API src

Found 23 results.

Schaumbildung im Wasser vor den Inseln: Schaumalge ist für den Menschen harmlos!

Für den Menschen ist sie harmlos, auch wenn sie dafür sorgt, dass das Nordseewasser vor den Inseln faulig-schwefelig riecht: Die sogenannte Schaumalge (Phaeocystis globosa) ist Schuld an der Schaumansammlung insbesondere im Bereich der ostfriesischen Inseln. Seit Ende Mai ist die Schaumbildung zu beobachten: Von dieser planktischen Alge kommen Einzelzellen und Kolonien vor, letztere bilden eine eiweiß- und kohlenhydratreiche Hülle. Die meist kugelig geformten Hüllen sind oft schon mit bloßem Auge sichtbar. Bei hohen Konzen-trationen der Schaumalge verfärbt sich das Wasser grün-braun und riecht durch freigesetztes Dimethylsulfid faulig-schwefelig. Im Bereich der südlichen Nordsee erreicht die Alge von Anfang April bis Mitte Mai ihre maximale Dichte. "Beim Zusammenbruch einer derartigen Algenblüte, der mit der Auflösung der Koloniehüllen einhergeht, können insbesondere an den Inselstränden auffällige Schaumansammlungen entstehen", heißt es in einer Presseinformation des NLWKN (Niedersächsischer Landesbetrieb für Wasserwirtschaft, Küsten- und Naturschutz). Während das Auftreten von Phaeocystis-Blüten in der Nordsee bereits für das Ende des 19. Jahrhunderts dokumentiert ist, nahmen Häufigkeit, Dauer und Intensität der Blüten während der letzten Jahrzehnte zu. So wurden im Rahmen der Überwachung der niedersächsischen Küstengewässer an einer bei Norderney gelegenen Messstation 1993 Höchstwerte von bis zu 100.000 Kolonien pro Liter Seewasser gemessen. Danach erfolgte ein Rückgang auf weniger als 8.000 Kolonien pro Liter in den Jahren von 1997 bis 2003. Sowohl 2004 als auch 2005 wurden an der Norderneyer Messstation des NLWKN wieder deutlich höhere Frühjahrswerte festgestellt, die in diesem Jahr zur beschriebenen Schaumbildung führten. Die Ursache für das vermehrte Auftreten von Algenblüten im Bereich der Küstengewässer liegt nach Auskunft des NLWKN eindeutig am hohen Nährstoffeintrag.

Informationen zur chemischen Verbindung: Dimethylsulfid

Die verlinkte Webseite enthält Informationen der Website chemikalieninfo.de des Umweltbundesamtes zur chemischen Verbindung Dimethylsulfid. Stoffart: Stoffklasse.

Informationen zur chemischen Verbindung: Dimethylsulfid

Die verlinkte Webseite enthält Informationen der Website chemikalieninfo.de des Umweltbundesamtes zur chemischen Verbindung Dimethylsulfid. Stoffart: Einzelinhaltsstoff. Aggregatzustand: flüssig. Stoffbeschaffenheit: extrem dünnflüssig. Farbe: farblos.

Auf dem Weg zu einem besseren DMS-Oxidationsmechanismus (ADOniS)

