Das Projekt "Conversion of Low Grade Heat to Power through closed loop Reverse Electro-Dialysis (RED-Heat-to-Power)" wird vom Umweltbundesamt gefördert und von WIP, Wirtschaft und Infrastruktur GmbH & Co Planungs-KG durchgeführt. The concept is based on the generation of electricity from salinity gradient using Reverse Electrodialysis with artificial saline solutions operating in a closed-loop. The original salinity gradient is regenerated by a separation step that uses heat at 40 - 100 C. The regenerated solutions can be stored at very low costs and the stack can react within seconds, providing flexibility to the power system. It is a quiet technology operating under normal pressures and temperatures imposing no risks. The industrial partners ensures the MRL will be kept aligned with the advances in TRL. The overall objective is to prove this revolutionary concept, develop the necessary materials, components and know-how for bringing it to the level of a lab prototype generating electricity from low-grade heat at higher efficiencies and lower costs than ever achieved to date. Specific objectives: Select the most suitable technologies for the regeneration process and the combinations of salts and solvents that can maximise the system performance. Create new knowledge for developing: membranes for the selected solutions; membrane manufacturing concepts that can be scaled-up for high volume and low-cost production; efficient stacks suitable for this application; energy efficient regeneration processes. Implement and validate a process simulation tool to analyse the performance under different configurations and operating conditions. Evaluate and improve the performance of the overall system through tests on a lab-prototype, identifying potential up-scaling and operational issues (System efficiencies reaching 15% and power densities of 25 W/m2 of cell pair). Define a development roadmap, taking into account environmental, social and regulatory issues, leading to levelised cost of electricity below 0.03 Euro/kWh by 2025 to 2030. Involve target group representatives to the Advisory Board and communicate the key results in order to initiate a dialogue and facilitate the engagement of key actors.
Das Projekt "Treatment of electrolytes from a zinc electrolysis plant by eed (electro-electro-dialysis)" wird vom Umweltbundesamt gefördert und von Preussag-Weser-Zink durchgeführt. Objective: To build and operate a dialysis cell of industrial size together with the necessary ancillary equipment to test the EED process in long term commercial use. The EED allows a higher yield of zinc connected with considerable energy savings for removal of magnesium from the electrolyte compared with alternative possibilities. General Information: Preussag-Weser-Zink GmbH operates in Nordenham (Germany) a plant for the hydrometallurgical-electrolytic production of zinc with a capacity of 110 000 tons of electrolytic zinc per year. During the electrolysis an enrichment of the magnesium content of the electrolyte taken place. To limit this enrichment, a special treatment of a part of the electrolyte stream is necessary. Per ton of produced zinc generally 0.1 to 0.2 m3 of electrolyte are subjected to this treatment which consists of neutralizing the electrolyte with zinc. This leads to the formation of 30 to 70 Kg per ton of produced zinc, which is costly and energy intensive to dispose of. Within the framework of this project it is intended to subject a part of the magnesium containing neutral zinc sulfate (neutral lye) as a catholyte to an Electro-Electro-Dialysis (EED). In the EED more than 80 per cent of the zinc is separated in the usual quality at the cathode while a corresponding part of sulfate ions go into the anolyte and arerecirculated into the process. The zinc which has and been separated at the cathode in the EED is recovered in a second process step by selective precipitation. EED was developed in the research institute of Minemet in France and pilot testing took place at Preussag-Weser-Zink GmbH, during 12 months. The pilot plant consisted of 2-3 dialysis cells producing daily 3 Kg of zinc per cell. Results from the pilot trials confirmed the previous laboratory work. The demonstration plant consisted of a dialysis cell with five industrially sized cathodes of 1,2 m2 active surface and additional equipment for the treatment of the catholyte by selective precipitation. The production capacity of the demonstration plant was 50 kg zinc per day. From the laboratory work and the previous pilot tests for a 110,000. For a 110,000 tons zinc producing plant the estimated energy saving amounts to 1,400 TOE/year, in addition to which 91 000 000 000 KJ/a of primary energy are substituted with 32.3 000 000 000 KJ/a of electrical energy. On the basis of the above saving, the cost of handling 1 m3 of the electrolyte solution is calculated to be DM 168. compared to the current disposal cost (to a third party) of DM 198. The process is covered by a joint patent and a cooperation contract covers the relationship between Minemet and Preussag. Achievements: Important technical know-how for electrolytic processes using membranes was generated. Among others the cell with compartments for cathodes and anodes and the membranes fixing system had to be designed and materials and membranes chosen. The membrane IONAC MA 3475 from SYBRON CHEMICALS gave...
