nitrat werden die Deposition, Denitrifikation und Mineralisation nicht berücksichtigt. Sie können in Abhängigkeit vom Standort deutlichen Einfluss auf die Nitratverfügbarkeit und -konzentration im Sickerwasser haben. Die Klimamodelle sind mit dem „Kein-Klimaschutz“-Szenario (RCP8.5) angetrieben. Dabei handelt es sich um ein Szenario des IPCC (Weltklimarat), welches einen kontinuierlichen Anstieg der globalen Treibhausgasemissionen beschreibt, der bis zum Ende des 21. Jahrhunderts einen zusätzlichen Strahlungsantrieb von 8,5 Watt pro m² gegenüber dem vorindustriellen Niveau bewirkt. Die Ergebnisse aller Klimamodelle sind gleich wahrscheinlich. Daher kann neben dem Mittelwert, der eine Tendenz aufzeigt, auch der obere (Maximum) und untere (Minimum) Rand der Ergebnisbandbreite über den MapTip abgerufen werden.
Die Karte zeigt die mittlere Veränderung des standörtlichen Verlagerungspotentials für nichtsorbierbare Stoffe (auch Austauschhäufigkeit des Bodenwassers pro Jahr) 2031-2060 gegenüber 1971-2000 unter dem „Kein-Klimaschutz“-Szenario (RCP8.5). Mit Hilfe der Austauschhäufigkeit (AH) des Bodenwassers kann das standörtliche Verlagerungspotenzial für nicht- oder schwach sorbierbare Stoffe beschrieben werden. Die AH gibt an, wie häufig die Bodenlösung in der effektiven Wurzelzone im Zuge der Sickerwasserverlagerung ausgetauscht wird. Je geringer das Wasserspeicher- und Rückhaltevermögen eines Bodens, desto größer ist seine Austauschhäufigkeit des Bodenwassers. Aussagen zur Konzentration und Frachten von nicht sorbierbaren Stoffen können mit der Methode nicht abgebildet werden. Bei Nitrat werden die Deposition, Denitrifikation und Mineralisation nicht berücksichtigt. Sie können in Abhängigkeit vom Standort deutlichen Einfluss auf die Nitratverfügbarkeit und -konzentration im Sickerwasser haben. Die Klimamodelle sind mit dem „Kein-Klimaschutz“-Szenario (RCP8.5) angetrieben. Dabei handelt es sich um ein Szenario des IPCC (Weltklimarat), welches einen kontinuierlichen Anstieg der globalen Treibhausgasemissionen beschreibt, der bis zum Ende des 21. Jahrhunderts einen zusätzlichen Strahlungsantrieb von 8,5 Watt pro m² gegenüber dem vorindustriellen Niveau bewirkt. Die Ergebnisse aller Klimamodelle sind gleich wahrscheinlich. Daher kann neben dem Mittelwert, der eine Tendenz aufzeigt, auch der obere (Maximum) und untere (Minimum) Rand der Ergebnisbandbreite über den MapTip abgerufen werden.
Die Karte zeigt die mittlere Veränderung des standörtlichen Verlagerungspotentials für nichtsorbierbare Stoffe (auch Austauschhäufigkeit des Bodenwassers pro Jahr) 2021-2050 gegenüber 1971-2000 unter dem „Kein-Klimaschutz“-Szenario (RCP8.5). Mit Hilfe der Austauschhäufigkeit (AH) des Bodenwassers kann das standörtliche Verlagerungspotenzial für nicht- oder schwach sorbierbare Stoffe beschrieben werden. Die AH gibt an, wie häufig die Bodenlösung in der effektiven Wurzelzone im Zuge der Sickerwasserverlagerung ausgetauscht wird. Je geringer das Wasserspeicher- und Rückhaltevermögen eines Bodens, desto größer ist seine Austauschhäufigkeit des Bodenwassers. Aussagen zur Konzentration und Frachten von nicht sorbierbaren Stoffen können mit der Methode nicht abgebildet werden. Bei Nitrat werden die Deposition, Denitrifikation und Mineralisation nicht berücksichtigt. Sie können in Abhängigkeit vom Standort deutlichen Einfluss auf die Nitratverfügbarkeit und -konzentration im Sickerwasser haben. Die Klimamodelle sind mit dem „Kein-Klimaschutz“-Szenario (RCP8.5) angetrieben. Dabei handelt es sich um ein Szenario des IPCC (Weltklimarat), welches einen kontinuierlichen Anstieg der globalen Treibhausgasemissionen beschreibt, der bis zum Ende des 21. Jahrhunderts einen zusätzlichen Strahlungsantrieb von 8,5 Watt pro m² gegenüber dem vorindustriellen Niveau bewirkt. Die Ergebnisse aller Klimamodelle sind gleich wahrscheinlich. Daher kann neben dem Mittelwert, der eine Tendenz aufzeigt, auch der obere (Maximum) und untere (Minimum) Rand der Ergebnisbandbreite über den MapTip abgerufen werden.
Origin | Count |
---|---|
Bund | 724 |
Land | 74 |
Type | Count |
---|---|
Förderprogramm | 685 |
Text | 19 |
Umweltprüfung | 2 |
unbekannt | 69 |
License | Count |
---|---|
closed | 41 |
open | 727 |
unknown | 7 |
Language | Count |
---|---|
Deutsch | 768 |
Englisch | 90 |
unbekannt | 3 |
Resource type | Count |
---|---|
Archiv | 6 |
Bild | 6 |
Datei | 1 |
Dokument | 20 |
Keine | 597 |
Webdienst | 43 |
Webseite | 163 |
Topic | Count |
---|---|
Boden | 563 |
Lebewesen & Lebensräume | 610 |
Luft | 442 |
Mensch & Umwelt | 775 |
Wasser | 775 |
Weitere | 775 |