Das Projekt "Auf dem Weg zu einem besseren DMS-Oxidationsmechanismus (ADOniS)" wird vom Umweltbundesamt gefördert und von Deutsche Forschungsgemeinschaft durchgeführt. Wechselwirkungen zwischen dem Ozean und der Troposphäre sind für viele Prozesse in beiden Systemen wichtig. Ein Schlüsselprozess stellt der Austausch von Spurengasen zwischen der Atmosphäre und dem Ozean dar. Die Emission von Dimethylsulfid (DMS) stellt die größte natürliche Quelle für reduzierten Schwefel in die Atmosphäre dar. Dort kann DMS zu Schwefeldioxid, Schwefelsäure oder Methansulfonsäure oxidiert werden. Diese Verbindungen sind wichtige Vorläufersubstanzen für sekundäre Aerosole, die den natürlichen Strahlungshaushalt und die Wolkenbildung beeinflussen können. Die chemische Prozessierung, d.h. die sekundäre Bildung und Oxidation von DMS-Oxidationsprodukten, ist jedoch noch immer schlecht verstanden. Daher ist die Implementierung in aktuelle Multiphasenchemiemechanismen und Klimamodellen begrenzt, wodurch die aktuellen Vorhersagen noch sehr unsicher sind. Um die bestehenden Lücken in unserem Verständnis der DMS-Multiphasenchemie weiter zu schließen, zielt das Projekt ADOniS darauf ab, (i) fortgeschrittene Laboruntersuchungen zur Gas- und Flüssigphasenchemie von DMS-Oxidationsprodukten durchzuführen, (ii) ein fortgeschrittenes Multiphasen-DMS-Chemiemodul zu entwickeln und (iii) Prozess- und 3D-Modelluntersuchungen durchzuführen. Die vorgeschlagenen detaillierten Laboruntersuchungen konzentrieren sich auf die OH-Oxidation von Gasphasenprodukten der ersten Generation, Hydroperoxymethylthioformat (HPMTF) und Dimethylsulfoxid (DMSO), sowie auf die Bildung von DMS-Oxidationsprodukten der zweiten Generation. Die detaillierten mechanistischen Untersuchungen werden mit einem Freistrahl-Strömungsreaktor durchgeführt. Weitere kinetische und mechanistische Untersuchungen werden sich auf die Chemie von DMS-Oxidationsprodukten in der wässrigen Phase konzentrieren. OH Radikalreaktionen von HPMTF-Surrogaten werden mit Hilfe eines Laser Flash Photolysis - Long Path Absorption (LFP-LPA) Systems untersucht. Weiterhin wird die Oxidation von MSA/MS- durch OH(aq) und die Oxidation von MSIA/MSI- durch O3(aq) in wässriger Phase untersucht. Ferner soll die Aufnahme von wichtigen DMS-Oxidationsprodukten an verschiedenen Aerosolpartikeln durch Kammerstudien untersucht werden. Die Bildung von DMS-Oxidationsprodukten in der Gasphase und deren Aufnahme auf injizierten Aerosolpartikeln wird mit einem CI-APi-TOF Massenspektrometer gemessen. Basierend auf den Ergebnissen der Laborstudien wird ein fortschrittliches DMS-Reaktionsmodul entwickelt und anschließend im Multiphasenchemiemodell SPACCIM für detaillierte Prozessstudien eingesetzt. Die gewonnenen Erkenntnisse über die wichtigsten DMS-Oxidationswege werden dann die Grundlage für eine aktualisierte Behandlung DMS in globalen Klimachemiemodellen (CCMs), hier ECHAM-HAMMOZ, bilden. Schließlich werden Simulationen mit ECHAM-HAMMOZ die Auswirkungen des verbesserten DMS-Mechanismus auf die globale atmosphärische DMS-Chemie untersuchen und die Auswirkungen auf das Klima und die zukünftige Sensitivität bewerten.

Der Einfluss der SML auf die Spurengasbiogeochemie und den Ozean-Atmosphäre-Gasaustausch