Das Projekt "Teilprojekt 2" wird vom Umweltbundesamt gefördert und von B. Braun Avitum Saxonia GmbH - Betriebsstätte Berggießhübel durchgeführt. Weltweit gibt es ca. 7 Millionen dialysepflichtige Patienten, deren Anzahl stetig zunimmt. Der Bedarf zur Dialyse wird aufgrund dessen und infolge fehlender Alternativen in den nächsten Jahrzehnten wachsen. Damit steigt der Ressourcenbedarf für die Herstellung von Dialysatoren ebenso wie der Reststoffanfall. Der größte umweltrelevante Faktor bei der Produktion von Dialysemembranen im Nassspinnverfahren besteht in der Verwendung von Lösungsmitteln wie N,N-Dimethylacetamid (DMAc) oder N-Methylpyrrolidon (NMP). Ein großer Teil der Lösungsmittel wird zwar innerbetrieblich zurückgewonnen, bspw. durch Destillationsverfahren, dennoch fallen lösungsmittelhaltige Konzentrate und Abwässer an, die zum Teil unter hohem Energieaufwand thermisch entsorgt werden. Das wesentliche Ziel des Projektes besteht in der Senkung der bei der Abwasser- und Konzentratbehandlung entstehenden Emissionen und in der Minderung des Frischwasserbedarfs. In diesem Sinne wird ein energiesparendes, mehrstufiges Verfahren entwickelt, mit dem lösungsmittelhaltige Prozesswässer über ein abgestuftes Aufbereitungskonzept für die anschließende Rückführung in den Herstellungsprozess aufbereitet werden. Das Unternehmen B.Braun Avitum Saxonia GmbH stellt am Standort Dresden Dialysatoren für die Nierenersatztherapie her. Als Lösungsmittel in der Hohlfaserproduktion dient hierbei DMAc. Das für die Reinigung der Fasern anfallende Wasser wird momentan kostenintensiv entsorgt. Die Kreislaufführung dieses industriell genutzten Wassers und die Senkung der Betriebskosten stehen dabei im Fokus des Projektes. B. Braun steht somit am Ende der Wertschöpfungskette des Vorhabens. Die Labore der B.Braun Avitum Saxonia GmbH entwickeln verschiedene Methoden zur Analytik der Komponenten in den unterschiedlichen Abwässern. In enger Zusammenarbeit mit den Projektpartnern werden alle Teil- und Gesamtströme des in dem Projekt entwickelten mehrstufigen Verfahrens untersucht.
Das Projekt "Teilprojekt 5" wird vom Umweltbundesamt gefördert und von CUP Laboratorien Dr. Freitag GmbH durchgeführt. Weltweit gibt es ca. 7 Millionen dialysepflichtige Patienten, deren Anzahl stetig zunimmt. Der Bedarf zur Dialyse wird aufgrund dessen und infolge fehlender Alternativen in den nächsten Jahrzehnten wachsen. Damit steigt der Ressourcenbedarf für die Herstellung von Dialysatoren ebenso wie der Reststoffanfall. Der größte umweltrelevante Faktor bei der Produktion von Dialysemembranen im Nassspinnverfahren besteht in der Verwendung von Lösungsmitteln wie N,N-Dimethylacetamid (DMAc) oder N-Methylpyrrolidon (NMP). Ein großer Teil der Lösungsmittel wird zwar innerbetrieblich zurückgewonnen, bspw. durch Destillationsverfahren, dennoch fallen lösungsmittelhaltige Konzentrate und Abwässer an, die zum Teil unter hohem Energieaufwand thermisch entsorgt werden. Das wesentliche Ziel des Projektes besteht in der Senkung der bei der Abwasser- und Konzentratbehandlung entstehenden Emissionen und in der Minderung des Frischwasserbedarfs. In diesem Sinne wird ein energiesparendes, mehrstufiges Verfahren entwickelt, mit dem lösungsmittelhaltige Prozesswässer über ein abgestuftes Aufbereitungskonzept für die anschließende Rückführung in den Herstellungsprozess aufbereitet werden. Die Aufgabe der CUP Laboratorien Dr. Freitag GmbH in dem Projekt besteht darin, verlässliche Analysenverfahren zum Nachweis der zu eliminierenden Verunreinigungen (DMAc, BPA, NMP, Mikroplastik und deren Abbaustoffe) entwickeln und für die Routineanwendung validieren.