Das Projekt "Der Einfluss der SML auf die Spurengasbiogeochemie und den Ozean-Atmosphäre-Gasaustausch" wird vom Umweltbundesamt gefördert und von Helmholtz-Zentrum für Ozeanforschung Kiel (GEOMAR), Forschungsbereich 2: Marine Biogeochemie durchgeführt. Labor- und Feldstudien zeigen, dass die Oberflächengrenzschicht des Ozeans (â€Ìsurface microlayerâ€Ì, kurz SML) die biogeochemischen Kreisläufe von klimaaktiven und atmosphärisch wichtigen Spurengasen wie Kohlenstoffdioxid (CO2), Kohlenstoffmonoxid (CO), Methan (CH4), Lachgas (N2O) und Dimethylsulfid (DMS) stark beeinflusst: (i) Jüngste Studien aus den PASSME- und SOPRAN-Projekten haben hervorgehoben, dass Anreicherungen von oberflächenaktiven Substanzen (d.h. Tensiden) einen starken (dämpfenden) Effekt sowohl auf die CO2- als auch auf die N2O-Flüsse über die SML/Atmosphären-Grenzfläche hinweg haben und (ii) Spurengase können durch (mikro)biologische oder (photo)chemische Prozesse in der SML produziert und verbraucht werden. Daher kann der oberste Teil des Ozeans, einschließlich der SML, verglichen mit dem Wasser, das in der Mischungsschicht unterhalb der SML zu finden ist, eine bedeutende Quelle oder Senke für diese Gase sein, was von sehr großer Relevanz für die Forschungseinheit BASS ist. Die Konzentrationen von CO2, N2O und anderen gelösten Gasen in der SML (oder den oberen Zentimetern des Ozeans) unterscheiden sich nachweislich von ihren Konzentrationen unterhalb der SML. Typischerweise werden die Nettoquellen und -senken wichtiger atmosphärischer Spurengase mit Konzentrationen berechnet, die in der Mischungsschicht gemessen wurden und mit Gasaustauschgeschwindigkeiten, die die SML nicht berücksichtigen. Diese Diskrepanzen führen zu falsch berechneten Austauschflüssen, die in der Folge zu großen Unsicherheiten in den Berechnungen der Klima-Antrieben und der Luftqualität in Erdsystemmodellen führen können. Durch die Verknüpfung unserer Spurengasmessungen mit Messungen von (i) der Dynamik und den molekularen Eigenschaften der organischen Materie und speziell des organischen Kohlenstoffs (SP1.1; SP1.5), (ii) der biologischen Diversität und der Stoffwechselaktivität (SP1.2), (iii) den optischen Eigenschaften der organischen Materie (SP1.3), (iv) der photochemischen Umwandlung der organischen Materie (SP1.4) und (v) den physikalischen Transportprozessen (SP2.3) werden wir ein umfassendes Verständnis darüber erlangen, wie die SML die Variabilität der Spurengasflüsse beeinflusst.

Bakterielle Umwandlungen von Dimethylsulfoniumpropionat im Weddellmeer

Das Projekt "Bakterielle Umwandlungen von Dimethylsulfoniumpropionat im Weddellmeer" wird vom Umweltbundesamt gefördert und von Deutsche Forschungsgemeinschaft durchgeführt. Dimethylsulfid (DMS) ist ein klimarelevantes Spurengas marinen Ursprungs, das in der Atmosphäre als Vorstufe von Kondensationskernen bei der Wolkenbildung dient. Das Südpolarmeer wurde als Region mit erheblicher DMS Freisetzung aus dem Ozean in die Atmosphäre erkannt. Schwerpunkte der DMS Produktion wurden in der Nähe des Antarktischen Kontinentes und in der Zone der saisonalen Eisschmelze ermittelt. Modellsimulationen haben gezeigt, dass Störungen der DMS Flüsse vom Ozean in die Atmsophäre die Wolkenbedeckung beeinflussen und so zu Veränderungen im Strahlungshaushalt der Atmosphäre führen können. Das Prozessverständnis für marine DMS Emissionen und ihre Vorhersage sind somit entscheidend für Szenarien zukünftiger Klimabedingungen. DMS wird im Oberflächenozean durch den bakteriellen Abbau von Dimethylsulfoniumpropionat (DMSP) freigesetzt, das wiederum durch Phytoplankton produziert wird. Der bakterielle DMSP-Abbau folgt zwei konkurrierenden enzymatischen Stoffwechselwegen: dem Demethylierungsweg und dem Spaltungsweg. Da nur der Spaltungsweg zur Produktion von DMS führt, ist ein verbessertes Verständnis von Umweltfaktoren und genetischen Voraussetzungen, die die Balance zwischen den beiden Stoffwechselwegen kontrollieren, von großer Bedeutung um die Regulation der biologischen DMS Flüsse vom Ozean in die Atmosphäre abzuschätzen. Während die globalen Auswirkungen des DMSP Umsatzes im Ozean schon vor mehr als 30 Jahren erkannte wurden, ist es durch neue Methoden der Molekularbiologie und der „Omics“ Techniken erst kürzlich möglich geworden relevante Gene des bakteriellen DMSP Stoffwechsels zu identifizieren und Einsicht in ihre phylogenetische Verteilung zu gewinnen. Bisherige Erkenntnise zum bakteriellen Umsatz von DMSP in marine Systemen basieren weitgehend auf Studien aus mittleren und niederen Breiten, während die polaren Ozeane kaum untersucht wurden. Die Analyse der Bakteriengemeinschaften im Weddellmeer mittels Amplicon Sequenzierung des 16S rRNA Gens hat hohe Abundanzen potentiell DMS produzierender Bakteriengruppen wie der Roseobacter Gruppe und SAR11 gezeigt.Im vorgeschlagenen Projekt möchten wir modernen Methode der Moleklularbiologie in Kombination mit bioinformatischen Werkzeugen anwenden um im Weddellmeer(1) die Umweltkontrolle des bakteriellen DMSP Abbaus zu analysieren(2) die Diversität und Taxonomie DMSP abbauender Bakterien zu untersuchen(3) das genetische Inventar für DMSP Transformationen zu analysieren und(4) Stoffwechsel und ökologische Strategien von Schlüsselarten zu charakterisieren.Hierzu werden Seewasserproben analysiert, die am Östlichen Weddellmeer Eisschelf, am Filchner-Ronne Eisschelf und im Weddellwirbel genommen wurden. Die zu erwartenden Ergebnisse werden das mechanistische Verständnis des bakteriellen DMSP Abbaus im Weddellmeer verbessern und zu verlässlichen Prognosen von marinen DMS Emissionen im Südpolarmeer unter zukünftigen Klimaszenarien beitragen.