Das Projekt "Teilprojekt 7" wird vom Umweltbundesamt gefördert und von Institut für Luft- und Kältetechnik gemeinnützige Gesellschaft mbH durchgeführt. Weltweit gibt es ca. 7 Millionen dialysepflichtige Patienten, deren Anzahl stetig zunimmt. Der Bedarf zur Dialyse wird aufgrund dessen und infolge fehlender Alternativen in den nächsten Jahrzehnten wachsen. Damit steigt der Ressourcenbedarf für die Herstellung von Dialysatoren ebenso wie der Reststoffanfall. Der größte umweltrelevante Faktor bei der Produktion von Dialysemembranen im Nassspinnverfahren besteht in der Verwendung von Lösungsmitteln wie N,N-Dimethylacetamid (DMAc) oder N-Methylpyrrolidon (NMP). Ein großer Teil der Lösungsmittel wird zwar innerbetrieblich zurückgewonnen, bspw. durch Destillationsverfahren, dennoch fallen lösungsmittelhaltige Konzentrate und Abwässer an, die zum Teil unter hohem Energieaufwand thermisch entsorgt werden. Das wesentliche Ziel des Projektes besteht in der Senkung der bei der Abwasser- und Konzentratbehandlung entstehenden Emissionen und in der Minderung des Frischwasserbedarfs. In diesem Sinne wird ein energiesparendes, mehrstufiges Verfahren entwickelt, mit dem lösungsmittelhaltige Prozesswässer über ein abgestuftes Aufbereitungskonzept für die anschließende Rückführung in den Herstellungsprozess aufbereitet werden. Das ILK Dresden widmet sich innerhalb des Konsortiums der Einbindung innerbetrieblich anfallender Abwärme in den Aufbereitungsprozess der Abwässer, der Entwicklung von Varianten für die Einbindung des neuen Aufbereitungsverfahrens in den Industrieprozess mit verschiedenen Optimierungszielen sowie der Datenerfassung, -aufbereitung und -verteilung aus und für ein Simulationsmodell und die Pilotanlage.
Das Projekt "Teilprojekt 4" wird vom Umweltbundesamt gefördert und von Szymon Dutczak Me-Sep durchgeführt. Weltweit gibt es ca. 7 Millionen dialysepflichtige Patienten, deren Anzahl stetig zunimmt. Der Bedarf zur Dialyse wird aufgrund dessen und infolge fehlender Alternativen in den nächsten Jahrzehnten wachsen. Damit steigt der Ressourcenbedarf für die Herstellung von Dialysatoren ebenso wie der Reststoffanfall. Der größte umweltrelevante Faktor bei der Produktion von Dialysemembranen im Nassspinnverfahren besteht in der Verwendung von Lösungsmitteln wie N,N-Dimethylacetamid (DMAc) oder N-Methylpyrrolidon (NMP). Ein großer Teil der Lösungsmittel wird zwar innerbetrieblich zurückgewonnen, bspw. durch Destillationsverfahren, dennoch fallen lösungsmittelhaltige Konzentrate und Abwässer an, die zum Teil unter hohem Energieaufwand thermisch entsorgt werden. Das wesentliche Ziel des Projektes besteht in der Senkung der bei der Abwasser- und Konzentratbehandlung entstehenden Emissionen und in der Minderung des Frischwasserbedarfs. In diesem Sinne wird ein energiesparendes, mehrstufiges Verfahren entwickelt, mit dem lösungsmittelhaltige Prozesswässer über ein abgestuftes Aufbereitungskonzept für die anschließende Rückführung in den Herstellungsprozess aufbereitet werden. Me-Sep untersucht dabei Möglichkeiten zur Behandlung das biologisch gereinigte Abwasser durch eine Membrananlage auf Reinstwasserqualität. Aufbereitungsziel ist eine Wasserqualität, die zur Herstellung von Dialysemembranen geeignet ist. Der zur Erreichung dieses Ziels durchzuführende experimentelle Vergleich der Membrantechnologien ist entscheidend für die Auswahl des optimalen zero-liquid-discharge-Verfahrens (ZLD) für die Produktion von Dialysatoren.