WTZ Großbritannien: PETRA - Untersuchungen der Bildungswege und Emissionen von klimarelevanten Spurengasen in einem sich wandelnden Arktischen Ozean

Das Projekt "WTZ Großbritannien: PETRA - Untersuchungen der Bildungswege und Emissionen von klimarelevanten Spurengasen in einem sich wandelnden Arktischen Ozean" wird vom Umweltbundesamt gefördert und von Helmholtz-Zentrum für Ozeanforschung Kiel (GEOMAR) durchgeführt. Wir wissen überraschend wenig über die Bildungswege und Emissionen von klimarelevanten Spurengasen im Arktischen Ozean (AO). Es gibt jedoch starke Hinweise, dass Spurengase wie z.B. Lachgas (N2O), Methan (CH4), Dimethylsulfid (DMS) und Kohlenstoffmonoxid (CO) wichtige Rollen sowohl für die chemische Reaktivität als auch die Strahlungsbilanz der Arktis spielen und deshalb ein großes Potential haben, das Klima der Arktis entscheidend zu beeinflussen. Menschliche Aktivitäten verändern die Umwelt der Arktis mit einer bisher nicht gekannten Geschwindigkeit was zu einer schnellen Erwärmung, gravierendem Rückzug der Eisbedeckung und zunehmender Ozeanversauerung des Arktischen Ozeans führt. Die miteinander verbundenen Konsequenzen der obengenannten Stressfaktoren (sogenannte Stressoren) für die zukünftige Bildung und Emissionen von den obengenannten Spurengasen sind bisher weitgehend unerforscht. Deshalb schlagen wir vor, dies im Arktischen Ozean zu untersuchen: Dies umfasst (i) hochaufgelöste Messungen von Spurengasen in der Ozeanoberfläche mit neuartigen Laser-basierten Instrumenten, (ii) Inkubationsexperimente um mit gezielten Manipulationen die Effekte von mehreren Stressoren (Temperatur, Versauerung und Licht) auf die Spurengasbildung zu untersuchen und (iii) die Anwendung von Ökosystemmodellen zur Simulation von zukünftigen Szenarien. Die Ergebnisse von PETRA werden unser Verständnis der zukünftigen Rolle der Bildung und Emissionen von Spurengase für die Atmosphäre und das Klima sowohl auf regionaler (arktischer) als auch auf globaler Skala verbessern.