Das Projekt "Teilprojekt 6" wird vom Umweltbundesamt gefördert und von wasserWerkstatt Christian Karpf durchgeführt. Weltweit gibt es ca. 7 Millionen dialysepflichtige Patienten, deren Anzahl stetig zunimmt. Der Bedarf zur Dialyse wird aufgrund dessen und infolge fehlender Alternativen in den nächsten Jahrzehnten wachsen. Damit steigt der Ressourcenbedarf für die Herstellung von Dialysatoren ebenso wie der Reststoffanfall. Der größte umweltrelevante Faktor bei der Produktion von Dialysemembranen im Nassspinnverfahren besteht in der Verwendung von Lösungsmitteln wie N,N-Dimethylacetamid (DMAc) oder N-Methylpyrrolidon (NMP). Ein großer Teil der Lösungsmittel wird zwar innerbetrieblich zurückgewonnen, bspw. durch Destillationsverfahren, dennoch fallen lösungsmittelhaltige Konzentrate und Abwässer an, die zum Teil unter hohem Energieaufwand thermisch entsorgt werden. Das wesentliche Ziel des Projektes besteht in der Senkung der bei der Abwasser- und Konzentratbehandlung entstehenden Emissionen und in der Minderung des Frischwasserbedarfs. In diesem Sinne wird ein energiesparendes, mehrstufiges Verfahren entwickelt, mit dem lösungsmittelhaltige Prozesswässer über ein abgestuftes Aufbereitungskonzept für die anschließende Rückführung in den Herstellungsprozess aufbereitet werden. Das Unternehmen wasserWerkstatt möchte mit den Projekt seine Kompetenzen im Bereich der industriellen Abwasserbehandlung mit Pflanzenkläranlagen ausbauen. Insbesondere sollen Erkenntnisse zum Einsatz von zweistufigen Bodenfilteranlagen, deren Optimierungspotenzial und Reinigungsleistung in Bezug auf die Stickstoffelimination erworben werden. Als weiteres Geschäftsfeld des Unternehmens wasserWerkstatt sollen Erkenntnisse und technologische Möglichkeiten im Bereich der Regenwasserbewirtschaftung gewonnen werden. Aufgrund zunehmender Anfragen in Bezug auf die Nutzung von Niederschlagswasser werden hier neue Impulse zum Einsatz im gewerblichen Bereich erwartet.
Das Projekt "Teilprojekt 1" wird vom Umweltbundesamt gefördert und von Technische Universität Dresden, Institut für Siedlungs- und Industriewasserwirtschaft, Professur für Siedlungswasserwirtschaft durchgeführt. Weltweit gibt es ca. 7 Millionen dialysepflichtige Patienten, deren Anzahl stetig zunimmt. Der Bedarf zur Dialyse wird aufgrund dessen und infolge fehlender Alternativen in den nächsten Jahrzehnten wachsen. Damit steigt der Ressourcenbedarf für die Herstellung von Dialysatoren ebenso wie der Reststoffanfall. Der größte umweltrelevante Faktor bei der Produktion von Dialysemembranen im Nassspinnverfahren besteht in der Verwendung von Lösungsmitteln wie N,N-Dimethylacetamid (DMAc) oder N-Methylpyrrolidon (NMP). Ein großer Teil der Lösungsmittel wird zwar innerbetrieblich zurückgewonnen, bspw. durch Destillationsverfahren, dennoch fallen lösungsmittelhaltige Konzentrate und Abwässer an, die zum Teil unter hohem Energieaufwand thermisch entsorgt werden. Das wesentliche Ziel des Projektes besteht in der Senkung der bei der Abwasser- und Konzentratbehandlung entstehenden Emissionen und in der Minderung des Frischwasserbedarfs. In diesem Sinne wird ein energiesparendes, mehrstufiges Verfahren entwickelt, mit dem lösungsmittelhaltige Prozesswässer über ein abgestuftes Aufbereitungskonzept für die anschließende Rückführung in den Herstellungsprozess aufbereitet werden. Die Professur Siedlungswasserwirtschaft des Instituts für Siedlungs- und Industriewasserwirtschaft und das Institut für Hydrobiologie der Technischen Universität Dresden untersuchen dabei Möglichkeiten zur Behandlung der anfallenden Abwässer und Konzentrate mit verschiedenen Verfahren sowie deren ökotoxikologische Wirkungen.