WTZ China: SO-TRACE - Emissionen von Dimethylsulfid und Isopren und ihr Einfluss auf Aerosole und Klima im Südpolarmeer

Das Projekt "WTZ China: SO-TRACE - Emissionen von Dimethylsulfid und Isopren und ihr Einfluss auf Aerosole und Klima im Südpolarmeer" wird vom Umweltbundesamt gefördert und von Helmholtz-Zentrum für Ozeanforschung Kiel (GEOMAR) durchgeführt. Der Ozean ist eine Quelle für atmosphärische Gase, die trotz ihrer geringen Konzentration in der Atmosphäre eine große Wirkung auf das Klima der Erde haben. Diese klimarelevanten Spurengase beeinflussen z.B. den Treibhauseffekt oder die Ausweitung des Ozonlochs. Besonders die Wirkung mariner Spurengase auf die Aerosolbildung wird heute stark diskutiert. Direkte Beweise fehlen unter anderem deshalb, weil es an gleichzeitigen Messungen von marinen Gasemissionen sowie Aerosolbeschaffenheit und -konzentration mangelt. Aerosole erhöhen das Rückstrahlvermögen der Erde und sind damit ein wichtiger natürlicher Gegenprozess zur globalen Erwärmung. Trotzdem ist die Menge der vom Ozean emittierten Spurengase mit großen Unsicherheiten behaftet. Das Südpolarmeer ist dabei von doppelt großer Bedeutung: Einerseits liegen durch seine Abgelegenheit sehr wenige Messdaten vor, die jedoch auf vergleichsweise große Emissionen hindeuten. Andererseits ist es relativ unberührt von menschlichem Einfluss: Natürliche Prozessen können deshalb nahezu ungehindert beobachtet werden. Ziel des Projekts ist es daher, die Rolle mariner Spurengasemissionen bei der Bildung von Aerosolen im Südpolarmeer besser zu verstehen. Dazu sollen in Zusammenarbeit mit dem Third Institute of Oceanography, Xiamen, China, Messungen auf zwei Seereisen in diese Region durchgeführt werden. Ein Fokus wird auf die Spurengase Dimethylsulfid und Isopren gelegt, die dort in hohen Konzentrationen im Wasser vorkommen. Da es sich bei den Auswirkungen des Klimawandels um ein globales Problem handelt, wird durch die gemeinsame Forschung nicht nur die deutsche und chinesische Gesellschaft profitieren. Beide Länder haben sich mit der Verabschiedung des Pariser Klimaabkommens politisch hinter den Klimaschutz gestellt. Dafür ist ein verbessertes Prozessverständnis unerlässlich. Mit einer solchen Zusammenarbeit wird die Expertise zweier Institute kombiniert, um das globale Klimaverständnis zu verbessern.

Evaluation of the Climatic Impact of Dimethyl Sulphide

Das Projekt "Evaluation of the Climatic Impact of Dimethyl Sulphide" wird vom Umweltbundesamt gefördert und von Universität Wuppertal, Physikalische Chemie durchgeführt. Objective/Problems to be solved: The proposed research programme is designed to resolve many of the outstanding key issues concerning the chemical transformation of DMS so that a reliable quantitative appraisal can be made of its contribution to CCN formation and consequently an assessment of the magnitude of its regulatory role in climate. Past work on the atmospheric chemistry has been instrumental in highlighting very specific processes, which need to be investigated in detail if a reliable assessment of the relationship between DMS, CCN and climate is to be made. The continuing improvement in analytical techniques now makes it possible to make high quality and high time resolution measurements of many species, both in the laboratory and in the field, which were previously either not possible or only with large error limits and poor time resolution. Scientific objectives and approach: The major objectives of the project are 1) to put constrains on the large uncertainties associated with current photochemical models by providing more accurate gas-phase kinetic and photochemical data on DMS oxidation chemistry. 2) Investigate particle formation from both DMS and DMSO. 3) Simultaneous high-time resolution measurements of dimethyl sulphide, oxidation products, halogen oxides, NO3 radical, and aerosol number/size distribution in 3 campaigns at sites with different geographical locations reflecting distinct aspects of DMS chemistry. 4) Use the data to determine the relative importance of the oxidants OH, NO3 and halogen oxides under different atmospheric conditions. 5) Use the laboratory data to construct a DMS chemistry module for CT-models capable of describing both the remote and polluted marine atmosphere and test of the models against the field data. The objectives will be achieved by a closely co-ordinated amalgamation of laboratory, field and modelling investigations. Expected impacts: The main deliverables of the project will initially be progressive constraints on kinetic/ mechanistic aspects of the oxidation chemistry of DMS and DMSO from laboratory and field experiments. This will be accompanied by high-time resolution field measurements of DMS, oxidation products, aerosols and other products relevant to the photo-chemistry. Based on this laboratory and field information a comprehensive gas/aerosol DMS-halogen-chemistry mechanism (g/a-DMS-HALO) module for incorporation in CT-models will be developed, which will be capable of describing DMS chemistry in both the remote and polluted marine atmosphere. The information can eventually be incorporated into global climatic models.

Dimethyl Sulphide (DMS): Oxidation Mechanism in Relation to Aerosols and Climate

Das Projekt "Dimethyl Sulphide (DMS): Oxidation Mechanism in Relation to Aerosols and Climate" wird vom Umweltbundesamt gefördert und von Universität-Gesamthochschule Wuppertal, Fachbereich 9 Naturwissenschaften II, Physikalische Chemie durchgeführt. General Information: Dimethyl sulphide (DMS) is the major biogenic sulphur gas emitted to the atmosphere and it has been recently estimated to contribute as much as 40 per cent to the global column of atmospheric sulphate (SO4 2-). DMS, emitted by the oceans, has tentatively been identified as the major precursor of initially condensation nuclei (CN) and eventually cloud condensation nuclei (CCN) in remote marine regions. Thus, it has been postulated that DMS may have a significant influence on the Earth's radiation budget and possibly in climate regulation. This influence might be even larger than anticipated if the recent suggestion that substantial amounts of DMS may reach the upper troposphere over convective regions is validated. The exact nature and extend of the interaction between DMS and climate cannot presently be assessed with a high degree of reliability due largely to uncertainties in the product distributions from the oxidation of DMS. The present research project proposes to concentrate on investigating the reaction pathways in the oxidation of DMS which have been designated in previous research projects as being those most likely to produce H2S04 and MSA aerosols, the principal precursors of marine atmospheric aerosol and eventually CCN. The issues to be addressed, which are currently thought to be most crucial for an understanding of the tropospheric DMS chemistry and assessing the magnitude of its regulatory influence on climate, will include: 1. The mechanism of CN generation via the DMS-SO2-H2SO4 pathway or alternatively via DMS-SO3-H2S04 without the intermediacy of SO2 formation. 2. The relative contribution of MSA and H2SO4 to CN formation (MSA/nss-SO4 2- ratio) in the marine troposphere but also in the upper troposphere (a new issue). What are the factors controlling its seasonal and latitudinal variation: temperature, NOx or the nature of the oxidant (mainly OH and NO3, eventually also Cl or BrO). 3. The formation yield of DMSO under different atmospheric conditions ; its heterogeneous loss and kinetics and products of its further gas phase oxidation; relative yields of SO2, MSA and DMSO2 4. The influence of heterogeneous oxidation of SO2 (e.g. on sea salt) on the H2SO4/SO2 yield. 5. The aqueous phase oxidation of DMSO and DMSO2 and its relative importance compared to gas phase oxidation. The project will consist principally of laboratory studies combining state-of-the-art laboratory methods to investigate individual reaction steps and overall mechanisms under realistic atmospheric conditions. A chemical module for DMS oxidation will be made available for integration in chemistry-transport models. Prime Contractor: Centre National de la Recherche Scientifique (CNRS), Laboratoire de Combustion et Systemes Reactifs (LCSR) (UPR 4211); Orleans/France.

1 2 3