Das Projekt "Teilprojekt 6: Ga-As-Trennung mittels Membranverfahren" wird vom Umweltbundesamt gefördert und von Technische Universität Bergakademie Freiberg, Institut für NE-Metallurgie und Reinststoffe durchgeführt. Das Gesamtprojekt umfasst die Gewinnung von Ga (und As) aus Produktionsabfällen der GaAs-Halbleiterindustrie. Es sollen Technologien entwickelt werden, um die Wertstoffe der Halbleiterindustrie zu recyceln und bis zum Reinstprodukt aufzuarbeiten. Ziel ist die Kreislaufwirtschaft des Ga und die Verwertung bis zu einer zero waste technology. INEMET entwickelt im Projekt Technologien, um konzentrierte Ga- und As-haltige Lösungen mittels Dialyse, Membran- oder Ionenaustauschverfahren in Ga- und As-haltige Ströme zu trennen. INEMET, Teilprojekt 4: lm Rahmen des Verbundprojektes wird das Institut für NE-Metallurgie und Reinststoffe zunächst eine Recherche der in der Halbleiter-Industrie anfallenden Ga/As-haltigen Stoffströme durchführen, um deren Potential abschätzen zu können. Es folgt die Auswahl und Weiterentwicklung von Membranverfahren zur Trennung von Ga und As bei unterschiedlichen Lösungsqualitäten (Dialyse, Elektrodialyse, ggf. NF und RO), die Entwicklung von biotechnologischen Verfahren zur selektiven Sorption der Elemente an Biomasse und der Abtrennung von Peptiden aus Lösungen. Die Prozesse werden in Zusammenarbeit mit den Industriepartnern für die industrielle Anwendung, im Hinblick auf die erforderlichen Produktqualitäten und ihre Wirtschaftlichkeit optimiert.
Das Projekt "Teilprojekt B" wird vom Umweltbundesamt gefördert und von Helmholtz-Zentrum Dresden-Roßendorf e.V., Institut für Ressourcenökologie durchgeführt. Bisher ist es nicht gelungen, alle relevanten expandierten Daten zum Langzeitverhalten von Bentoniten (B) im Kontakt zu Lösungen unter Endlagerbedingungen mit einem einheitlich abgesicherten Modell zu erklären. Dies liegt an den Vorgehensweisen der Arbeitsgruppen, und an der komplexen Analytik. Es sollen milieuabhängige Lösungs- und mikrostrukturelle Alterationsprozesse und deren Auswirkungen auf die hydromechanischen Eigenschaften kompaktierter B unter vergleichbaren Randbedingungen ermittelt werden. - Chem. und min. Analysen von 15 B - Dialyse der B für definierten einheitliche Startbedingungen für die nachfolgenden Reaktionen mit zwei Formationslösungen - Herstellung einer NaCl-CaSO4-gesättigten Lösungen und einer Opalinustonporenlösungen - Kompaktion der B und Bestimmung der Ausgangswerte von Quelldruck und Permeabilität - Batchversuche in Glasampullen mit 200 g B bei 25°C, 90°C und 120°C, Schüttelung mit 400 mL Formationslösungen über 12 und 24 Monate - Öffnen der Glasampullen, Abtrennen der Lösungen. und Dialysierung der reagierten B - Kompaktion der reagierten und dialysierten B und erneute Best. von Quelldruck und Permeabilität. - Chem. Analytik von dialysierten Feststoffen und Reaktionslösungen aus den Glasampullen nach Ende Reaktionszeit - Versuche zur Untersuchung des Einflusses mikrobieller Effekte auf die Alteration von B durch Reduktion von Fe(III) zu Fe(II) bei 25°C, 60°C und 90°C - Entwicklung einer quantenmechanisch unterstützten Modellvorstellung zur Tonmineralumwandlung in B - Zusammenfassung und Berichterstattung.